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A Newton-Krylov method is developed for the solution of the steady compressible Navier-Stokes equa-
tions using a Discontinuous Galerkin (DG) discretization on unstructured meshes. An element Line-Jacobi
preconditioner is presented which solves a block tridiagonal system along lines of maximum coupling in the
flow. An incomplete block-LU factorization (Block-ILU(0)) is also presented as a preconditioner, where the
factorization is performed using a reordering of elements based upon the lines of maximum coupling. This
reordering is shown to be superior to standard reordering techniques (Nested Dissection, One-way Dissec-
tion, Quotient Minimum Degree, Reverse Cuthill-Mckee) especially for viscous test cases. The Block-ILU(0)
factorization is performed in-place and a novel algorithm is presented for the application of the linearization
which reduces both the memory and CPU time over the traditional dual matrix storage format. A linear p-
multigrid algorithm using element Line-Jacobi and Block-ILU(0) smoothing is presented as a preconditioner
to GMRES. The linear multigrid preconditioner is shown to significantly improve convergence in terms of the
number of linear iterations as well as to reduce the total CPU time required to obtain a converged solution.

I. Introduction

Discontinuous Galerkin (DG) discretizations have become increasingly popular for achieving accurate
solutions of conservation laws. Specifically, DG discretizations have been widely used to solve the Euler
and Navier-Stokes equations for convection-dominated problems.1–6 DG methods are attactive since the
elementwise discontinuous representation of the solution provides a natural way of achieving higher-order
accuracy on arbitrary, unstructured meshes. A detailed overview of DG methods for the discretization of
the Euler and Navier-Stokes equations is provided by Cockburn and Shu.5 They, among others,7, 8 have
noted that while DG discretizations have been extensively studied, development of solution methods ideally
suited for solving these discretizations have lagged behind. In this work a Newton-GMRES approach using a
linear multigrid preconditioner is developed as a solution method for DG discretizations of the steady state
Navier-Stokes equations.

The use of multigrid to solve DG discretizations of compressible flows was first presented by Fidkowski9

and Fidkowski et al.7 Fidkowski et al. used a p-multigrid scheme with an element-line smoother to solve
the non-linear system of equations. The Newton-GMRES approach has been widely used for finite volume
discretizations of the Euler and Navier-Stokes equations.10–16 In the context of DG discretizations, GMRES
was first used to solve the steady 2D compressible Navier-Stokes equations by Bassi and Rebay.3, 17 GMRES
has also been used for the solution of the linear system arising at each iteration of an implicit time stepping
scheme for the DG discretization of the time dependent Euler or Navier-Stokes equations.18–20 Persson and
Peraire20 developed a two level scheme as a preconditioner to GMRES to solve the linear system at each
step of an implicit time stepping scheme. They used an ILU(0) smoother for the desired p and solved a
coarse grid problem (p = 0 or p = 1) exactly. Recently, several other authors have used p-multigrid methods
to solve DG discretizations of the Euler or Navier-Stokes equations.8, 21–23 Natase and Mavriplis8, 22 used
both p-multigrid (where coarse solutions are formed by taking lower order approximations within each
element), and hp-multigrid, where an h-multigrid scheme was used to provide a solution update for the
p = 0 approximation. Natase and Mavriplis used this hp-multigrid scheme with an element Block-Jacobi
smoother to solve the non-linear system as well as to solve the linear system arising from a Newton scheme.
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This work presents a linear p-multigrid scheme as a preconditioner to GMRES for the solution of the
steady state Euler and Navier-Stokes equations using a DG discretization. While results presented here are
used to solve steady state problems, the methods are also suitable for solving time dependent problems.
An overview of the DG discretization and the Newton-Krylov approach for solving systems of non-linear
conservation laws is presented in Section II. Section III presents the Block-Jacobi, Line-Jacobi and Block-
ILU(0) stationary iterative methods that are used as single-level preconditioners or as smoothers on each
level of the linear multigrid preconditioner. By considering the Block-ILU preconditioner as a stationary
iterative method, a memory efficient implementation is developed which requires no additional storage for
the incomplete factorization, while reducing the total time required per linear iteration compared to the
traditional dual matrix storage format. Section IV presents a new matrix reordering algorithm for the
Block-ILU factorization based upon lines of maximum coupling between elements in the flow. This line
reordering algorithm is shown to significantly improve the convergence behaviour, especially for viscous
problems. Section V presents the linear multigrid algorithm and discusses memory considerations involved
in the development of a memory efficient preconditioner. Finally, Section VI presents numerical results which
show that the linear multigrid algorithm reduces both the number of linear iterations and the time required
to obtain a converged solution.

II. Solution Method

II.A. DG Discretization

The time dependent, compressible Navier-Stokes equations using index notation are given by:

∂tuk + ∂iFki(u) − ∂iF
v
ki(u) = 0, k ∈ [1, ns] (1)

where uk is the kth component of the conservative state vector u = [ρ, ρvi, ρE], ρ is the density, vi are the
component of the velocity, and E is the total energy. For two- and three- dimensional flows, ns = 4 and
5, respectively (assuming turbulence modeling or other equations are not included). Fki(u) and F v

ki(u) are
inviscid and viscous flux components, respectively, such that Equation (1) is a compact notation for the
conservation of mass, momentum, and energy.

The DG discretization of the Navier-Stokes equations is obtained by choosing a triangulation Th of the
computational domain Ω composed of triangular elements κ, and obtaining a solution in Vp

h, the space of
piecewise polynomials of order p, which satisfies the weak form of the equation. We define uh to be the
approximate solution in (Vp

h)
ns , while vh ∈ (Vp

h)
ns is an arbitrary test function. The weak form is obtained

by multiplying Equation (1) by the test functions and integrating over all elements. The weak form is given
by

∑

κ∈Th

∫

κ

vk∂tukdx + Rh(uh,vh) = 0, (2)

where,

Rh(uh,vh) =
∑

κ∈Th

[Eκ(uh,vh) + Vκ(uh,vh)] (3)

Eκ(uh,vh) = −

∫

κ

∂ivkFkidx +

∫

∂κ

v+
k F̂ki(u

+
h ,u−

h )n̂ids (4)

and Vκ(uh,vh) is the discretization of the viscous terms. In Equation (4), ()+ and ()− denote values taken
from the inside and outside faces of an element, while n̂ is the outward-pointing unit normal. F̂ki(u

+
h ,u−

h )n̂i

is the Roe numerical flux function approximating Fkin̂i on the element boundary faces.24 The viscous terms,
Vκ(uh,vh) are discretized using the BR2 scheme of Bassi and Rebay.3 The BR2 scheme is used because it
achieves optimal order of accuracy while maintaining a compact stencil with only nearest neighbour coupling.
Further details of the discretization of the viscous terms may be found in Fidkowski et al.7

The discrete form of the equations is obtained by choosing a basis for the space Vp
h. The solution vector

uh(x, t) may then be expressed as a linear combination of basis functions vhi
(x) where the coefficients of

expansion are given by the discrete solution vector Uh(t), such that:

uh(x, t) =
∑

i

Uhi
(t)vhi

(x) (5)
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Two sets of basis functions are used in the context of this work: a nodal Lagrange basis and a hierarchical
basis. Further details of the bases may be found in Fidkowski et al.7

Given a basis for the space Vp
h, the weak form of the Navier-Stokes equations given in Equation (2) can

be written in semi-discrete form as:

Mh

dUh

dt
+ Rh(Uh(t)) = 0, (6)

where Rh is the discrete non-linear residual such that Rh(Uh)i = Rh(uh,vhi
), while Mh is the mass matrix

given by

Mhij
=

∫

κ

vhi
vhj

dx. (7)

Since the basis functions are piecewise polynomials which are non-zero only within a single element, the
mass matrix is block-diagonal.

To discretize Equation (6) in time, we introduce a time integration scheme given by:

Um+1
h = Um

h −

(

1

∆t
Mh +

∂Rh

∂Uh

)−1

Rh(Um
h ). (8)

A steady state solution of the Navier-Stokes equations is given by Uh satisfying:

Rh(Uh) = 0. (9)

The steady state solution is obtained by using the time integration scheme given in Equation (8) and
increasing the time step ∆t, such that ∆t → ∞. Directly setting ∆t = ∞ is the equivalent of using Newton’s
method to solve Equation (9), however convergence is unlikely if the initial guess is far from the solution. On
the other hand, if the solution is updated using Equation (8), then the intermediate solutions approximate
physical states in the time evolution of the flow, and convergence is more likely.

II.B. Linear System

The time integration scheme given by Equation (8) requires the solution of a large system of linear equations
of the form Ax = b at each time step, where

A =
1

∆t
Mh +

∂Rh

∂Uh

x = ∆Um
h b = −Rh(Um

h ). (10)

The matrix A is commonly refered to as the Jacobian matrix. Since the Jacobian matrix is derived from the
DG discretization, the Jacobian matrix has a block-sparse structure with Ne block rows of size nb, where
Ne is the number of elements in the triangulation Th, while nb is the number of unknowns for each element.
Here nb = ns × nm, where nm is the number of modes per state. nm is a function of the solution order p
and the spatial dimension, as summarized in Table 1. Each block row of the Jacobian matrix has a non-zero

p nm, 2D nm, 3D

0 1 1

1 3 4

2 6 10

3 10 20

4 15 35

p (p+1)(p+2)
2

(p+1)(p+2)(p+3)
6

Table 1. Number of modes per element, nm, as a function of solution order, p

diagonal block, corresponding to the coupling of states within each element, and nf off-diagonal non-zero
blocks corresponding to the coupling of states between neighbouring elements, where nf is the number of
faces per element (3 and 4 for 2D triangular and 3D tetrahedral elements, respectively). When the time step,
∆t, is small, the Jacobian matrix is block-diagonally dominant and the linear system is relatively easy to
solve iteratively. On the other hand as the time step increases the coupling between neighbouring elements
becomes increasingly important and the linear system generally becomes more difficult to solve.
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II.C. Linear Solution Method

The block-sparse structure of the Jacobian matrix and the large number of unknowns suggest the use of an
iterative method, more specifically a Krylov-subspace method, to solve the linear system. Since the Jacobian
matrix is non-symmetric (though structurally symmetric), the method of choice is the restarted GMRES25, 26

algorithm which finds an approximate solution, x̃, in the Krylov subspace, K = {b, Ab, A2b, ...An−1b}, that
minimizes the L-2 norm of the linear residual r = b− Ax̃.

The convergence of the GMRES algorithm has been shown to be strongly dependent upon eigenvalues
of the Jacobian matrix, A.25–27 To improve the convergence properties of GMRES, a preconditioner is used
which transforms the linear system Ax = b into a related system P−1Ax = P−1b with better convergence
properties. Though the preconditioner, P , is presented as a matrix, any iterative method may be used as a
preconditioner.

II.D. Residual Tolerance Criterion

When solving the DG discretization of the steady-state Navier-Stokes equations using the time stepping
scheme presented in Equation (8), it is often unnecessary to solve the linear system of equations exactly at
each iteration. When the time step is small, or the solution estimate is far from the exact solution, the linear
system only needs to be solved to a limited tolerance, which depends upon the non-linear residual. Kelley
and Keyes28 considered three phases of a time stepping scheme to solve the steady state Euler equations: the
initial, midrange, and terminal phases. Kelley and Keyes proved super-linear convergence of the non-linear
residual in the terminal phase of an inexact Newton iteration given sufficient reduction of the linear residual
in each iteration. In this section, an exit criterion is developed for the solution of the linear system to
realize the super-linear convergence during the terminal phase. To develop this exit criterion, we consider
the convergence of Newton’s method to solve Equation (9), such that the solution update is given by:

Um+1
h = Um

h −

(

∂Rh

∂Uh

)−1

Rh(Um
h ), (11)

where Um
h is the approximate solution at iteration m of the Newton’s method. Defining ǫm

h = Uh − Um
h to

be the solution error at iteration m, quadratic convergence of the error can be proven as ǫm
h → 0. Namely,

∣

∣

∣

∣ǫm+1
h

∣

∣

∣

∣ = C1 ||ǫ
m
h ||2 , (12)

for some constant C1.
28 Similarly quadratic convergence of the solution residual is observed,

∣

∣

∣

∣Rh(Um+1
h )

∣

∣

∣

∣ = C2 ||Rh(Um
h )||

2
, (13)

for some different constant C2. Based on this observation, an estimate of the reduction in the solution
residual may be given by:

∣

∣

∣

∣Rh(Um+1
h )

∣

∣

∣

∣

||Rh(Um
h )||

∼

(

||Rh(Um
h )||

∣

∣

∣

∣Rh(Um−1
h )

∣

∣

∣

∣

)2

= (dm)2, (14)

where dm =
||Rh(Um

h )||

||Rh(Um−1

h
)||

, is the decrease factor of the non-linear residual at iteration m. When the expected

decrease of the non-linear residual is small, it may not be necessary to solve the linear system at each Newton
step exactly to get an adequate solution update. It is proposed that the linear system given by Ahxh = bh

should have a reduction in linear residual proportional to the expected decrease in the non-linear residual.
Defining the linear residual at linear iteration k to be rk

h = bh − Ahx
k
h, the linear system is solved to a

tolerance of:

||rn
h||

||r0
h||

≤ K(dm)2, (15)

where K is a user defined constant, typically chosen in the range K = [10−3, 10−2]. Since the linear residual is
not available at each GMRES iteration and computing this linear residual can be computationally expensive,
the preconditioned linear residual norm,

∣

∣

∣

∣P−1(bh − Ahx
k
h)
∣

∣

∣

∣, is used, which can be computed essentially for
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free at each GMRES iteration. The reduction in the preconditioned residual also provides an estimate of
the reduction of the norm of the linear solution error,

∣

∣

∣

∣A−1
h b − xk

h

∣

∣

∣

∣, since

∣

∣

∣

∣(A−1
h bh − xk

h)
∣

∣

∣

∣

∣

∣

∣

∣(A−1
h bh − x0

h)
∣

∣

∣

∣

≤ κ
(

P−1Ah

)

∣

∣

∣

∣P−1(bh − Ahx
k
h)
∣

∣

∣

∣

||P−1(bh − Ahx
0
h)||

, (16)

where κ
(

P−1Ah

)

is the condition number of P−1Ah. With increasingly effective preconditioning, P−1Ah

approaches the identity matrix and the reduction in the preconditioner residual norm more closely approxi-
mates the reduction in the linear solution error.

Since the non-linear residual may increase at some iteration m, the tolerance for the linear system
presented in Equation (15) is modified to be:

∣

∣

∣

∣P−1rn
h

∣

∣

∣

∣

||P−1r0
h||

≤ K (min {1, dm})
2
. (17)

This criterion for the reduction of the linear residual is then used to determine n, the number of GMRES
iterations to perform each Newton step.

III. In-Place Preconditioning

III.A. Stationary Iterative Methods

Stationary iterative methods used to solve the system of linear equations Ax = b involve splitting the matrix
A into two parts such that A = M +N , where M in some sense approximates the matrix A and is relatively
easy to invert. Since an iterative scheme is typically used directly as a preconditioner to GMRES, M is
commonly refered to as the preconditioning matrix. Applying a stationary iterative method, x is updated
using

xk+1 = (1 − ω)xk + ωM−1(b− Nxk), (18)

where ω is the under relaxation factor. An equivalent form of Equation (18) is

xk+1 = xk + ωM−1rk, (19)

where rk is the linear residual given by

rk = b− Axk. (20)

In practice, stationary iterative methods involve a preprocessing stage and an iterative stage. The iterative
stage involves repeated solution updates according to Equation (18) or Equation (19), where Equation (18) is
used if the application of N is computationally less expensive than the application of A, otherwise Equation
(19) is used. In addition, if the stationary iterative method is used as a smoother for linear multigrid, then
the iterative stage will involve repeated calculation of the linear residual, r, using Equation (20). In the
preprocessing stage the matrix A is factorized such that the application of M−1, M , N and A in Equations
(18), (19), and (20) may be evaluated at a fraction of the computational cost of the preprocessing stage.
In our implementation, the preprocessing stage is performed in place such that the original matrix A is
rewritten with a factorization F . As a result the iterative method uses only the memory required to store
the original matrix A, with no additional memory storage required for M , M−1 or N .

III.B. Block-Jacobi Solver

The first and most basic stationary iterative method used in this work is a Block-Jacobi solver. The Block-
Jacobi solver is given by choosing M to be the block-diagonal of the matrix A. In the preprocessing stage
each diagonal block is LU factorized and the factorization, F , is stored, where

F =







LU(A11) A12 A13

A21 LU(A22) A23

A31 A32 LU(A33)






. (21)
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This factorization allows for the easy application of both M and M−1 during the iterative stage. N is
given by the off-diagonal blocks of A which are not modified in the preprocessing stage. Table 2 gives the
asymptotic operation counts per element for forming F (given A), as well as the application of M−1, M , N
and A. The operation counts presented in Table 2 are asymptotic estimates, in that lower order terms in nb

have been ignored. The application of A is computed as the sum of the applications of M and N . Thus, the
Block-Jacobi iterative step uses Equation (18), since the application of A is computationally more expensive
than the application of N .

Operation Operation Count 2D 3D

Form F 2
3n3

b
2
3n3

b
2
3n3

b

x = M−1x 2n2
b 2n2

b 2n2
b

y = Mx 2n2
b 2n2

b 2n2
b

y = Nx 2nfn2
b 6n2

b 8n2
b

y = Ax 2(nf + 1)n2
b 8n2

b 10n2
b

Table 2. Block-Jacobi solver asymptotic operation count per element

III.C. Line-Jacobi Solver

The second stationary iterative method presented in this work is a Line-Jacobi solver. The Line-Jacobi
solver is given by forming lines of maximum coupling between elements and solving a block-tridiagonal
system along each line. The coupling between elements is determined by using a p = 0 discretization of the
scalar transport equation:

∇ · (ρuφ) −∇ · (µ∇φ) = 0 (22)

The lines are formed by connecting neighbouring elements with maximum coupling. For purely convective
flows, the lines are in the direction of streamlines in the flow. For viscous flows solved using anisotropic
grids, the lines within the boundary layer are often in non-streamline directions. Further details of the line
formation algorithm are presented in the theses of Fidkowski9 and Oliver.29

For the Line-Jacobi solver, M is given by the block-tridiagonal systems corresponding to the lines of
maximum coupling, while N is given by the blocks associated with the coupling between elements across
different lines. In the preprocessing stage, M is factorized using a block-variant of the Thomas algorithm
given by:

F =







LU(A11) A12 A13

A21 LU(A
′

22) A23

A31 A32 LU(A
′

33)






(23)

where, A
′

22 = A22 − A21A
−1
11 A12 and A

′

33 = A33 − A32A
′−1

22 A23. The corresponding LU factorization of M is
given by:

M =







A11 A12

A21 A22 A23

A32 A33






=







I

A21A
−1
11 I

A32A
′−1
22 I













A11 A12

A
′

22 A23

A
′

33






(24)

The factorization given by Equation (23) is stored as opposed to the LU factorization given by Equation (24)
to reduce the computational cost of the preprocessing stage. The reduction in computational cost of storing
the factorization given by Equation (23) is offset by an increase in the computational cost of applying M
and M−1 during the iterative stage. The total computational cost for both the preprocessing and iterative
stages using the factorization given by Equation (23) is lower than the LU factorization given by Equation
(24), as long as the total number of linear iterations is less than the block size, nb.

Table 3 gives the asymptotic operation counts per element for the preprocessing stage as well as the
application of M−1, M , N and A. The application of A is once again computed as a sum of the applications
of M and N . As with the Block-Jacobi solver, the solution update for the Line-Jacobi solver is given by
Equation (18), since the application of N is computationally less expensive than the application of A.
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Operation Operation Count 2D 3D

Form F 14
3 n3

b
14
3 n3

b
14
3 n3

b

x = M−1x 8n2
b 8n2

b 8n2
b

y = Mx 8n2
b 8n2

b 8n2
b

y = Nx 2(nf − 2)n2
b 2n2

b 4n2
b

y = Ax 2(nf + 2)n2
b 10n2

b 12n2
b

Table 3. Line-Jacobi solver asymptotic operation count per element

III.D. Block-ILU Solver

The final iterative method presented in this work is a block incomplete-LU factorization (Block-ILU). ILU
factorizations have been successfully used as preconditioners for a variety of aerodynamic problems.10, 12–16, 20

Typically the LU factorization of a sparse matrix will have a sparsity pattern with significantly more non-
zeros, or fill, than the original matrix. The principle of an incomplete-LU factorization is to produce an
approximation of the LU factorization of A, which requires significantly less fill than the exact LU factor-
ization. The incomplete LU factorization, L̃Ũ , is computed by performing Gaussian elimination on A but
ignoring values which would result in additional fill. The fill level, k, indicates the distance in the sparsity
graph of the neighbours in which coupling may be introduced in the ILU(k) factorization. In the context of
this work ILU(0) is used, hence no additional fill outside the sparsity pattern of A is permitted. To simplify
the notation, for the remainder of this work we use ILU to denote an ILU(0) factorization unless explicitly
stated otherwise.

Though incomplete-LU factorizations are widely used, most implementations store both the linearization
A and the incomplete factorization L̃Ũ . Since in most aerodynamic applications the majority of the memory
is used for the storage of the linearization and its factorization, such duplicate memory storage may limit
the size of the problems which may be solved on a given machine.12, 20, 30 In this section, an algorithm
is developed that performs the incomplete-LU factorization in-place, such that no additional memory is
required for the storage of the factorization. This in-place storage format is an enabling feature which allows
for the solution of larger and more complex problems on a given machine. Assuming the majority of the
memory is used for the storage of the Jacobian matrix and the Krylov vectors, the increase in the size of
the problem which may be solved on a given machine is given by 2+η

1+η
, where η is the ratio of the memory

required to store the Krylov vectors to the memory required to store the Jacobian matrix. For a typical
range η ∈ [0.1, 1.0], this represents an increase of 50-90% in the size of problem which may be solved.

To develop an ILU implementation where the memory usage is no greater than that required for the
Jacobian, we consider the ILU factorization as a stationary iterative method. In the context of stationary
iterative methods, M is given by the product L̃Ũ . It can be easily shown that A differs from M only where
fill is dropped in the incomplete LU factorization. Correspondingly, N is given by a matrix containing all fill
which was ignored in the ILU factorization. To construct an in-place storage for ILU, note that both A and
N may be reconstructed from L̃Ũ given the original sparsity pattern of A. Namely, A may be computed by
taking the product L̃Ũ and ignoring those values not within the original sparsity pattern. Similarly N can
be computed by taking the values of −L̃Ũ outside the sparsity pattern of A. Though recomputing A and N
in this manner is possible, it is impractical since the computational cost is of the same order as the original
ILU factorization and requires additional memory storage. Fortunately, only the application of A or N is
required, and these products can be computed efficiently using L̃ and Ũ .

The remainder of this section describes the implementation and computational efficiency of the in-place
Block-ILU solver. The operation count estimates for the Block-ILU solver is based on the assumption that
no three elements in the computational grid all neighbour one another. While this assumption may be
violated for some computational grids, such violations occur infrequently, such that the analysis based on
this assumption is sufficient. The actual implementation does not make this assumption.

In the preprocessing stage, the block incomplete-LU factorization of A is performed in-place where A is
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replaced by the factorization F . An example of one step of the factorization is given below:




















A11 A13 A15 A16

A22

A31 A33

A44

A51 A55

A61 A66





















⇒





















LU(A11) A13 A15 A16

A22

(A31A
−1
11 ) A

′

33

A44

(A51A
−1
11 ) A

′

55

(A61A
−1
11 ) A

′

66





















Where A
′

33 = A33 − A31A
−1
11 A13, A

′

55 = A55 − A51A
−1
11 A15, and A

′

66 = A66 − A61A
−1
11 A16. Based on the

assumption that no three elements all neighbour one another, only two of the blocks Aij , Aik, and Ajk

may be non-zero for any i 6= j 6= k. This implies that when eliminating row i only elements Aji and Ajj ,
j ≥ i are modified. In addition, fill is ignored at Ajk and Akj , if elements j, k > i both neighbour element
i. In the general case where the assumption is violated, Ajk and Akj are non-zero, and these terms are

modified in the Block-ILU factorization such that: A
′

jk = Ajk − AjiA
−1
ii Aik and A

′

kj = Akj − AkiA
−1
ii Aij .

The number of non-zero blocks in the matrix N is given by
∑Ne

i=1 ñfi
(ñfi

− 1) where, ñfi
is the number of

larger ordered neighbours of element i. While the number of non-zero blocks is dependent upon the ordering
of the elements in the ILU factorization, it is possible to obtain an estimate by assuming an ordering exists
where, ñfi

= ⌈ i
Ne

nf⌉. The corresponding estimate for the number of non-zero blocks in N is Ne(n
2
f − 1)/3.

In the iterative stage, the application of M−1 is performed using backward and forward substitution of L̃
and Ũ . The application of A is performed by multiplying by those components of L̃ and Ũ which would not
introduce fill outside the original sparsity pattern of A. Similarly, the application of N may be performed
by multiplying by the components of L̃ and Ũ which introduce fill outside the original sparsity pattern of A.

The application of A and N is best illustrated with a simple example. Consider the 3×3 matrix A below,
and the corresponding ILU factorization, L̃Ũ :

A =







4 5 −6

8 3 0

−12 0 26






L̃ =







1 0 0

2 1 0

−3 0 1






Ũ =







4 5 −6

0 −7 0

0 0 8







The corresponding matrices M , N and F are given by:

M =







4 5 −6

8 3 −12

−12 −15 26






N =







0 0 0

0 0 12

0 15 0






F =







4 5 −6

2 −7 0

−3 0 8







The application of A to a vector x, may be performed by multiplying x by those components of L̃ and Ũ
which would not introduce fill outside the original sparsity pattern of A. For the sample matrix, fill was
ignored in the ILU factorization at (2,3) and (3,2) when eliminating row 1. Hence, for the sample matrix
the application of A may be performed as follows:

y1 = Ũ11x1 + Ũ12x2 + Ũ13x3 = 4x1 + 5x2 − 6x3

y2 = L̃21Ũ11x1 + L̃21Ũ12x2 +�
�

�
�

�:

L̃21Ũ13x3 + Ũ22x2 = 2(4x1) + 2(5x2) − 7x2

y3 = L̃31Ũ11x1 +
�

�
�

�
�:

L̃31Ũ12x2 + L̃31Ũ13x3 + Ũ33x3 = −3(4x1) − 3(−6x3) + 8x3

Clearly, the operation count for computing the application of A in this manner is more expensive than simply
applying A in the original form. However, it is important to recognize that in the case of block matrices,
each of the terms L̃ij and Ũij are matrices and xi’s are vectors, and hence the (matrix-vector) multiplications
become significantly more expensive than the (vector) additions. Hence, to leading order, the computational
cost is given by the number of matrix-vector multiplications. The total number of multiplications may
be reduced by recognizing that certain products (Ũ11x1, Ũ12x2, Ũ13x3) are repeated. Taking advantage
of the structure of the matrix A, based on the assumption that no three elements neighbour one another,
it is possible to show that the application of A using L̃Ũ may be performed at a computational cost of
2(3

2nf + 1)n2
bNe.
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The application of N is performed by multiplying those components of L̃ and Ũ which would introduce
fill outside the original sparsity pattern of A. For the sample matrix, fill was ignored at (2,3) and (3,2) when
eliminating row 1. Hence, the application of N to a vector x may be performed as follows:

y1 = = 0

y2 = −L̃21Ũ13x3 = −2(−6x3) = 12x3

y3 = −L̃31Ũ12x2 = 3(5x2) = 15x2

Once again, the computational cost is dominated by (matrix-vector) multiplications, and additional efficiency
may be attained by recognizing that some products may be repeated. The operation count for the application
of N is a function of ñfi

, the number of larger ordered faces of each element. While the operation count for
the application of N is dependent upon the ordering of the elements in the ILU factorization, it is possible
to obtain an estimate by assuming an ordering exists where, ñfi

= ⌈ i
Ne

nf⌉. The corresponding estimate for

the operation count for applying N is given by 2/3(nf + 4)(nf − 1)n2
bNe.

This estimate of the operation count for the application of N tends to overestimate actual operation
counts for practical computational grids. A revised estimate for the application of N may be obtained
by considering a particular reordering algorithm based on lines of maximum coupling which is presented
in Section IV. Using the ordering of the elements based upon lines effectively reduces the number of free
faces for all but the first element in each line since at least one of the faces corresponds to a lower ordered
neighbour. The revised estimate for the operation count for the application of N may then be obtained by
replacing nf by nf − 1 in the initial estimate given above. Namely, the revised estimate for the operation
count is given by: 2

3 (nf + 3)(nf − 2)n2
bNe.

Dim Type # Elements p Timing

2D Estimate 0.50

Structured 2432 1 0.78

Unstructured 7344 1 0.84

Cut Cell 1250 1 0.69

Structured 2432 4 0.51

Unstructured 7344 4 0.52

Cut Cell 1250 4 0.46

3D Estimate 0.93

Structured 1920 1 0.86

Unstructured 45417 1 1.02

Cut Cell 2883 1 0.98

Structured 1920 3 0.77

Cut Cell 2883 3 0.85

Table 4. Revised timing estimate for application of N for in-place Block-ILU(0) normalized by a Jacobian vector
product

Table 4 shows this revised estimate of the operation count for the application of N normalized by the
operation count for the application of A using the traditional dual matrix storage format, for both 2D and
3D problems. Table 4 also shows timing results from several sample 2D and 3D problems. For each grid,
timing results are presented for p = 1 as well as the largest value of p for which the Jacobian matrix could fit
into memory on a single machine. For the p = 1 cases the actual timing results exceed the revised estimate.
However, for large p the actual timing results closely match the revised estimate in 2D, and are bounded
by the revised estimate in 3D. The poorer performance for the p = 1 cases may be attributed to the effects
of lower order terms in nb, which become significant since the block size for the p = 1 solution is relatively
small.

Table 5 shows the asymptotic operation count per element for the preprocessing stage and components
of the iterative stage for the Block-ILU solver using the in-place storage format. Note that if the Block-
ILU factorization L̃Ũ is stored as a separate matrix such that the original matrix A is still available, the
cost of computing y = Ax is 2(nf + 1)Nen

2
b . Based on the operation counts presented in Table 5, a linear
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Operation Operation Count 2D 3D

Form F 2(nf + 1)n3
b 8n3

b 10n3
b

x = M−1x 2(nf + 1)n2
b 8n2

b 10n2
b

y = Mx 2(nf + 1)n2
b 8n2

b 10n2
b

y = Nx (Initial Estimate) 2
3 (nf + 4)(nf − 1)n2

b 9 1
3n2

b 16n2
b

y = Nx (Revised Estimate) 2
3 (nf + 3)(nf − 2)n2

b 4n2
b 9 1

3n2
b

y = Ax 2(3
2nf + 1)n2

b 11n2
b 14n2

b

y = Ax (Full Storage) 2(nf + 1)n2
b 8n2

b 10n2
b

Table 5. Block-ILU solver asymptotic operation count per element

iteration in 2D should be performed using Equation (18) since the application of A is more expensive than
the application of N . Based on the initial estimate for the application of N , in 3D it appears as though the
cost of applying A is less than applying N and hence a linear iteration should be performed using Equation
(19). However, in practice a linear iteration in 3D is also performed using Equation (18) since the revised
timing estimate for the application of N is less than the application of A.

III.E. Timing Performance

In the previous sections, timing estimates were presented in terms of the operations counts for the different
components of each solver. To verify the validity of these estimates actual timing results were obtained using
a sample 2D test grid with 2432 elements using a p = 4 discretization. The actual and estimated timing
results are presented in Table 6 where the time has been normalized by the cost of a single matrix vector
product of the Jacobian matrix. As shown in Table 6 the actual timing results closely match the estimates
based on operation counts.

Operation Block-Jacobi Line-Jacobi Block-ILU

Estimate Actual Estimate Actual Estimate Actual

x = M−1x 0.25 0.39 1.00 1.24 1.00 1.16

y = Nx 0.75 0.76 0.25 0.28 0.50 0.51

y = Ax 1.00 1.14 1.25 1.34 1.38 1.43

Table 6. Solver asymptotic operation count per element normalized by a Jacobian vector product

Table 7 gives the asymptotic operation counts for the different solvers presented in this work. As shown
in Table 7, the operation count of performing a linear iteration using the in-place storage format is 25%
and 5% less than that using the traditional dual matrix storage format for 2D and 3D respectively. The
in-place matrix storage format is superior to the traditional dual matrix storage format since the application
of N is computationally less expensive than the application of A. In this case, the dual storage format
could be modified to store M and N as opposed to M and A, so that a linear iteration may be performed
according to Equation (18). A linear iteration could then be performed faster using the modified dual matrix
storage format than the in-place matrix storage format. However, the modified dual matrix storage format
would require computing N in the preprocessing stage, such that the total computational time for both
the preprocessing and iterative stages would still be faster using the in-place storage format if fewer than
approximately 3nb linear iterations are performed.

III.F. In-place ILU Factorization of General Matrices

The in-place ILU algorithm developed in this section has been tailored for DG discretizations and may not
be generally applicable to sparse matrices arising from other types of discretizations. While the application
of A and N may be computed using the ILU factorization for any sparse matrix, the use of an in-place
factorization may be unfeasible due to the number of operations required. The number of non-zero blocks in
N and correspondingly, the computational cost for the application of N scales with the square of the number
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Preconditioner 2D 3D

Block Jacobi 8 10

Line Jacobi 10 12

Block-ILU In-Place 12 19 1
3

Block-ILU Dual Storage 16 20

Table 7. Linear iteration asymptotic operation count per element (in multiples of n2

b)

of off-diagonal blocks in the stencil of A. Similarly, if the assumption that no three elements neighbour one
another is removed, the operation count for the application of A using the ILU factorization also scales
with the square of the number of off-diagonal blocks in the stencil. The in-place ILU algorithm is feasible
for DG discretizations since there is only nearest neighbour coupling, resulting in a stencil with few off-
diagonal blocks. On the other hand, discretizations such as high-order finite volume discretizations have
much wider stencils, involving 2nd and 3rd order neighbours,6, 16 making the in-place ILU factorization
algorithm unfeasible.

IV. ILU Reordering

In the development of an efficient Block-ILU(0) preconditioner for DG discretizations, the ordering of
the equations and unknowns in the linear system is critical. Matrix reordering techniques have been widely
used to reduce fill in the LU factorization for direct methods used to solve large sparse linear systems.26

These reordering techniques have also been used with ILU preconditioners of Krylov methods.12, 13, 16, 31

Benzi et al31 performed numerical experiments comparing the effect of different reordering techniques on
the convergence of three Krylov subspace methods used to solve a finite difference discretization of a linear
convection-diffusion problem. They showed that reordering the system of equations can both reduce fill for
the incomplete factorization, and improve the convergence properties of the iterative method.31 Blanco and
Zingg12 compared Reverse Cuthill-Mckee, Nested Dissection, and Quotient Minimum Degree reorderings for
ILU(k) factorizations of a finite volume discretization of the Euler Equations. They showed that the Reverse
Cuthill-Mckee reordering reduced the fill and resulted in faster convergence for ILU(2). Similarly, Pueyo and
Zingg13 used Reverse Cuthill-Mckee reordering to reduce fill and achieve faster convergence for the finite
volume discretization of the Navier-Stokes equations. In the context of ILU(0) factorizations, no additional
fill is introduced, hence reordering the system of equations effects only the convergence properties of the
iterative method. However, Benzi et al31 showed that even for ILU(0), reordering the systems of equations
can significantly reduce the number of GMRES iterations required to reach convergence.

The effect of several standard reordering techniques are examined in this section. The numerical results for
the matrix reordering algorithms were determined using the PETSc package for numerical linear algebra.32–34

The matrix reordering algorithms presented are those available in the PETSc package; namely Reverse
Cuthill-Mckee, Nested-Dissection, One-Way Dissection and Quotient Minimum Degree. In addition, the
natural ordering produced by the grid generation is employed. Finally, a new matrix reordering algorithm
based on lines of maximum coupling within the flow is developed.

IV.A. Line Reordering

The lines of maximum coupling described in Section III.C may be used to order the elements for ILU precon-
ditioning. Specifically, the elements can be ordered as they are traversed along each line. We note that this
does not produce a unique reordering, since each line may be traversed in either the forward or backward
directions or the lines themselves may also be reordered. While a systematic approach may be developed to
choose an optimal permutation for the lines, the natural ordering produced by the line creation algorithm
is used for the test cases presented. For these test cases, reordering the lines according to the standard
reordering techniques (Reverse Cuthill-Mckee, Nested-Dissection, One-Way Dissection and Quotient Mini-
mum Degree) or reversing the direction of the lines from the natural ordering did not significantly impact
the convergence rate.
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IV.B. Numerical Results

To investigate the effectiveness of a reordering based upon lines, numerical results are presented for two
representative test cases: an inviscid transonic flow and a subsonic viscous flow. The convergence plots are
presented in terms of the number of linear iterations since the computational cost of performing the ILU(0)
factorization or a single linear iteration is independent of the matrix reordering when using the traditional
dual matrix storage format.

The first test case is an Euler solution of the transonic flow over the NACA 0012 airfoil at a freestream
Mach number of M = 0.75 and angle of attack of α = 2.0◦. The flow is solved using a p = 4 discretization
on an unstructured mesh with 7344 elements. Figure 1 shows the convergence plot of the non-linear residual
starting from a converged p = 3 solution. The fastest convergence is achieved using the reordering based
on lines, which requires only 946 linear iterations for a 10 order drop in residual. One-Way Dissection and
Reverse Cuthill-Mckee algorithms also perform well requiring only 1418 and 1611 iterations to converge
respectively. On the other hand, Quotient Minimum Degree and Nested Dissection reorderings result in
convergence rates which are worse than the natural ordering of the elements.

0 500 1000 1500 2000 2500 3000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Non−linear residual vs. Linear iterations
 1 Processors

Linear Iterations

N
on

−
Li

ne
ar

 R
es

id
ua

l

 

 
Lines
NestedDissection
None
OneWayDissection
QuotientMinimumDegree
ReverseCuthillMckee

Figure 1. Non-linear residual vs linear iterations using the Block-ILU(0) preconditioner with different reordering
techniques for a transonic Euler solution of the flow about the NACA0012 airfoil

The second test case is a Navier-Stokes solution of the subsonic flow over the NACA0012 airfoil at zero
angle of attack with a freestream Mach number of M = 0.5 and a Reynolds number of Re = 1000. A p = 4
solution is obtained on a computational mesh with 2432 elements, where the solution procedure is restarted
from a converged p = 3 solution. Figure 2 presents the convergence plot of the non-linear residual versus
linear iterations. The reordering based upon lines is superior to all other reorderings; requiring only 341
iterations to converge. The second best method for this test case is the natural ordering of elements which
requires 1350 iterations. The natural reordering performs well for this test case since a structured mesh
is used (though the solution procedure does not take advantage of the structure), and hence the natural
ordering of the elements involves some inherent structure. Among the other reordering algorithms, Reverse
Cuthill-Mckee performs best, requiring 1675 iterations, followed by One-Way Dissection, Quotient Minimum
Degree and finally Nested Dissection.

Clearly, reordering the elements according to the lines of maximum coupling results in superior conver-
gence for both inviscid and viscous test cases. The advantages of the line reordering algorithm is especially
obvious in the viscous case where reordering according to lines results in a convergence rate nearly 5 times
faster than the standard matrix reordering algorithms available in the PETSc package. Due to the clear
success of the line reordering algorithm for these two sample problems, the line reordering method is used
for the remainder of the work presented here.
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Figure 2. Non-linear residual vs linear iterations using the Block-ILU(0) preconditioner with different reordering
techniques for a Navier-Stokes solution of the flow about the NACA0012 airfoil

V. Linear Multigrid

Multigrid algorithms are used to accelerate the solution of systems of equations arising from the discretiza-
tion of a PDE-based problem by applying corrections based on a coarser discretization with fewer degrees
of freedom. The coarse discretization may involve a computational mesh with fewer elements (h-multigrid)
or a lower order solution space (p-multigrid). The DG discretization naturally lends itself to a p-multigrid
formulation as a coarser solution space may be easily created by using a lower order polynomial interpolation
within each element. Multigrid algorithms may be used to directly solve a non-linear system of equations
(non-linear multigrid), or to solve the system of linear equations arising at each step of Newton’s method
(linear multigrid). This section presents a linear p-multigrid algorithm which is used as a preconditioner to
GMRES and makes use of the stationary iterative methods presented in Section III as linear smoothers on
each multigrid level.

V.A. Linear Multigrid Algorithm

The basic two-level linear-multigrid algorithm is presented below. While only a two-level system is presented
here, in general the multigrid formulation involves multiple solution levels.

• Perform pre-smoothing: x̃k
h = (1 − ω)xk

h + ωM−1
h (bh − Nhx

k
h)

• Compute linear residual: r̃k̃
h = bh − Ahx̃

k
h

• Restrict linear residual: bH = Ih
H r̃k

h, where Ih
H is the restriction operator

• Define coarse level correction: x0
H = 0

• Perform coarse level smoothing: x
j+1
H = (1 − ω)xj

H + ωM−1
H (bH − NHx

j
H)

• Prolongate coarse level correction: x̂k
h = x̃k

h + IH
h xH , where IH

h is the prolongation operator

• Perform post-smoothing: xk+1
h = (1 − ω)x̂k

h + ωM−1
h (bh − Nhx̂

k
h)

As presented in Section II.A, the solution space for the DG discretization is given by Vp
h, the space of

piecewise polynomials of order p spanned by the basis functions vhi
. The corresponding coarse solution

space is given by Vp−1
h , the space of piecewise polynomials of order p−1 spanned by the basis functions vHk

.
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Since Vp−1
h ∈ Vp

h, the coarse level basis functions may be expressed as a linear combination of the fine level
basis functions:

vHk
=
∑

i

αikvhi
. (25)

The matrix of coefficients αik form the prolongation operator IH
h . The coefficients of expansion may also be

used to define the restriction operator by considering the restriction of a component of the residual:

Rh(uh,vHk
) = Rh(uh,

∑

i

αikvhi
) =

∑

i

αikRh(uh,vhi
). (26)

Hence the restriction operator is given by Ih
H =

(

IH
h

)T
. In our implementation of the linear multigrid

algorithm, the coarse grid Jacobian AH is given by a simple Galerkin projection of the fine grid Jacobian:

AH = Ih
HAhIH

h . (27)

V.B. Memory Considerations

For a linear multigrid preconditioner significant additional memory is required for the storage of the lower
order Jacobians on each multigrid level. Table 8 shows the additional memory required for all lower order
Jacobians in terms of the fine grid Jacobian for p = 1 → 5.

Several authors9, 30 have argued that a linear multigrid preconditioner may be unfeasible for large prob-
lems due to the additional memory cost of storing these lower order Jacobians. Alternatively, others have
advocated for skipping multigrid levels to reduce memory usage. For example, Persson and Peraire20 em-
ployed a multi-level scheme where only p = 0 and p = 1 corrections were applied. Though the linear multigrid
method may require significant additional memory for the storage of the lower order Jacobians, faster con-
vergence of the GMRES method is expected and hence fewer Krylov vectors may be required to obtain a
converged solution. Hence, to provide a memory equivalent comparison between a single- and multi-level
preconditioner, the total memory usage for the Jacobians and Krylov vectors must be considered. In the
context of a restarted GMRES algorithm this is equivalent to increasing the GMRES restart value for the
single level preconditioner so that the total memory used by the single and multi-level preconditioners is
the same. Table 8 also gives the additional memory for the storage of all lower order Jacobians for the
linear multigrid solver in terms of the number of solution vectors on the fine grid. These values may also be
viewed as the additional number of GMRES vectors allocated for the single-level preconditioner to provide
a memory equivalent comparison with the multigrid preconditioner.

% Fine Jacobian Solution Vectors

Solution Order 2D 3D 2D 3D

p = 1 11.1% 6.25% 5 6

p = 2 27.7% 17.0% 27 43

p = 3 46.0% 29.3% 74 146

p = 4 64.9% 42.2% 156 369

p = 5 84.1% 55.5% 283 778

Table 8. Additional memory usage for lower order Jacobians for linear multigrid as a percent of the fine grid Jacobian
and number of fine grid solution vectors

VI. Numerical Results

The performance of the three preconditioners presented in Section III, as well as the linear multigrid
preconditioner presented in Section V are evaluated using three representative test cases: an inviscid transonic
flow, a turbulent viscous subsonic flow, and a laminar viscous flow.
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VI.A. Inviscid transonic flow over NACA0012 airfoil, M = 0.75, α = 2◦

The first test case is an Euler solution of the transonic flow over the NACA0012 airfoil at an angle of attack
of α = 2◦ with a free-stream Mach number of M = 0.75. This flow is solved using a p = 4 discretization
on an unstructured mesh with 7344 elements. The solution procedure is initialized with a p = 3 solution
of the flow. A GMRES restart value of 40 is used for the linear multigrid preconditioner while a memory
equivalent GMRES restart value of 200 is used for the single-level preconditioners. The number of linear
iterations taken in each Newton step is determined by the tolerance criterion specified in Equation (17)
up to a maximum of 10 GMRES outer iterations. Table 9 shows the convergence results for the different
preconditioners in terms on the number of non-linear Newton iterations, linear iterations, GMRES outer
iterations and CPU time. The convergence history of the non-linear residual versus CPU time is given in
Figure 3. The residual tolerance criterion developed in Section II.C ensures sufficient convergence of the
linear system in each Newton step so that quadratic convergence of the non-linear residual is observed for
all preconditioners except Block-Jacobi. Additionally, the residual tolerance criterion developed in Section
II.C ensures that the convergence history of the non-linear residual in terms of non-linear iterations is the
same for these preconditioners. The difference in behaviour for the Block-Jacobi preconditioner is due to
stalling of the restarted GMRES algorithm, which prevents a sufficient convergence of the linear system to
obtain quadratic convergence.

Preconditioner Newton Iter Linear Iter GMRES Outer Time(s)

Block-Jacobi 10 15024 78 13596

Line-Jacobi 9 3836 23 3925

Block-ILU 9 971 10 1184

LinearMG w/ Block-Jacobi 9 1511 40 3873

LinearMG w/ Line-Jacobi 9 301 11 1417

LinearMG w/ Block-ILU 9 142 9 934

Table 9. Convergence results of the inviscid transonic NACA0012 test case

Using the single-level Block-ILU preconditioner significantly reduces the number of linear iterations re-
quired to converge compared to the single-level Line-Jacobi and Block-Jacobi preconditioners. This improved
convergence using the Block-ILU preconditioner ensures that the GMRES restart value is reached only once.
On the other hand, the GMRES restart value is reached in each Newton iteration for the Block-Jacobi
preconditioner and all but the first three Newton iteration for the Line-Jacobi preconditioner. The repeated
restarting of the GMRES algorithm degrades the convergence rate and leads to the stalling of the GMRES
algorithm using the Block-Jacobi preconditioner. While both the preprocessing and the iterative stages
of the Block-ILU preconditioner are more expensive than the corresponding stages of the Line-Jacobi or
Block-Jacobi preconditioners, the significant reduction in the number of linear iterations ensures that the
Block-ILU preconditioner achieves fastest convergence in terms of CPU time.

The linear multigrid preconditioners with Block-Jacobi, Line-Jacobi and Block-ILU smoothing signifi-
cantly reduce the number of linear iterations required to achieve convergence compared to the corresponding
single-level preconditioners. The improved convergence rate in terms of the number of linear iterations en-
sure that the GMRES restart value is not reached as often for the multi-level preconditioners despite the
memory equivalent GMRES restart value being five times smaller than the single-level preconditioners. This
ensures that GMRES stall is not seen with the linear multigrid preconditioner using Block-Jacobi smoothing.
Additionally, the GMRES restart value is reached only twice for the linear multigrid preconditioner with
Line-Jacobi smoothing.

Though the linear multigrid preconditioner significantly reduces the number of linear iterations required
to converge this problem, the cost of each application of the linear multigrid preconditioner is more expensive
than the single level preconditioner. However, fastest convergence in terms of CPU time is achieved using
the linear multigrid preconditioner with Block-ILU smoothing which performs about 20% faster than the
single level Block-ILU preconditioner.
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Figure 3. Convergence plot of the inviscid transonic NACA0012 test case

VI.B. Turbulent viscous subsonic flow over a flat plate, M = 0.25, Re = 107

The second test case is a Reynolds-Averaged Navier-Stokes (RANS) solution of a subsonic, M = 0.25 flow
over a flat plate at a Reynolds number of Re = 107. The flow is discretized using a p = 3 solution on an
adapted unstructured anisotropic grid with 466 elements. The flow is initialized with an interpolated p = 3
solution based on a previous grid in the adaptation procedure.35 A GMRES restart value of 40 is used
for the linear multigrid preconditioner while a memory equivalent GMRES restart value of 120 is used for
the single-level preconditioners. The convergence data is summarized in Table 10, while Figure 4 gives the
convergence plot.

Preconditioner Newton Iter Linear Iter GMRES Outer Time(s)

Block-Jacobi 20 23334 194 1663

Line-Jacobi 16 15527 153 1333

Block-ILU 14 1730 22 326

LinearMG w/ Block-Jacobi 20 7914 198 1996

LinearMG w/ Line-Jacobi 15 2682 72 1203

LinearMG w/ Block-ILU 14 434 15 356

Table 10. Convergence results of the turbulent viscous flat plate test case

The Block-ILU preconditioner performs significantly better than the other single level preconditioners
for this test case. The Block-Jacobi solver is unable to converge this problem since the restarted GMRES
algorithm stalls. The Line-Jacobi preconditioner also suffers due to the stalling of the restarted GMRES
algorithm, such that two additional Newton iterations are required in order to converge the non-linear
residual. On the other hand for the Block-ILU preconditioner, the GMRES restart value is reached in only
half of the Newton iterations and stalling does not occur.

As in the inviscid test case, the use of the linear multigrid preconditioner significantly reduces the number
of linear iterations compared to the single-level preconditioners. For linear multigrid with Block-Jacobi and
Line-Jacobi smoothing, this implies that a better solution update is obtained prior to the stalling of the GM-
RES algorithm. Hence, linear multigrid with Block-Jacobi smoothing is able to reduce the non-linear residual
further than using only Block-Jacobi preconditioning. While, linear multigrid with Line-Jacobi smoothing
requires one less Newton iteration than the Line-Jacobi preconditioner in order to converged the non-linear
residual. Though the linear multigrid preconditioner with Block-ILU smoothing significantly reduces the
number linear iterations compared to the single level Block-ILU preconditioner, fastest convergence in terms
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Figure 4. Convergence plot of the turbulent viscous flat plate test case

of CPU time is seen by the single-level Block-ILU preconditioner.

VI.C. Viscous Subsonic flow over NACA0005 airfoil, M = 0.4, α = 0◦, Re = 50000

The final test case is a Navier-Stokes solution of a subsonic, M = 0.4 flow over the NACA0005 airfoil at
zero angle of attack with Reynolds number Re = 50000. The flow is discretized using a p = 3 solution on
an anisotropically adapted unstructured cut-cell mesh with 3470 elements.36 The flow is initialized with an
interpolated p = 3 solution based on a previous grid in the adaptation procedure. Once again, a GMRES
restart value of 40 is used for the linear multigrid preconditioner while a memory equivalent GMRES restart
value of 120 is used for the single-level preconditioners. The convergence data is summarized in Table 11,
while Figure 5 gives the convergence plot.

Preconditioner Newton Iter Linear Iter GMRES Outer Time(s)

Block-Jacobi 26 21524 185 8144

Line-Jacobi 18 8585 79 3679

Block-ILU 17 2559 31 1376

LinearMG w/ Block-Jacobi 17 2722 76 2628

LinearMG w/ Line-Jacobi 17 1130 38 2028

LinearMG w/ Block-ILU 17 600 23 1206

Table 11. Convergence results of the viscous subsonic NACA0005 test case

To achieve fast convergence for this viscous test case, it is necessary that the preconditioner sufficiently
resolves the coupling between elements in the boundary layer. Since the Block-Jacobi preconditioner ignores
all inter-element coupling, the restarted GMRES algorithm stalls and the linear system is not sufficiently
solved such that several additional Newton iterations are required to converge the non-linear residual. On
the other hand, the Line-Jacobi and Block-ILU preconditioners which make use of the lines of maximum
coupling within the flow are able to sufficiently converge the linear system at each Newton step and super-
linear convergence of the non-linear residual is observed.

As with the previous test cases, the use of the linear multigrid preconditioner significantly reduces the
number of linear iterations required to converge the linear system at each Newton step. The GMRES restart
value is reached less often in the case of the linear multigrid preconditioners despite the GMRES restart
value being three times larger for the single-level preconditioners. This ensures that the linear multigrid
preconditioner with Block-Jacobi smoothing is able to solve the linear system sufficiently to converge the
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Figure 5. Convergence plot of the viscous subsonic NACA0005 test case

non-linear residual in 17 non-linear iterations as opposed to 26 for the corresponding single-level Block-
Jacobi preconditioner. Once again, the fastest convergence in terms of CPU time is achieved using the linear
multigrid preconditioner with Block-ILU smoothing.

VII. Conclusions

An efficient, solution algorithm has been presented for the Discontinuous Galerkin discretization of the
compressible Navier-Stokes equations on unstructured grids. The algorithm is based on a Newton-Krylov
approach with a linear p-multigrid preconditioner using a Block-ILU(0) smoother.

An in-place Block-ILU(0) factorization algorithm has been developed, which has been shown to reduce
both the memory and computational cost over the traditional dual matrix storage format. A reordering
technique for the Block-ILU(0) factorization, based upon lines of maximum coupling in the flow, has also
been developed. The results presented show that this reordering technique significantly reduces the number
of linear iterations required to converge compared to standard reordering techniques, especially for viscous
test cases.

A linear p-multigrid algorithm has been developed as a preconditioner to GMRES. The linear multigrid
preconditioner is shown to significantly reduce the number of linear iterations required to obtain a converged
solution compared to a single-level preconditioner. The linear multigrid preconditioner also results in faster
convergence in terms of CPU time, as demonstrated by the representative test cases presented.
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