Domain Decomposition Preconditioners for Higher-order Hybridizable Discontinuous Galerkin Discretizations

Laslo Diosady and David Darmofal
Aerospace Computational Design Laboratory
Massachusetts Institute of Technology
Department of Aeronautics and Astronautics

March 23, 2011
Outline

1. Introduction and Motivation
2. Background
3. Scalar Advection-Diffusion Equation
4. Linearized Navier-Stokes Equations
5. Summary and Conclusions
Motivation: Developing Scalable CFD

Objective: Perform high-fidelity CFD simulations using high-performance computing in similar amount of time as typical industrial simulations on commodity hardware

- High performance computing in aerospace
 - Typical large jobs remain in O(100) processors
 - “The scalability of most of [CFD] codes tops out around 512 cpus...” – Mavriplis et al [2007]
 - Algorithmic improvements are needed to scale to > 10,000 cpus

- Domain decomposition for elliptic problem
 - Independent local solvers on each processor
 - Coupled global solver
 - Small number of globally coupled DOF
 - Algorithms have been developed and used on > 100,000 cpus

Can we use domain decomposition theory for elliptic problems to develop better solvers for Euler/Navier-Stokes problems?
Approach: HDG/BDDC

- Hybridizable discontinuous Galerkin (HDG) discretization
 - Solution represented by piecewise polynomials on each element
 - Implicit
 - Higher-order solutions
 - Unstructured meshes
 - Well suited to hp-adaptation

- Balancing Domain Decomposition by Constraints (BDDC)
 - Preconditioner for the Schur complement problem
 - Developed by Dohrmann [2003] for structural mechanics applications
 - Makes use of the finite element assembly of the system matrix
 - Condition number bound $\kappa < C(1 + \log(H/h))^2$ for second order elliptic problems
 - Coarse space is defined algebraically using discrete harmonic functions
HDG Discretizations

- Governing equation:
 \[\nabla \cdot (F(u) + G(u, \nabla u)) = f \]
 - \(u \): state, \(F(u) \): inviscid flux, \(G(u) \): viscous flux

- Local Solver:
 \[(q_h, v)_\kappa + (u_h, \nabla \cdot v)_\kappa - \langle \hat{u}_h, v \cdot n \rangle_{\partial \kappa} = 0, \quad \forall v \in P^p(\kappa) \]
 \[-(F + G, \nabla w)_\kappa + \left\langle (\hat{F}_h + \hat{G}_h) \cdot n, w \right\rangle_{\partial \kappa} = (f, w)_\kappa, \quad \forall w \in P^p(\kappa) \]

- Numerical Fluxes:
 \[(\hat{F}_h + \hat{G}_h) \cdot n = (F(\hat{u}_h) + G(\hat{u}_h, q_h)) \cdot n + S(\hat{u}_h)(u_h - \hat{u}_h) \]

- Global weak form:
 \[a(\lambda_h, \mu) = b(\mu), \quad \forall \mu \in M^p_h \]
 \[a(\lambda, \mu) = \sum_\kappa a_\kappa(\lambda_h, \mu) = \sum_\kappa - \left\langle (\hat{F}_h + \hat{G}_h)^{\lambda,0} \cdot n, \mu \right\rangle_{\partial \kappa} \]
 \[b(\mu) = \sum_\kappa b_\kappa(\mu) = \sum_\kappa \left\langle (\hat{F}_h + \hat{G}_h)^{\lambda,0} \cdot n, \mu \right\rangle_{\partial \kappa} \]
Domain Decomposition

- **Local bilinear form:**
 - \(a_i(\lambda, \mu) = \sum_{\kappa \in \Omega_i} a_{\kappa}(\lambda, \mu) \)
 - \(b_i(\mu) = \sum_{\kappa \in \Omega_i} b_{\kappa}(\mu) \)

- **Local stiffness matrix and load vector:**
 - \(A^{(i)} = \begin{bmatrix} A_{II}^{(i)} & A_{I\Gamma}^{(i)} \\ A_{\Gamma I}^{(i)} & A_{\Gamma\Gamma}^{(i)} \end{bmatrix} \)
 - \(b^{(i)} = \begin{bmatrix} b_{I}^{(i)} \\ b_{\Gamma}^{(i)} \end{bmatrix} \)

- \(a_i(\lambda, \mu) = b_i(\mu) \) or \(A^{(i)} x^{(i)} = b^{(i)} \) correspond to local problems with Neumann interface condition on \(\Gamma \)

- **Global system formed by assembling with \(\Gamma \) DOFs**

\[
A = \sum_{i=1}^{N} R^{(i)^T} A^{(i)} R^{(i)} = \begin{bmatrix} A_{II} & A_{I\Gamma} \\ A_{\Gamma I} & A_{\Gamma\Gamma} \end{bmatrix}
\]

- \(R^{(i)} \) extracts global degrees of freedom associated with \(\Omega_i \)
BDDC preconditioner

- Interface DOFs are partitioned into dual and primal DOFs:
 \[u^{(i)} = \begin{bmatrix} u^{(i)}_l & u^{(i)}_\Delta & u^{(i)}_\Pi \end{bmatrix}^T = \begin{bmatrix} u^{(i)}_r & u^{(i)}_\Pi \end{bmatrix}^T \]
 - Dual DOFs, \(u_\Delta \), correspond to functions with zero averages on subdomain interfaces
 - Primal DOFs, \(u_\Pi \), have non-zero averages on interfaces between subdomains

- Partially assembled system obtained by assembling only with respect to primal DOFs
 \[\tilde{A} = \sum_{i=1}^N \tilde{R}^{(i)}^T A^{(i)} \tilde{R}^{(i)} = \begin{bmatrix} A_{rr} & A_{r\Pi} \\ A_{\Pi r} & A_{\Pi\Pi} \end{bmatrix} \]

- BDDC preconditioner:
 \[M_{\text{BDDC}}^{-1} = \tilde{\mathcal{H}}_1 \tilde{A}^{-1} \tilde{\mathcal{H}}_2 \]
 - Lumped BDDC: \(\tilde{\mathcal{H}}_1, \tilde{\mathcal{H}}_2 \) are simple averaging operators
 - BDDC: \(\tilde{\mathcal{H}}_1, \tilde{\mathcal{H}}_2 \) averaging with harmonic extensions
BDDC preconditioner

- Solution of partially assembled problem:
 \[
 \tilde{A}^{-1} = \psi S_0 \psi^* T + \sum_{i=1}^{N} \tilde{R}(i)^T \tilde{A}(i)^{-1} \tilde{R}(i)
 \]

- \(\tilde{A}(i)^{-1}\) corresponds to solution of constrained Neumann problem:
 \[
 \begin{bmatrix}
 A(i) & B(i)^T \\
 B(i) & 0
 \end{bmatrix}
 \begin{bmatrix}
 \hat{A}(i)^{-1} r_i \\
 *
 \end{bmatrix}
 =
 \begin{bmatrix}
 r_i \\
 0
 \end{bmatrix}
 \]

- Coarse basis functions:
 \[
 \begin{bmatrix}
 A(i) & B(i)^T \\
 B(i) & 0
 \end{bmatrix}
 \begin{bmatrix}
 \psi_i \\
 *
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 1
 \end{bmatrix}
 \]

- Coarse system matrix:
 \[
 S_o = \sum_{i=1}^{N} R_{\Pi}^{(i)^T} \psi_i^T A_i \psi_i R_{\Pi}^{(i)}
 \]

- \(B^{(i)}\)'s are constraints corresponding to primal DOFs
- \(R_{\Pi}^{(i)}\) extracts local primal DOFs from all primal DOFs
<table>
<thead>
<tr>
<th>Preconditioner</th>
<th>Scalable?</th>
<th>Condition number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive Schwarz (ASM)</td>
<td>no</td>
<td>$\kappa < C \frac{1}{H^2} \left(1 + \left(p^2 \frac{H}{\delta}\right)\right)^2$</td>
</tr>
<tr>
<td>ASM with coarse space</td>
<td>yes</td>
<td>$\kappa < C \left(1 + \left(p^2 \frac{H}{\delta}\right)\right)^2$</td>
</tr>
<tr>
<td>Lumped BDDC</td>
<td>yes</td>
<td>$\kappa < C \left(1 + \left(p^2 \frac{H}{\delta}\right)\right)^2$</td>
</tr>
<tr>
<td>BDDC</td>
<td>yes</td>
<td>$\kappa < C \left(1 + \log \left(p^2 \frac{H}{\delta}\right)\right)^2$</td>
</tr>
</tbody>
</table>

- Coarse space needed to correct low frequency error modes
- Preconditioners with coarse spaces are scalable
- Smooth extensions/averaging operators desired so as not to introduce high-frequency error modes from local solves
- Performance of BDDC preconditioner superior for larger subdomains as condition number/iteration count only weakly dependent on number of elements/subdomain
Outline

1. Introduction and Motivation
2. Background
3. Scalar Advection-Diffusion Equation
4. Linearized Navier-Stokes Equations
5. Summary and Conclusions
Scalar Advection-Diffusion Equation

Governing equation:
- \(\frac{\partial u}{\partial t} + \vec{a} \cdot \nabla u - \nu \nabla^2 u = f \)
- Peclet number \(Pe = \frac{|\vec{a}|L}{\nu} \)
 - \(Pe << 1 \) - diffusion dominated
 - \(Pe >> 1 \) - advection dominated

Sample Problem:
- Uniform flow: \(\vec{a} = \begin{bmatrix} 1 & 0 \end{bmatrix} \)
- Exact solution: \(u = 1 - e^{-\frac{y}{\sqrt{\mu(x-x_0)}}} \)

Flow Solution | Uniform Mesh | Anisotropic Mesh
Scalar Advection-Diffusion: Diffusion Dominated

128 elem / proc, p = 1

128 elem / proc, p = 5

Uniform structured mesh problem with fixed $Pe_h = 1$

- Preconditioners with coarse spaces are scalable
- All preconditioners show dependence on solution order
Scalar Advection-Diffusion: Diffusion Dominated

128 elem / proc, p = 1

8192 elem / proc, p = 1

Uniform structured mesh problem with fixed $Pe_h = 1$

✔ Iteration count for BDDC preconditioner only weakly dependent on number of elements per subdomain
Scalar Advection-Diffusion: Advection Dominated

2D Advection-Diffusion problem with $Pe_h = 1000$

- Coarse space provides no additional benefit
- Iteration count proportional to number of subdomains in convective direction
Scalar Advection-Diffusion: Advection Dominated

2D Advection-Diffusion, $Pe_h = 1000$, $p = 1$, 128 elem /proc

- Coarse space provides no additional benefit
- Iteration count proportional to number of subdomains in convective direction
Scalar Advection-Diffusion High Pe Anisotropic Mesh

128 elem / proc, p = 1

8192 elem / proc, p = 1

2D Advection-Diffusion problem with $Pe = 10^6$, $p = 1$

- $Pe_{hy} \approx 1$ for well resolved solution
- Coarse space is necessary to ensure good performance
1. Introduction and Motivation
2. Background
3. Scalar Advection-Diffusion Equation
4. Linearized Navier-Stokes Equations
5. Summary and Conclusions
Lineraized Navier-Stokes Equations:

\[
\frac{W}{\Delta t} + A_i \frac{\partial W}{\partial x_i} + K_{ij} \frac{\partial W}{\partial x_i \partial x_j} = F
\]

- \(A_i \), symmetric positive definite
- \(K \), symmetric positive semi-definite

Sample Problem:

\[
M = M_\infty \begin{bmatrix} 1 - e^{-\frac{y}{\sqrt{\mu}}} & 0 \\
1 & 0
\end{bmatrix}
\]
2D Linearized Euler, p = 1, 128 elem /proc

- Characteristic travel is multiple directions, reflecting off interfaces and boundaries
- Residual drops after a number of iterations proportional to the number of subdomains
Uniform structured mesh problem with fixed $Re_h = 1000$
Linearized Navier-Stokes Equations

128 elem / proc, p = 1

2048 elem / proc, p = 1

Uniform structured mesh problem with fixed $Re_h = 1$
Linearized Navier-Stokes Equations

128 elem / proc, p = 1

2048 elem / proc, p = 1

2D Linearized Navier-Stokes problem with $Re = 10^6$, $p = 1$
1. Introduction and Motivation
2. Background
3. Scalar Advection-Diffusion Equation
4. Linearized Navier-Stokes Equations
5. Summary and Conclusions
Summary

 Contributions:
- Applied BDDC preconditioner for HDG discretizations
- Demonstrated the need for a coarse space correction when solving high Reynolds number flow on anisotropic meshes

 On going work:
- Generalized Robin-Robin interface condition for systems
- Application to fully non-linear Euler/Navier-Stokes problems
Questions?