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@ Introduction and Motivation



Motivation: Developing Scalable CFD

Obijective: Perform high-fidelity CFD simulations using

high-performance computing in similar amount of time as typical
industrial simulations on commodity hardware

@ High performance computing in aerospace

o Typical large jobs remain in O(100) processors

e “The scalability of most of [CFD] codes tops out around 512 cpus
... —Mavriplis et al [2007]

e Algorithmic improvements are needed to scale to > 10,000 cpus
@ Domain decomposition for elliptic problem

o Independent local solvers on each processor

e Coupled global solver

e Small number of globally coupled DOF

e Algorithms have been developed and used on > 100,000 cpus

Can we use domain decomposition theory for elliptic problems to
develop better solvers for Euler/Navier-Stokes problems?
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Approach: HDG/BDDC

@ Hybridizable discontinuous Galerkin (HDG) discretization
Solution represented by piecewise polynomials on each element
Implicit
Higher-order solutions
Unstructured meshes
o Well suited to hp-adaptation
@ Balancing Domain Decomposition by Constraints (BDDC)
@ Preconditioner for the Schur complement problem
o Developed by Dohrmann [2003] for structural mechanics
applications
o Makes use of the finite element assembly of the system matrix
e Condition number bound » < C(1 + log(}))? for second order
elliptic problems
v/ Coarse space is defined algebraically using discrete harmonic
functions
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@ Governing equation:

V- (F(u)+ G(u,Vu))=f

e u: state, F(u): inviscid flux, G(u): viscous flux
@ Local Solver:

(@n, V), + (Un, V - V), — (Up, v - )y,

= 0, v € PP(k)
—(F+G.Vw), + <(/“=,, +Gy) - n, W>an = (f,w), VYwe PP(x)
@ Numerical Fluxes:
(Fo+Gr)-n

(F(@n) + G(Un, qp)) - n+ S(n)(un — Un)
@ Global weak form:
a(An, 11) = b(p) Ve My
o al(\ 1) = X, a0 1) = .~ ((Fo+ G0 - o)
© b() = X, bu(n) = X, ((Fo+ G -mp) -

m} 5 = =
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@ Local bilinear form:
° ai()‘v /1*) - Zneﬂf ali()\? M)
® bi(1) = X eq, buli

@ Local stiffness matrix and load vector:

o A — l Ay A

(0)
(0 A0 ] , b= l b ]
AFI AIT

@ a(\ 1) = bi(n) or AVx() = pl) correspond to local problems with
Neumann interface condition on I
@ Global system formed by assembling with I DOFs
N
A = Z R A g()

_ [ A Ar ]
- Ari Arr
i=1
e RU) extracts global degrees of freedom associated with Q; -
(=] = E 9aA@
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BDDC preconditioner

@ Interface DOFs are partitioned into dual and primal DOFs:
, . . AT . qT
u® = [y gDy } - [ Uy }
e Dual DOFs, ua, correspond to functions with zero averages on

subdomain interfaces
e Primal DOFs, up, have non-zero averages on interfaces between

subdomains
@ Partially assembled system obtained by assembling only with
respect to primal DOFs

N Ar A
A— BOT A0 B — { rr rm ]
/21: Anr Ann
@ BDDC preconditioner:
—1 Y A1
Mgppc = H1A™ Ho

e Lumped BDDC: 7{;, 71> are simple averaging operators
e BDDC: H4, H, averaging with harmonic extensions
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@ Solution of partially assembled problem:
A=

N
wSw + ST ROTADTRO

I
L P
e A" corresponds to solution of constrained Neumann problem
A BOT T A0
B 0
@ Coarse basis functions:

_ | fi
* )
A BT v,] J0
B() x| |

0
@ Coarse system matrix: N
So=S RV w:" AwRY
i=1

° B(f)’s are constraints corresponding to primal DOFs
° R,(.l') extracts local primal DOFs from all primal DﬁOFs_ T
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Domain Decomposition Theory: Elliptic Problems

Preconditioner Scalable? Condition number

” z
Additive Schwarz (ASM) no k< Cp (1+ (ng)z)
ASM with coarse space yes k< C(1+ (pz%))2
Lumped BDDC yes k< C(1+ (pPPH)) )
BDDC yes k< C(1+log (PPH))

@ Coarse space needed to correct low frequency error modes
v/ Preconditioners with coarse spaces are scalable

@ Smooth extensions/averaging operators desired so as not to
introduce high-frequency error modes from local solves

v/ Performance of BDDC preconditioner superior for larger
subdomains as condition number/iteration count only weakly
dependent on number of elements/ subdomain
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Scalar Advection-Diffusion Equation

Governing equation:
o ”—“+a Vu—-vVeu=f
@ Peclet number Pe — 4t

v

@ Pe << 1 - diffusion dominated
@ Pe >> 1 - advection dominated

Sample Problem:

@ Uniform flow: 8 = [ 10 }
_ Yy
@ Exact solution: v =1 — e Vi)

Flow Solution Unlform Mesh Anisotropic Mesh
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128 elem / proc, p = 1 128 elem / proc, p =5
e . T T T — Y . T T T
9o = ASM with coarse space R 90 = ASM with coarse space
= Lumped BDDC = Lumped BDDC
8051 ——BDDC 7 80| —— BDDC

70

60

50+

Linear Solves
Linear Solves

a0t

30F
20///_;—"
10

, , . , , , ,
150 200 250 300 0 50 100 150 200 250 300
# Processors # Processors

Uniform structured mesh problem with fixed Pey, = 1

L L
0 50 100

v/ Preconditioners with coarse spaces are scalable
@ All preconditioners show dependence on solution order -

=} = = E DA
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128 elem / proc, p = 1 8192 elem / proc, p = 1
oy : - - - — : - - -
9o = ASM with coarse space R 90 = ASM with coarse space
= Lumped BDDC = Lumped BDDC
8 ——BDDC 7 80 —— BDDC
70
o [=3
» D
<] <]
15 [}
£ £ o}
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Uniform structured mesh problem with fixed Pey, = 1

v lteration count for BDDC preconditioner only weakly dependent on
number of elements per subdomain -

] = = = E DA
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128 elem / proc, p = 1

8192 elem / proc, p = 1

—ASM —ASM
9o = ASM with coarse space 90 = ASM with coarse space
= Lumped BDDC = Lumped BDDC
8H ——BDDC 805 — BDDC
70 | 701
$ 8
2 60 2 60
[=} o
D 5ol D sof
8 3
S sof S o
— —
30 d 30k
201 R 1 20 B
10, — 1 10F

L L L L L L L L
0 50 100 200 250 300 0 50 100 200 250 300

,
150 150
# Processors # Processors

2D Advection-Diffusion problem with Pe, = 1000

@ Coarse space provides no additional benefit
@ lteration count proportional to number of subdomains in
convective direction e
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64 subdomains 256 subdomains
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2D Advection-Diffusion, Pe, = 1000, p = 1, 128 elem /proc

10 15
Linear Solves

@ Coarse space provides no additional benefit

@ lteration count proportional to number of subdomains in
convective direction -
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128 elem/ proc, p = 1 8192 elem / proc, p = 1
S : - - - Yy : - - -
—— ASM with coarse space = ASM with coarse space|
= Lumped BDDC = Lumped BDDC
——BDDC ——BDDC
100 100
(%3 [}
3 o
= =
[=} o
» (7]
] I
Q [
< £
p p
50 50
0 50 100 150 200 250 300 0 50 100 150 200 250 300
# Processors # Processors

2D Advection-Diffusion problem with Pe = 106, p = 1

@ Pep, ~ 1 for well resolved solution
@ Coarse space is necessary to ensure good performance .
=] = = =
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@ Linearized Navier-Stokes Equations:
w ow ow
E * Ai 8X,‘ +K

p — F
T ox0x;
e A;, symmetric positive definite
e K, symmetric positive semi-definite
Sample Problem:
OM=M.|1-e v 0
Entropy Uniform Mesh ~ Anisotropic Mesh
- ] |/
/‘ // / // [
/
/ W

MV
% //// /’//////
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Linearized Euler Equations

64 subdomains 256 subdomains
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2D Linearized Euler, p = 1, 128 elem /proc

@ Characteristic travel is multiple directions, reflecting off interfaces
and boundaries
@ Residual drops after a number of iterations proportional to the

number of subdomains
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128 elem / proc, p = 1 2048 elem / proc, p = 1
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128 elem / proc, p = 1 2048 elem / proc, p = 1
—y = T T T o : T T T
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=} = = E 12N Ge



128 elem / proc, p = 1 2048 elem / proc, p = 1
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2D Linearized Navier-Stokes problem with Re = 108, p = 1
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6 Summary and Conclusions
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@ Contributions:

e Applied BDDC preconditioner for HDG discretizations

e Demonstrated the need for a coarse space correction when solving
high Reynolds number flow on anisotropic meshes

@ On going work:

e Generalized Robin-Robin interface condition for systems
o Application to fully non-linear Euler/Navier-Stokes problems
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