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Error estimation an control are critical ingredients for improving the reliability

of computational simulations. Adjoint-based techniques can be used to both estimate

the error in chosen solution outputs and to provide local indicators for adaptive refine-

ment. This article reviews recent work on these techniques for Computational Fluid

Dynamics (CFD) applications in aerospace engineering. The definition of the adjoint

as the sensitivity of an output to residual source perturbations is used to derive both

the adjoint equation, in fully-discrete and variational formulations, and the adjoint-

weighted residual method for error estimation. Assumptions and approximations

made in the calculations are discussed. Presentation of the discrete and variational

formulations enables a side-by-side comparison of recent work in output error estima-

tion using the finite volume method and the finite element method. Recent adaptive

results from a variety of applications show the power of output-based adaptive meth-

ods for improving the robustness of CFD computations. However, challenges and

areas of additional future research remain, including computable error bounds and

robust mesh adaptation mechanics.

I Introduction

The accessibility, fast turnaround time, and almost arbitrary test conditions offered by Computational

Fluid Dynamics (CFD) make it an attractive tool in aerospace design. CFD simulations with sophisticated

physical modeling are now used regularly to reduce design cycle costs and to improve final product design.

This prevalence of CFD has been driven by increasing computational power and by improvements in nu-

merical methods, to the extent that complex simulations on general three-dimensional geometries are now

routine.

Such powerful simulation capability is a remarkable achievement for CFD, but it also comes with a new

liability: ensuring that the computed solutions are sufficiently accurate. Typically, this liability is managed

by practitioners knowledgeable about the assumptions and limitations of the models and discretization. How-

ever, even very experienced practitioners cannot quantify the error in a discrete approximation of a complex

flowfield. In addition, reliance on best-practice guidelines for mesh generation and on previous experience

is an open-loop solution that leaves the door open to large amounts of numerical error for computations on
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novel configurations.

Even for relatively standard simulations, questions arise regarding the robustness with which CFD meth-

ods can accurately compute outputs of interest. An example is the American Institute of Aeronautics and

Astronautics Drag Prediction Workshop (DPW),1–3 in which force and moment outputs for a representative

set of wing-body geometries and flow conditions were compared across codes in industry and academia. Re-

sults from submissions have consistently shown a wide degree of scatter in computed outputs. For example,

drag coefficient variations of .0025 observed in the third DPW on a DLR-F6 wing body (Figure 1) translate to

a difference of over 100 passengers on a large transport aircraft.4, 5 The results from this workshop constitute

only a slight improvement over the results from the two previous workshops,1, 2 even though computational

power has increased substantially. Moreover, additional tests in the third DPW show that discrepancies

persist even for simple wing-only geometries. For these geometries, results obtained using the same code

but on independently-generated meshes appear to converge to different output values with uniform mesh

refinement.7 The lack of grid convergence is illustrated in Figure 2 and indicates that the highly-disparate

length scales in this three dimensional flow are not adequately resolved even with some of the finest a priori

generated meshes.

The observations above suggest that gains in computational power coupled with best-practice expert

mesh generation will be insufficient to reliably decrease numerical error to acceptable levels in the increasingly

complex problems of the future. As such, error estimation and control are critical ingredients for improving

the reliability of computational simulations. Control of errors is likely to be done most efficiently through

adaptive methods in which the discretization is iteratively improved through local mesh refinement and/or

increased order of accuracy in regions that most contribute to the solution error. A key feature of error

estimation is the ability to identify such regions.

The general idea of error estimation is not a new concept, and a number of previous works have reviewed
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Fig. 1 DPW III results: total drag coefficient predictions for the DLR-F6 wing-body at M = 0.75,
CL = 0.5, Re = 5 × 10

6. The solution index differentiates between different codes, turbulence models,
and mesh types.3,6

2 of 42



Fig. 2 DPW III wing-only results: total, pressure, and skin friction drag convergence for two families
of grids of two wing geometries, at M = 0.76, α = 0.5o, Re = 5 × 10

6. One set of grids was generated
by Cessna Aircraft Co. and the other by the University of Wyoming. Reproduced with permission
from.7

the subject. In the context of error estimates that also provide local indicators, Verfurth analyzes a poste-

riori error estimates for elliptic partial differential equations and shows an equivalence between estimates

based on local residuals and on solutions of local problems.8 Ainsworth and Oden focus on mechanics and

consider a posteriori energy norm error estimates for linear elliptic boundary value problems.9 Johnson et

al note a marked gap between theory and practice in error estimation for CFD, and they derive quantitative

discretization error estimates for laminar flows.10, 11 In a recent work, Roy reviews various strategies for

using discretization error estimates to drive mesh adaptation.12

As we describe in this review, adjoint-based techniques can be used to both estimate error in solution

outputs (such as lift and drag) and provide local indicators for adaptive methods. Becker and Rannacher

present a thorough review of the adjoint-weighted residual method for a posteriori error estimation in finite

element discretizations of elliptic, parabolic, and hyperbolic equations.13 In addition, Giles and Pierce14, 15

describe adjoint correction techniques and Giles and Süli16 review a posteriori output error estimation

for finite element methods applied to linear and nonlinear partial differential equations relevant to CFD.

Complementing these previous works, the purpose of this paper is to review output error estimation and

mesh adaptation techniques in the context of aerospace CFD applications and to present a collection of

recent results for aerospace problems including high lift, hypersonic heating, sonic boom, and launch abort

vehicles. We address output error estimation techniques that are applicable to both finite element and

general discretizations including finite difference and finite volume methods.

The structure of the paper is as follows. Section II introduces output adjoint solutions for both fully-

discrete and variational problems. Section III then reviews the adjoint-weighted residual method for output-

based error estimation. Error localization and mesh adaptation techniques are reviewed in Section IV.

Section V presents recent implementations and results for aerospace engineering applications. Finally, chal-

lenges and ongoing research are discussed in Section VI.
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II Outputs and Adjoints

Since the work of Aubin and Nitsche in a priori optimal order convergence proofs,17 adjoint solutions have

been used in a variety of contexts, ranging from design optimization18–23 to output error estimation.24–36

Adjoint solutions are desirable in all of these contexts for the output sensitivity information that they

provide. Starting from the output-sensitivity property, this section derives the adjoint equations in discrete

and variational formulations.

II.1 Fully-Discrete Formulation

Consider a partial differential equation discretized into Nh, possibly nonlinear, algebraic equations,

Rh(uh) = 0, (1)

where uh ∈ R
Nh is the vector of unknowns and Rh ∈ R

Nh is the vector of residuals that must be driven

to zero. The subscript h denotes the fineness of the discretization and encompasses both mesh size and

interpolation order. Given a scalar output Jh(uh), the associated adjoint vector, ψh ∈ R
Nh , is the sensitivity

of Jh to an infinitesimal residual perturbation, δRh ∈ R
Nh , to the nonlinear system:

δJh ≡ Jh(uh+δuh) − Jh(uh) ≡ ψ
T
h δRh, (2)

where δuh is the infinitesimal solution perturbation satisfying

∂Rh

∂uh
δuh + δRh = 0, (3)

which is obtained by linearizing Eq. 1. The linearization assumes the discrete equations are differentiable.

Further, assuming that the output is also differentiable,

δJh =
∂Jh
∂uh

δuh = ψTh δRh = −ψTh
∂Rh

∂uh
δuh, (4)

where Eqs. 2 and 3 were used in the second and third equalities, respectively. In order for Eq. 4 to hold for

all perturbations, we require

∂Jh
∂uh

= −ψTh
∂Rh

∂uh
, (5)

from which ψh must satisfy the discrete adjoint equation

(
∂Rh

∂uh

)T

ψh +

(
∂Jh
∂uh

)T

= 0. (6)

II.2 Variational Formulation

In a variational setting, consider a general semilinear form arising from a Galerkin weighted residual

statement: determine uh ∈ Vh such that

Rh(uh,vh) = 0, ∀vh ∈ Vh, (7)
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where Vh is a finite-dimensional space of functions. The subscript h indicates a discretization of the compu-

tational domain, such as a triangulation in a finite element method. Rh(·, ·) : Vh×Vh → R is assumed to be

a semilinear form, linear in the second argument. A scalar output of interest is denoted by Jh(·) : Vh → R,

where the subscript h is included because the output calculation may involve discretization-dependent terms.

Consider an infinitesimal perturbation, δRh(vh), added to the weak statement in Eq. 7, where δRh(·) :

Vh → R. An adjoint ψh ∈ Vh can be defined as the sensitivity of the output to the residual perturbation by

the following relationship:

δJh ≡ Jh(uh+δuh) − Jh(uh) = δRh(ψh). (8)

The infinitesimal state and residual perturbations are related via the statement:

R′

h[uh](δuh,vh) + δRh(vh) = 0, ∀vh ∈ Vh, (9)

where the prime denotes a Fréchét linearization with respect to the arguments in the square brackets. Also

linearizing the output,

δJh = J ′

h[uh](δuh) = δRh(ψh) = −R′

h[uh](δuh,ψh), (10)

where Eqs. 8 and 9 were used in the second and third equalities, respectively. For these linearizations to

exist, both the semilinear form and the output are assumed to be differentiable. In order for Eq. 10 to be

true for general perturbations, the adjoint must satisfy the statement: find ψh ∈ Vh such that

R′

h[uh](vh,ψh) + J ′

h[uh](vh) = 0, ∀vh ∈ Vh. (11)

Once a basis is chosen for the weighted residual statements, Eqs. 7 and 11 are equivalent to their discrete

counterparts, Eqs. 1 and 6, respectively. While the fully-discrete formulation is simpler from an implemen-

tation perspective, the weighted-residual formulation offers more rigor for error estimation.

II.3 Adjoint Consistency

Eqs. 6 and 11 yield the discrete adjoint ψh, either as a vector or as a function in a finite-dimensional

space. Of interest is how this discrete solution compares to its infinite dimensional (“exact”) counterpart.

Given the exact primal solution, u ∈ V , satisfying

R(u,v) = 0, ∀v ∈ V , (12)

for an appropriately defined space V , the exact adjoint ψ ∈ V satisfies

R′[u](v,ψ) + J ′[u](v) = 0, ∀v ∈ V . (13)

For simplicity, we have assumed that both u and ψ are in V . However, the space for the adjoint solution

does not have to be the same as the space for the primal solution.37

The exact adjoint can be regarded as a Green’s function relating source perturbations in the original

partial differential equation to perturbations in the output.38, 39 To demonstrate this interpretation, a
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sample adjoint solution is illustrated in Figure 3 for subsonic flow over a lifting airfoil. Upstream of the

Fig. 3 x−momentum component of the lift adjoint for a NACA 0012 airfoil at M = 0.4, α = 5
o. A

positive residual perturbation to the x-momentum equation increases the lift where the adjoint is
positive (red shading) and decreases the lift where the adjoint is negative (blue shading).

airfoil, the adjoint is seen to vary rapidly across the stagnation streamline. This behavior was suggested in

the analysis of Giles and Pierce who found that a square root singularity with respect to distance from the

stagnation streamline exists for sources that perturb the stagnation pressure.38

To be precise, the adjoint field in Figure 3 is the discrete adjoint solution on a fine mesh. It can only be

regarded as a faithful representation of the exact adjoint if the discretization is in some manner consistent

with the exact adjoint problem. Primal consistency in the variational problem requires that the exact

solution u satisfies the discrete variational statement,

Rh(u,v) = 0, ∀v ∈ Wh, (14)

where Wh = Vh + V = {h = f + g : f ∈ Vh, g ∈ V}. Similarly, the combination of the discrete semi-linear

form Rh and the functional Jh is said to be adjoint consistent if37, 40, 41

R′

h[u](v,ψ) + J ′

h[u](v) = 0, ∀v ∈ Wh. (15)

Discretizations that are not adjoint consistent may still be asymptotically adjoint consistent if Eq. 15 holds

in the limit h → 0, by which we mean the limit of uniformly increasing resolution, over suitably normalized

v ∈ Wh.

Adjoint consistency has an impact on the convergence of not only the adjoint approximation but also

the primal approximation.16, 37, 40–44 In error estimation, an adjoint-inconsistent discretization can lead to

irregular or oscillatory adjoint solutions that pollute the error estimate with noise and lead to adaptation in

incorrect areas. Enforcing adjoint consistency imposes restrictions on the output definition and on the interior

and boundary discretizations that enter into the semi-linear form. These restrictions have been studied by

several authors in the context of the discontinuous Galerkin method.37, 40, 42 In general, discretizations that

are found to be adjoint inconsistent can often be made adjoint consistent by adding terms to either the

semi-linear form or the output functional.
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II.4 Adjoint Implementation

The discrete adjoint is obtained as the solution to the linear system in Eq. 6. Since this system requires

a linearization about the primal solution, the primal problem in Eq. 1 is generally solved before the adjoint

problem. Concurrent primal-adjoint solutions, however, have been investigated with certain superconver-

gence properties in the output estimates.45

The implementation of the adjoint solve varies depending on the structure of the code. When the full

Jacobian matrix, ∂Rh

∂uh

, and an associated linear solver are available from solution of the primal problem, the

transpose linear solve can be implemented in a straightforward manner. For example, if a Krylov method

is used for the linear solve, the adjoint solve will require transpose applications of the matrix and the

preconditioner, which generally pose little difficulty when ∂Rh

∂uh

is stored.

Conversely, when the Jacobian matrix is not stored, the discrete adjoint solve is more involved. The

fact that the Jacobian matrix is transposed in Eq. 6 means that all operations in the primal solve must

be linearized, transposed, and applied in reverse order for use in the adjoint solve. For example, if a finite

volume code calculates residuals by reconstructing the flow state and then computing nonlinear fluxes,

the adjoint residual must be obtained by first applying the transpose of the linearized fluxes and then

the transpose of the reconstruction operator. The required linearizations are often calculated analytically

by hand, although automatic code differentiation techniques are becoming increasingly sophisticated.46, 47

Multistage and multigrid solution schemes have to be modified to ensure that the asymptotic stability of the

adjoint solver is equal to that of the original primal flow solver.48 Implicit schemes employing point or line

relaxation also have to be modified to preserve discrete duality, as discussed by Nielsen et al .49

Adjoint approximations can also be developed by deriving the adjoint partial different equations and

then discretizing them. This approach is referred to as the continuous adjoint technique (as opposed to the

discrete adjoint techniques described above) and was pioneered for aerospace applications by Jameson.18

The continuous adjoint method has largely not been applied in the context of output error estimation and

adaptation, though no barrier exists to prevent such an application.

III Error Estimation

III.1 Forms of Error Estimation

The error in a solution can be quantified by various means. Discretization error is the difference between

the discrete solution and the exact solution. Its magnitude is governed by the size of the spatial and temporal

mesh spacings, and it can be measured locally on individual elements or globally under a chosen norm. For

general problems, the exact solution is unknown and the discretization error must be estimated, often using

reconstructions based on smoothness assumptions. Another error estimate relies on the residual, which

is obtained by substituting the approximate solution into the underlying partial differential equation.50–52

Nonzero residuals, calculated point-wise or integrated on an enriched space, indicate regions where the

governing equations are not strongly enforced. Residual error estimates can also be expressed locally or

integrated globally under a norm, although care must be taken in the choice of norm for hyperbolic problems

to prevent uncontrollable growth in the vicinity of a shock.50

For simulations of predominantly elliptic equations, such as those of structural elasticity or low-speed

flows, error estimates based on local discretization errors are often sufficient.8 However, many aerospace

CFD applications deal with hyperbolic equations, for which such estimates lose their efficacy. Zhang et
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al compare adaptive results using discretization error and residual indicators for the Euler equations.53, 54

For one-dimensional, subsonic flows, Zhang et al find that a residual indicator is more efficient compared

to a discretization-error indicator in driving the adaptation to reduce the total solution error. However, for

transonic or multi-dimensional flows, neither indicator is adequately effective. In general, error estimates

based on residual or discretization errors fail to capture propagation effects that are inherent to hyperbolic

problems.55 For hyperbolic problems, the residual and discretization error may not necessarily be large

in certain crucial areas that significantly affect the solution downstream and the computed outputs. For

example, for separated flow over an airfoil, small perturbations in certain upstream areas may have large

effects on the location of the separation point, which in turn has a large effect on the calculated lift and

drag. Stated another way, engineering outputs can be highly sensitive to discretization or residual errors in

areas that may not be easily identifiable a priori.

Output error estimates based on adjoint analysis help to address these problems by quantifying how

residual errors impact the output, accounting for propagation effects in the process. The resulting error

estimate can be used to ascribe confidence levels to the engineering output and to drive an adaptive method

with the goal of reducing the output error below a user-specified tolerance. This section reviews such existing

output-error estimation techniques. We begin in Section III.2 by introducing the adjoint-weighted residual

method that connects residuals to output error for variational discretizations. Then, we show how these

techniques can be extended to general discretizations using an algebraic approach in Section III.3. Finally,

Sections III.4-III.6 describe various aspects that impact the practical implementation of these error estimates

including the approximation of fine mesh primal and adjoint states, the effectivity of error estimates, and

the impact of shocks.

III.2 The Adjoint-Weighted Residual Method

Consider a variational solution on a “fine” discretization, uh ∈ Vh, that satisfies Rh(uh,vh) = 0, ∀vh ∈

Vh, and a variational solution on a coarser discretization, RH(uH ,vH) = 0, ∀vH ∈ VH . The discretization

spaces are assumed to be nested, VH ⊂ Vh, so that δuh = uH − uh ∈ Vh. Such a situation is illustrated in

Figure 4 for a one-dimensional finite element solution.

u

x

δuu

u

H h

h

Fig. 4 Comparison in one dimension of a fine solution uh ∈ Vh, a coarse solution uH ∈ VH , and the
difference δuh = uH −uh ∈ Vh. In this example, the solution spaces consist of piecewise linear functions
on uniform elements, and Vh is nested in VH with four times as many elements. One coarse element
is shown.

To connect the output error to residuals for finite perturbations, the adjoint equation in Eq. 11 is gen-

eralized using a mean-value linearization.13, 33, 35, 56 Specifically, the mean-value adjoint ψmv
h ∈ Vh is the
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solution to

R̄h[uh,uH ](vh,ψ
mv
h ) + J̄h[uh,uH ](vh) = 0, ∀vh ∈ Vh, (16)

where R̄h : Vh × Vh → R and J̄h : Vh → R are defined by

R̄h[uh,uh + δuh](vh,wh) =

∫ 1

0

R′

h[uh + θ δuh](vh,wh) dθ,

J̄h[uh,uh + δuh](vh) =

∫ 1

0

J ′

h[uh + θ δuh](vh) dθ, (17)

for vh,wh ∈ Vh. Since

R̄h[uh,uh + δuh](δuh,wh) = Rh(uh + δuh,wh) −Rh(uh,wh),

J̄h[uh,uh + δuh](δuh) = Jh(uh + δuh) − Jh(uh),

the output perturbation can be related to the residuals,

JH(uH) − Jh(uh) = Jh(uH) − Jh(uh)

= J̄h[uh,uH ](δuh)

= −R̄h[uh,uH ](δuh,ψ
mv
h )

= −Rh(uH ,ψmv
h ) + Rh(uh,ψ

mv
h )

⇒ JH(uH) − Jh(uh) = −Rh(uH ,ψmv
h ). (18)

The assumption that JH(uH) = Jh(uH) was made above, which is generally true as long as any geometry

used for the output calculation does not change between the two spaces. In the last step, the fact that uh

is a solution to the original weighted residual statement is used, so that Rh(uh,wh) = 0, ∀wh ∈ Vh. The

name “adjoint-weighted residual method” (also referred to as the dual-weighted residual method29) describes

Eq. 18: the adjoint solution weights the residual of the coarse solution to produce the output error. The

method is also referred to as “goal-oriented”34, 57 or “output-based” error estimation.

By Galerkin orthogonality of the variational formulation, an arbitrary function in VH can be subtracted

from ψ
mv
h in Eq. 18,

JH(uH) − Jh(uh) = −Rh(uH ,ψmv
h − vH), ∀vH ∈ VH . (19)

This form of the adjoint weighted residual shows that when ψmv
h is well-approximated by the coarse space,

the output error will be small. Further, applying this result locally, in regions where the fine-mesh adjoint is

well-approximated by the coarse space, the contribution of local residual errors to the output will be small.

III.3 Fully-Discrete Adjoint-Weighted Residual Method

The adjoint-weighted residual method for error estimation can also be applied in a fully-discrete formu-

lation. Again, two discretization levels are assumed: a fine one with Nh degrees of freedom, and a coarse one

with NH degrees of freedom. A representation of uH on the fine space is assumed to be given by u
H
h ≡ I

H
h uH ,

where I
H
h ∈ R

Nh×NH is a suitably-chosen prolongation matrix. In a standard finite element discretization,
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I
H
h is the natural injection operator. In the general case, I

H
h should be consistent with the discretization

used. The perturbation in the fine solution relative to the prolongated coarse solution is δuh = u
H
h − uh,

The discrete mean-value adjoint, ψmv
h ∈ R

Nh , satisfies

(
R̄h[uh,u

H
h ]

)T
ψmv
h +

(
J̄h[uh,u

H
h ]

)T
= 0, (20)

where R̄h ∈ R
Nh×Nh and J̄h ∈ R

Nh satisfy

R̄h[uh,uh + δuh] =

∫ 1

0

∂Rh

∂uh
[uh + θ δuh] dθ,

J̄h[uh,uh + δuh] =

∫ 1

0

∂Jh
∂uh

[uh + θ δuh] dθ. (21)

Since

R̄h[uh,uh + δuh] δuh = Rh(uh + δuh) − Rh(uh),

J̄h[uh,uh + δuh] δuh = Jh(uh + δuh) − Jh(uh),

the output perturbation can be related to the residuals,

JH(uH) − Jh(uh) = Jh(u
H
h ) − Jh(uh)

= J̄h[uh,u
H
h ] δuh

= − (ψmv
h )

T
R̄h[uh,u

H
h ] δuh

= − (ψmv
h )T Rh(u

H
h ) + (ψmv

h )T Rh(uh)

⇒ JH(uH) − Jh(uh) = − (ψmv
h )

T
Rh(u

H
h ). (22)

The output for the coarse discretization is assumed to be given by the evaluation of the output on the

fine level discretization using the prolongated solution, i.e. JH(uH) = Jh(u
H
h ). Further, in the last step,

Rh(uh) = 0 is used.

This adjoint-weighted residual in Eq. 22 can be split into two parts by expressing the mean-value adjoint

on the fine level as a correction from a prolongated coarse adjoint, ψmv
h = ψ

H,mv
h − δψmv

h , giving,

JH(uH) − Jh(uh) = −
(

ψ
H,mv
h

)T

Rh(u
H
h )

︸ ︷︷ ︸

computable correction

+ (δψmv
h )

T
Rh(u

H
h )

︸ ︷︷ ︸

remaining error

. (23)

The first term, which would be zero due to Galerkin orthogonality for a variational formulation, is often

called the computable correction since it can be computed without solving the primal or the adjoint on

the fine level (only a residual evaluation on the fine level is required). In particular, it is nonzero for

reconstruction-based finite volume schemes. While the computable correction could be used as an adaptive

indicator, previous results indicate that adapting on the computable correction is not significantly better

than heuristic indicators.58, 59 Thus, in practice, the approach taken in finite volume applications has been

to adapt on the remaining error while including the computable correction in the estimate of the output.60
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III.4 Approximations

Evaluating the output perturbation in Eq. 18 requires a residual evaluation on the fine space Vh, weighted

by the mean-value adjoint, ψmv
h (note: the same issues apply to the fully-discrete adjoint-weighted residual

method, but for simplicity we refer only to the variational formulation in this section). A residual evaluation

on Vh is tractable, but solving Eq. 20 to calculate ψmv
h requires both a primal and an adjoint solve on Vh.

These calculations on Vh are expensive and defeat the purpose of estimating the error since JH − Jh could

be calculated directly if uh were available. Such an approach can still be useful for obtaining an accurate

indicator for adaptation,.57 However, for error estimates and often for adaptive indicators, approximations

are made to the above formulations.

One approximation is to avoid the mean-value linearization and estimate the output error with the

following second-order method,

JH(uH) − Jh(uh) = Rh(uH , δψh) + R(2)(||δuh||, ||δψh||) (24)

where δψh ≡ ψH −ψh, ψh is the solution to Eq. 11, and ψH ∈ VH is the solution to,

R′

H [uH ](vH ,ψH) + J ′

H [uH ](vH) = 0, ∀vH ∈ VH . (25)

R(2)(||δuh||, ||δψh||) is a remainder that is second order in the primal and adjoint error. This approach has

been used in both finite element13, 61 and finite volume62, 63 applications. In finite volume applications, the

computable correction must also be include in the error estimate. Becker and Rannacher show that the error

estimate can be improved to third order by including the residual of the adjoint problem,

JH(uH) − Jh(uh) =
1

2
Rh(uH , δψh) +

1

2
Rψ
h [uH ](δuh,ψH) + R(3)(||δuh||, ||δψh||) (26)

where,

Rψ
h [uH ](δvh,wh) ≡ R′

h[uH ](δvh,wh) + J ′

h[uH ](δvh), (27)

and R(3)(||δuh||, ||δψh||) is a remainder that is third order in the primal and adjoint error. As with Eq. 24,

this form of error estimate has also been used with both finite element5, 37, 64–66 and finite volume36, 59, 60, 67–73

discretizations.

While the error estimates in Eq. 24 and 26 remove the need for the mean-value linearization, uh and

ψh are still required to determine δuh and δψh. One approach for approximating uh is to reconstruct

uH on Vh using a higher-accuracy stencil. In the finite element setting, this could be least squares patch

reconstruction.5, 35, 37, 61 Such reconstruction makes use of a superconvergence property,74, 75 which requires a

smoothness assumption that loses validity near discontinuities. In addition, without limiting, no guarantees

exist that reconstructed solutions will remain physical for nonlinear problems. An alternate approach is

therefore to project uH into Vh and to apply several steps of an iterative solution scheme.65, 66 In either

case, the difference between the approximated uh and uH can be used directly in Eq. 26 to compute the

error estimate.

ψh can be approximated in several ways. Just as uh, it can be reconstructed from ψH using a higher-

accuracy stencil.35, 37, 60, 61 In the standard finite volume setting, this reconstruction is typically performed
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with quadratic interpolation on a uniformly-refined mesh. The least squares problem can be tailored to

penalize first derivative differences, increasing the robustness to oscillations in the presence of under-resolved

or discontinuous features.60 In high-order finite element methods, the reconstruction can be simplified by

using an interpolation order increment on the same mesh.37 Reconstruction on a fine space obtained by both

uniform mesh refinement and interpolation order increase has also been investigated.76 A disadvantage of the

reconstruction approach is that it does not incorporate physics of the problem, which can be important for

convection-dominated equations. A more robust approach is therefore to solve the adjoint problem exactly

on the chosen fine space,35, 56 although this is a costly proposition. When an inexpensive iterative solver is

available, a cheaper alternative is, as in the primal problem, to inject ψH into the fine space and to apply

several steps of the iterative solver, with the linearization based on an approximation of uh.
65, 66

III.5 Error Effectivity

In the limit of a very fine (and consistent) discretization, “h → 0” and uh → u, Eq. 18 yields the true

output error in the solution: JH(uH) − J (u). In practice, however, a finite dimensional Vh is employed,

obtained from VH by uniform refinement or interpolation order increase. Hence, the calculated output error

is generally not equal to and not a bound for the true error. It is an estimate whose accuracy depends on

the enrichment of Vh relative to VH . Indeed, the choice of enrichment governs the behavior of the error

effectivity,

ηeH ≡
JH(uH) − Jh(uh)

JH(uH) − J (u)
. (28)

An effectivity close to 1 is desirable. If H denotes mesh size and the output error converges as JH(uH) −

J (u) = CHHk, a choice of h = H/2 for the enriched space yields an effectivity of ηeH = 1 − (1/2)k. Thus,

even as H → 0, the effectivity does not approach one. Potentially, this underprediction of the true error

could be accounted for if the convergence rate k were known. Another option is to construct the error

estimate using p-enrichment. In this case, the effectivity behaves as ηeH = 1−CkH
δk where δk is the increase

in convergence rate of uh relative to uH . Under these assumptions, the effectivity approaches 1 as H → 0.

III.6 Impact of Shocks and Artificial Stabilization

Shock waves (or other under-resolved phenomena) can present a variety of problems when estimating

errors. For example, estimation of uh through reconstruction can introduce oscillations that contaminate

error estimates. This contamination can be reduced by using monotonic reconstruction procedures.

Another issue is the use of shock-capturing stabilization terms in the discretization that are non-zero even

when acting upon the exact solution. In these situations, the semilinear form is inconsistent since RH(u,v)

is not necessarily zero for all v ∈ V . However, for the method to be convergent, the stabilization terms are

assumed to asymptote to zero as H → 0. In other words, the method has asymptotic primal consistency.

The error due to asymptotically consistent stabilization terms can be estimated by separating the weighted

residual statement into consistent and asymptotically consistent parts,

RH(uH ,vH) + Rǫ
H(uH ,vH) = 0, ∀vH ∈ VH . (29)

where RH(·, ·) is a consistent semilinear form, and Rǫ
H(·, ·) is an asymptotically consistent form. Then, using
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Eq. 8, the output error due to using asymptotically consistent stabilization is

δJ ǫ
H = Rǫ

H(uH ,ψH), (30)

where ψH is the solution to Eq. 25, and where the residual perturbation is approximated as infinitesimally

small. When performing error estimation, approximations to uH and ψH are available, and hence δJ ǫ
H is

computable without a residual calculation on a finer space. Dwight takes advantage of this observation to

efficiently compute the sensitivity of an output to explicitly-added dissipation for finite volume discretizations

of the Euler equations.77 Dwight observes that in many test cases, the artificial dissipation accounts for the

majority of the output error, so that the calculated sensitivity is a good approximation to the output error.

IV Mesh Adaptation

A typical adaptive solution process is illustrated in Figure 5. The input is an initial coarse mesh along

Flow and adjoint solution

Done

Mesh adaptation

Initial coarse mesh & error tolerance

Output error estimate

Error localization

Tolerance

met?

Fig. 5 Adaptive solution process flowchart. The input consists of an initial coarse mesh and a
requested error tolerance. Adaptation stops when the error tolerance is met.

with a user-prescribed error tolerance for an output. The iterative process starts by solving the primal and

adjoint problems on the initial coarse mesh. Next, the output error is estimated using the adjoint-weighted

residual method described in Section III.2. If the global error tolerance criterion is met, the adaptive process

terminates. Otherwise, the error estimate is localized to the elements, and the mesh is adapted. The process

then repeats until the tolerance is met. This process is only valid for the case of one output, although

multiple output functionals can sometimes be treated by defining a weighted-sum output.78

In output-based error estimation, the error localization is fairly straightforward. However, numerous

strategies exist for translating the error indicator into a modified mesh. In CFD, the most popular adap-

tation strategy is h-adaptation, in which only the triangulation forming the mesh is varied. In high-order

methods, additional strategies include p-adaptation, in which the interpolation order is changed on a fixed

triangulation,37, 79 and hp-adaptation in which both the order and the triangulation are varied.80–89 For CFD

applications, in which solutions often possess localized, singular features, h-adaptation is key to an efficient

adaptation strategy. In addition, most practical codes operate at one or a limited number of orders, making

h-adaptation the only practical approach. With the growing popularity of high-order methods, however,

hp-adaptation will be an important strategy for increased efficiency in the future.

This section reviews general aspects of h−adaptation for CFD. Many of the aspects, especially pertaining
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to adaptation mechanics, incorporation of anisotropy, and general optimization strategy, are also relevant to

non-output based adaptation. Additional information on these topics can be found in existing reviews.90–95

The discussion below will focus on aspects of mesh adaptation specifically relevant to output-based error

estimation.

IV.1 Error Localization

The output error estimates in Eqs. 18, 24, and 26 consist of a residual evaluation on the refined space Vh.

In a finite element method, this residual evaluation is a sum over all elements in the fine space. Since the

coarse and fine spaces are assumed nested, Eq. 24 (with an analogous expression for Eq. 18) can be written

as,

JH(uH) − Jh(uh) ≈
∑

κH∈TH

∑

κh∈κH

Rh(uH , δψh|κh
), (31)

where TH is the coarse triangulation, κH/κh is an element of the coarse/fine triangulation, and |κh
refers to

restriction to element κh. Note that the coarse/fine spaces can consist of the same triangulation, for example

when only the interpolation order is increased, in which case κH = κh. Eq. 31 expresses the output error in

terms of contributions from each coarse element. A common approach for obtaining an error indicator is to

take the absolute value of the elemental contribution,13, 16, 35, 56, 60

ǫκH
=

∣
∣
∣

∑

κh∈κH

Rh(uH , δψh|κh
)
∣
∣
∣. (32)

When the adjoint residual contribution is used as in Eq. 26, an adjoint error indicator can be defined as

ǫψκH
=

∣
∣
∣

∑

κh∈κH

Rψ
h [uH ](δuh|κh

,ψH)
∣
∣
∣. (33)

This indicator targets areas of nonzero adjoint residual, weighted by a primal interpolation error estimate.

Numerical experiments have shown that the two error indicators, ǫκH
and ǫψκH

, yield similar mesh distribu-

tions when used to drive adaptation.

The above error localization is applicable to finite volume and discontinuous Galerkin discretizations, since

weighted residuals vanish locally on each element for these discretizations. Thus, no systematic inter-element

error cancellation is expected in the output error estimates and the absolute value signs in Eqs. 32 and 33

are justified. However, local residuals do not necessarily vanish for continuous finite element discretizations.

Consider for example a continuous finite element discretization of Poisson’s equation, in which the elemental

contributions to the residual contain terms of the form
∫

κh

∇uH · ∇ψh. Simply placing absolute value signs

around these terms to obtain the elemental error indicator would lead to a systematic over-estimate of the

output error via a sum of the indicators.96 This over-estimate is due to a poor bookkeeping choice for the

error and can be fixed by integrating the residual terms by parts on each element. The result is a set of

element-interior terms containing the strong form of the residual, and a set of face flux jump terms, which

are present because the gradient of uH is not continuous. Both of these terms are expected to go to zero

with mesh refinement, and the flux jump terms will dominate for low orders.97 The face flux residuals can

be pushed back onto the elements by assigning half of the flux residual to each of the two elements adjacent

to the face.61 For convection equations, the continuity of uH eliminates the need for interior flux residuals,
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although inflow flux residuals are still required and the stabilization terms must be treated appropriately.32

For systems of equations, indicators are typically computed separately for each equation and summed

together. Due to the absolute values, the sum of the error indicators, ǫ =
∑

κH
ǫκH

, is greater or equal to the

original output error estimate. However, it is not a bound on the actual error, or even on JH(uH)− Jh(uh),

because of the approximations made in the derivation. In practice, the validity of the approximations

improves with refinement, and the above estimate becomes an accurate measure of the true error.

IV.2 h-Adaptation Mechanics

Many approaches to adapting a mesh rely upon the application of local operators through which the

mesh is modified incrementally. A simple example of a local operator is element sub-division in a setting that

supports non-conforming, or hanging, nodes.61, 85, 90, 98, 99 For triangular and tetrahedral meshes, local mesh

modification operators consist of node insertion, face/edge swapping, edge collapsing, and node movement.

These operators have been studied extensively by various authors68, 69, 92, 100–105 in different contexts. The

primary advantage of local operators is their robustness: the entire mesh is not regenerated all at once, but

rather each operator affects only a prescribed number of nodes, edges, or elements.

Another approach to adapting a mesh is global re-meshing, in which a new mesh is generated for the

entire computational domain. The original, or background, mesh is used to store desired mesh characteristics

during re-generation. For applications to adaptation, the desired mesh characteristics are often described

using a Riemannian metric, the idea being that in an optimal mesh, all edge lengths will have unit measure

under the metric.102, 104 In a Cartesian coordinate system, an infinitesimal segment δx has length δΓ under

a Riemannian metric M,

δΓ2 = δxT M δx = δxi Mij δxj , (34)

where δxi are the components of δx ∈ R
d and Mij are the components of the symmetric, positive definite

metric, M ∈ R
d×d.

The metric M contains information on the desired mesh edge lengths in physical space. As M is symmetric

and positive definite, the unit measure requirement,

x
T

M x = 1,

describes an ellipsoid in physical space that maps to a sphere under the action of the metric. The eigenvectors

of M form the orthogonal axes of the ellipsoid – i.e. the principal directions. The corresponding eigenvalues,

λi, are related to the lengths of the axes, hi, via

λi =
1

h2
i

⇒
hi
hj

=

(
λj
λi

)1/2

Physically, the hi are the principal stretching magnitudes. A diagram of a possible ellipse resulting from the

unit-measure requirement in two dimensions is given in Figure 6. Thus, the ratio of eigenvalues of M can

be used to define a desired level of anisotropy.

A successful approach for generating simplex meshes based on a Riemannian metric is mapped Delaunay

triangulation, in which a Delaunay mesh generation algorithm95 is applied in the mapped space, allowing for

the creation of stretched and variable-size triangles or tetrahedra.106 This method is implemented in the Bi-
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Fig. 6 Ellipse representing requested mesh sizes implied by equal measure under a Riemannian met-
ric M. Also shown are the principal directions, ei, and the associated principal stretching magnitudes,
hi.

dimensional Anisotropic Mesh Generator (BAMG),107, 108 which has been used in various finite volume36, 109

and discontinuous Galerkin65, 66, 110 applications requiring anisotropic meshes. Examples of output-adapted

meshes obtained using BAMG are shown in Figures 10, 20, and 22.

IV.3 Overview of Adaptation Strategies

In h-adaptation, the determination of which elements to refine or coarsen has important implications for

practical simulations: too little refinement at each adaptation iteration may result in an unnecessary number

of iterations; too much refinement may ask for an expensive solve on an overly-refined mesh. Aftosmis and

Berger discuss adaptation strategies in terms of error distribution histograms,111 in which elements are binned

according to the error indicator (Eq. 32 for output-based adaptation). The assumption made in virtually all

adaptation strategies is that in an ideal mesh the user-prescribed error tolerance is satisfied and the error

is equidistributed among the elements.92 This situation corresponds to a “delta” histogram, in which all

elements lie in the same bin. In contrast, the initial coarse mesh will generally have some distribution of

error indicators, as illustrated in Figure 7. The goal of an adaptation strategy is then to drive the histogram

towards the ideal delta distribution using a prescribed adaptation strategy.

Nemec et al 63 discuss two adaptation strategies based on either a constant or a decreasing refinement

threshold. In a constant threshold strategy, depicted in Figure 7, all elements with error above a certain fixed

value are refined, in the same manner. This strategy is simple but potentially expensive: initial refinement

targets virtually all of the elements and leads to a rapid growth in the mesh size in the first few iterations,

while elements with the highest error (in the right tail of the histogram) are likely to be among the last

elements to have their error reduced to the target level. In contrast, with a decreasing threshold, shown in

Figure 8, elements with the highest error are targeted for refinement first, so that the mesh size grows more

slowly and multiple expensive solves on the finest meshes are avoided. Note, general adaptive mechanics that
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Fig. 7 Sample error indicator histogram and a constant-threshold refinement strategy. Reproduced
with permission from.63

do not employ the same level of refinement for each element are not limited to these strategies. For example,

when using global re-meshing, all elements could be refined or coarsened based on their error indicators.

Fig. 8 Adaptation strategy using a decreasing threshold. Reproduced with permission from.63

Most adaptation optimization methods follow some variation of a decreasing threshold strategy. For

example, a fixed-fraction approach prescribes a fraction of elements with the highest error indicator to be

refined at each adaptation iteration, such that the decreasing threshold is a function of the shape of the error

histogram. Then, the elements targeted for adaptation are typically refined in a locally uniform manner, e.g.

by splitting all edges in half. This simple approach has been applied to output-based adaptation in several

studies29, 35, 56, 57, 62, 89 The fixed-fraction parameter is often chosen heuristically in a trade-off between an

excessive number of iterations and a risk of over-refinement. Nevertheless, the method works quite well for

practical problems.

IV.4 Incorporating a priori Analysis and Anisotropy

The fixed-fraction adaptive strategy with locally uniform refinement does not account for the rate at

which the error decreases with mesh refinement in a given adaptive iteration. This disregard for the error

convergence rate could lead to over-refinement of the mesh or to an excessive number of adaptive iterations

to achieve the desired target error. Adaptation strategies have been developed that attempt to meet the
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global tolerance while equidistributing the error among elements through the incorporation of a priori error

analysis. In the context of isotropic, output-based adaptation, Venditti and Darmofal60 developed such a

method based on the previous work of Zienkiewicz and Zhu.112 In this method a permissible element error

eκ = e0/N is defined at each adaptation iteration, where e0 is the user tolerance, and N is the current

number of elements. Coupled with an a priori error estimate that the error converges as O(hr), where r is

the a priori estimated convergence rate, element size requests can be made that equidistribute the error.

An important ingredient in h-adaptation for aerodynamic computations is the ability to generate stretched

elements in areas such as boundary layers, wakes, and shocks, where the solution exhibits anisotropy, which

refers to variations of disparate magnitudes in different directions. While stretched elements can be created

to a limited extent with hanging-node refinement, by optimally choosing the refinement direction,113, 114

unstructured triangular and tetrahedral grids offer the most flexibility in anisotropic refinement. The first

output-based adaptive method to incorporate anisotropy was proposed by Venditti and Darmofal36, 115 and

applied to a nominally second-order accurate finite volume algorithm. Their approach was to combine the

isotropic, output-based approach using a priori estimates with existing Hessian-based methods for anisotropic

adaptation.

For spatially second-order methods, the dominant method for detecting anisotropy involves estimating

the Hessian matrix, H, of a scalar solution, u.102, 104, 106, 116 The components of H are given by

Hij =
∂2u

∂xi∂xj
, i, j ∈ [1, .., d], d = dimension.

The second derivatives can be estimated by, for example, a quadratic reconstruction of a linear solution. For

the Euler or Navier-Stokes equations, the Hessian of the Mach number has been found to perform sufficiently

well as the scalar u.

The metric is obtained from the Hessian by requiring that the interpolation error estimate of the scalar

quantity u be the same in any chosen spatial direction. For linear interpolation of u along the segment

δx, the maximum interpolation error can be bounded by the second derivative of u along δx. The Hessian

matrix stores precisely this information, so that requiring the interpolation error bound to be approximately

constant independent of the direction of δx, leads to the metric choice

M = C|H|, (35)

where C is a constant independent of direction, and |H| is the positive, semi-definite form of the Hessian:

|H| = V|Λ|V−1 for H = VΛV
−1. Two intervals, δx1 and δx2, having the same measure under this M will

have the same estimated interpolation error bounds.

To fully define the metric, the absolute mesh size, i.e. the constant C in Eq. 35, has to be fixed. While

in pure Hessian-based adaptation a global value for C is used, the output-based method of Venditti and

Darmofal sets C locally according to the output error indicator.36 As a result, the smallest mesh length is

controlled by the output error indicator while the anisotropy is controlled by the solution Hessian.

The definition of a metric tensor becomes difficult for high-order methods because the standard Hessian

matrix approach assumes linear interpolation of the scalar quantity. For general order p interpolation, the

interpolation error is governed by the order p+1 derivatives. One possible extension of the Hessian approach

is based on constructing a metric around the direction of maximum p+1st derivative.5, 64 In two dimensions,
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the anisotropy is set equal to the p+1 root of the ratio between this maximum derivative and the derivative

normal to this direction. This approach has the disadvantage of requiring a search over all directions to

determine the maximum p+1 derivative. In three dimensions, the approach would require two searches and

seems impractical. More recently, Pagnutti and Ollivier-Gooch developed a method to calculate a metric for

general p utilizing a Fourier series representation of p + 1 order terms.117 This approach appears to extend

to three dimensions quite readily, though to date has not been implemented.

An additional problem with higher-order discretization is the need for curved mesh elements and high-

fidelity geometry representations. Recent work by Oliver66 explores a novel implementation approach for

high-order metric-driven meshing, in which the adaptation is performed on a mapped linear-triangle mesh.

An elasticity analogy is then used to transform the linear mesh to a curved, boundary-conforming mesh

around the true geometry. The robustness of this approach relies on the success of the linear meshing,

which may not be guaranteed for highly-anisotropic boundary-layer meshes. Recently, Persson and Peraire

developed an approach to curved meshes based on a nonlinear elasticity analogy using Lagrangian solid

mechanics.118 This approach appears quite robust, though involves solution of a nonlinear set of equations

to perform the mesh motion.

The metric tensor may also be used to guide an adaptation procedure based on local operators. In the

context of pure Hessian-based adaptation, Diaz et al 102 present a two-dimensional algorithm that uses the

metric-based edge length to decide which operation to apply. Specifically, edge splitting, edge collapsing,

edge swapping, and node movement are applied to make all edges approximately the same length when

measured using the metric tensor. Habashi et al 104, 119, 120 and Xia et al 105 present similar algorithms, with

slight modifications in Hessian definition and in the local operators. Park68, 69 extends these local mesh

modification operators to output-based mesh adaptation, in both two and three dimensions.

IV.5 Direct Optimization Adaptation

The output-based adaptive approaches described in Section IV.4 rely upon a priori analysis to estimate

desired grid characteristics. Further, the interpolation error assumptions are made without regard to the

output of interest by using a single scalar, such as the Mach number, to control the anisotropy for a system

of equations. While the Mach number choice has worked well so far, it is arbitrary. Diaz et al 102 propose

choosing an intersection of metrics derived from all variables in the system, although this choice relies on

the variables used (e.g. conservative versus primitive), and using more variables can make the resulting

intersected metric too restrictive. More generally, for output-based adaptation, the assumption that the

directional interpolation error must be equidistributed for one or more scalar variables at each point in the

domain may not be valid. Of interest are only the interpolation errors that create residuals that affect the

output. This observation has motivated research into adaptation algorithms that more directly target the

error indicator.

Formaggia et al 121–123 combine Hessian-based interpolation error estimates with output-based a posteriori

error analysis to arrive at an output-based error indicator that explicitly includes the anisotropy of each

element. However, for the purpose of mesh adaptation, a metric is still defined using the resulting element

modification requests. Schneider and Jimack124 calculate the sensitivities of the output error estimate with

respect to node positions and formulate an optimization problem to reduce the output error estimate by

redistributing the nodes. The sensitivities with respect to node positions are calculated efficiently by solving

an additional adjoint problem. This approach directly targets the output error estimate and automatically
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leads to anisotropic meshes where appropriate. Schneider and Jimack then combine this node repositioning

with isotropic local mesh refinement sequentially in a hybrid optimization/adaptation algorithm.

Park73 introduces an algorithm that directly targets the output error through local mesh operators of

element swapping, node movement, element collapse, and element splitting. Using the output error indicator

to rank elements and nodes, these operations are performed in sequence and automatically result in mesh

anisotropy. The details of the adaptation are also given in an earlier work, in the context of interpolation

error.125 While the grids produced by this technique lack the regularity of those produced using metric-based

adaptation, their accuracy is comparable.

IV.6 Cut-Cell Methods

A successful adaptation algorithm relies on automation and robustness of the mesh generation or mod-

ification. Standard boundary-conforming meshers must ensure both geometry fidelity and mesh validity, a

task that becomes difficult, for example, for anisotropic meshes around curved geometries. An alternate

approach to mesh generation is the class of cut-cell methods, in which the computational domain is formed

by intersecting the geometry of interest with a volume-filling background mesh. Without the boundary-

conforming constraint, generation or adaptation of the volume-filling background mesh is straightforward.

However, the burden of robustness is transferred to the computational geometry problem of intersecting the

background mesh with the geometry.

The most common cut-cell technique is the Cartesian method, a name that refers to the rectangular or

hexahedral cells on a regular lattice used for the background mesh (see Figure 9). The Cartesian method was

Cut Cell

Geometry
Boundary

Fig. 9 Sample Cartesian mesh in two dimensions. The square lattice mesh does not conform to
the geometry. Cut cells are portions of intersected elements that lie inside the computational domain
(above the geometry boundary in this case).

pioneered in the early days of CFD,126–130 has been used in industry,131–133 and is the subject of ongoing

research.62 Recently, the cut-cell technique has also been applied to simplex background meshes, which

provide greater flexibility in directional resolution.64, 125, 134

The advantage of cut-cell methods for mesh adaptation is the automation that results from removing

the boundary-conforming constraint. In a Cartesian method, hanging-node refinement is the single practical

option for adaptation, and has been implemented efficiently.135 In simplex cut-cell methods, adaptation

can also be performed through global re-meshing64 or through local operators.125 Cut-cell methods have

been successfully applied to output-based adaptive simulations of Euler flows and to moderate Reynolds

number viscous flows. For boundary-layer viscous flows, the Cartesian method quickly becomes inefficient at

achieving the desired anisotropic resolution. While simplex cut-cell methods alleviate this problem, current
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research has only been with linear background meshes, which eventually become inefficient for high Reynolds

number flows around curved geometries.

V Implementations and Results

V.1 Finite Volume Methods

V.1.1 High-lift RANS (Venditti and Darmofal)

Venditti and Darmofal apply output-based error estimation and mesh adaptation to a range of inviscid

and viscous aerodynamic cases in two dimensions.36, 60 They use a node-based, unstructured finite volume

solver and solve the linear adjoint equations by time marching, similarly to the forward problem. They adapt

on the remaining error in Eq. 23 and use an average of the primal and adjoint residual localizations for the

adaptive indicator. For anisotropic meshing, they use the Hessian of the Mach number to define a metric,

and they remesh the domain using BAMG.

a) Lift convergence b) Output (left) and Hessian (right) adapted meshes

Fig. 10 Advanced energy-efficient-transport (EET) airfoil, M∞ = 0.26, α = 8
o, Re = 9 × 10

6. Compar-
ison of lift convergence for output-based and Hessian-based adaptation, and near-field views of the
final adapted meshes. Reproduced with permission from.36

A representative example from the work of Venditti and Darmofal is that of adaptive simulation for

turbulent flow over an advanced energy-efficient-transport (EET) airfoil. In this example, a sequence of

lift-adapted meshes is compared to meshes adapted using only the Hessian of the Mach number with no

output-error information. The resulting convergence of the lift output is shown in Figure 10a. The corrected

output in both runs was calculated using the computable correction in Eq. 23. The improved convergence of

the runs adapted on the output error compared to those adapted on the Hessian is clear. The finest adapted

meshes from both runs are shown in Figure 10b. Note the increased resolution of the output-adapted mesh

near the main-element leading edge and over the upper surface of the main element. Also note that the

Hessian-based mesh predicts the lower slat wake in a different location and does not resolve the flow in the

cavity region of the main element.
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Fig. 11 Definition of metric components for the LAV model. Reproduced with permission from.63

V.1.2 Launch Abort Vehicle (Nemec et al )

Nemec et al apply an output-based adaptive framework to a Cartesian, cut-cell, finite-volume code.62, 63

They solve the discrete adjoint equations by marching to steady-state with the same Runge-Kutta scheme

and multigrid solver used for the flow solution. The adjoint solve requires transpose linearizations of the

residual evaluation applied in reverse order, and this process is simplified by freezing the limiter used for the

spatial reconstruction. Details on the adjoint implementation are given in.136

For the fine space Vh in output error estimation, Nemec et al use an embedded grid obtained by uniformly

refining each hexahedral cell in the Cartesian grid. They then obtain an error indicator by weighting the

residual of the coarse, linearly-reconstructed solution on the embedded grid with an adjoint error that is

the difference between piecewise linear and piecewise constant reconstructions of the coarse adjoint solution.

Results in62 compare the performance of this error estimate versus one that employs a more rigorous quadratic

reconstruction of the adjoint and show reduced accuracy of the constant/linear output error estimate but

simpler implementation.

Nemec et al then define a refinement threshold error level for adaptation and at each iteration refine

cells with error above this threshold, using the decreasing threshold strategy described in Section IV.3.

The Cartesian hanging-node adaptation makes use of the robust cut-cell mesh generation capability in

the code,135 allowing for adaptive results with complex geometries. A representative example is that of

aerodynamic analysis of a Launch Abort Vehicle (LAV), illustrated in Figure 11. The output of interest for

this case consists of a linear combination of the normal (N) and axial (A) force coefficients,

J = CN + 0.2CA,

where the weight on the linear combination was determined empirically as one that yielded adequate results

for both forces and moments. Note, the forces and moments are evaluated on the “metric” portion of the

geometry, as specified in Figure 11.

The robustness and automation of the mesh generation process allowed Nemec et al to consider a range

of Mach numbers and angles of attack. A representative case, at M∞ = 1.1, α = −25o, is shown in Figure 12.

Also shown in the figure is a contour plot of the adaptive indicator, where regions shown in gray-scale fall

below the refinement threshold. Areas marked for refinement include the edges of the heat shield and the

vicinity of the abort motors. Note that only moderate refinement is requested at the shocks, which often

attract excessive refinement with heuristic feature-based indicators.

An example of a final mesh generated by the adaptive process is shown in Figure 13. As expected from
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a) Flow Solution b) Error Indicator

Fig. 12 Launch Abort Vehicle (LAV) Mach number contours, M∞ = 1.1, α = −25
o, and the localized

error indicator. Reproduced with permission from.63

the error indicator, the refinement concentrates on the edges of the heat shield and on the abort motors. The

convergence of the output for this case is shown in Figure 14 on the left. Included on the same plot is the

corrected output, calculated as described in Eq. 23. The right plot in Figure 14 shows the convergence of the

output error estimate. The jump in the error estimate on the final mesh is due to an incompletely-converged

adjoint solution caused by the appearance of small-scale unsteadiness in the primal problem. Nevertheless,

unsteady simulations on the final mesh show that the time-averaged coefficients are in good agreement with

the steady results for this case.63

V.1.3 Sonic Boom (Park)

Park presents output-based, adaptive results for an unstructured, cut-cell finite volume method.73 The

method is node-based, and the cut-cell approach allows for automated mesh generation. Park solves the

linear adjoint equation using a dual-consistent time-marching method48, 49 and adapts on the remaining

error (Eq. 23) using quadratic interpolation to obtain the fine-space solutions. He adapts on an indicator

computed from the average of the localized primal and adjoint residuals. The tetrahedral grid adaptation

is based on anisotropic local mesh modification operators combined with mesh movement, as described in

Section IV.5.

An example case from Park’s work is shown in Figure 15. The case consists of a delta wing body used

in existing wind tunnel experiments,137 at M∞ = 1.68, α = 0o. Of interest is the pressure signature 3.6

body lengths away from the geometry. Specifically the output consists of an integral of the square of the

pressure deviation from free-stream, taken over the measurement region. The triangular surface mesh in

Figure 15a is the geometry representation that is used in the cut-cell method. The initial background mesh

from which the geometry was cut contained 2,800 control volumes, while the final adapted background mesh

in Figure 15b contained 4.9 million control volumes. Note the alignment of the cells in the final mesh with

the propagated signal.

The adaptation history of the output is shown in Figure 16a, where the error bars denote the remaining

error estimate. Note that the error is severely under-predicted on the very coarse initial meshes. As the

shock is resolved, the error estimate becomes more accurate and begins to decrease in the latter stages of

adaptation. The pressure signature 3.6 body lengths away is shown in Figure 16b. The dotted lines indicate
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Fig. 13 Initial and adapted meshes for the LAV, at M∞ = 1.1, α = −25
o. The initial mesh contains

3,700 cells, while the final mesh after eight adaptation iteration contains almost two million cells.
Reproduced with permission from.63

Fig. 14 Output functional convergence for the LAV, at M∞ = 1.1, α = −25
o. Reproduced with

permission from.63
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a) Surface mesh b) Adapted background mesh

Fig. 15 Delta wing-body sonic boom prediction, M∞ = 1.68, α = 0
o. Surface geometry mesh and an

output-adapted mesh colored by pressure. Reproduced with permission from.73
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Fig. 16 Delta wing-body sonic boom prediction, M∞ = 1.68, α = 0
o. Pressure integral output history

with error estimates and pressure signature convergence. Reproduced with permission from.73
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Fig. 17 Converging-diverging nozzle geometry. The output of interest is the density immediately
before the shock. Reproduced with permission from.56

signatures at intermediate grids during adaptation. The computed signature on the final adapted meshes

agrees well with experimental data.

V.2 Discontinuous Galerkin Methods

V.2.1 Point Error in Transonic Flow (Hartmann and Houston)

Hartmann and Houston compare two types of error indicators for p = 1 discontinuous Galerkin solutions

of the compressible Euler equations.56 The first, type I, indicator is derived from the adjoint-weighted

residual method described in this paper. The second, type II, indicator is an unweighted residual indicator,

in which a priori bounds are placed on the adjoint values, eliminating the need for the adjoint solution.

Adaptive results show the superior performance of using the adjoint-weighted, type I, indicator.

An example case considered by Hartmann and Houston is the converging-diverging nozzle problem shown

in Figure 17. Hartmann and Houston use a damped Newton method to obtain p = 1 primal and adjoint

solutions on a geometry represented by quadratic (q = 2) elements. As the fine space for error estimation,

they use order p = 2 interpolation on the same mesh. They adapt the quadrilateral meshes based on the

indicators with fixed-fraction, hanging-node refinement and coarsening. Figure 18 shows adapted meshes

for the two types of error indicators. The type II error indicator, which does not use the adjoint solution,

refines mainly the region near the shock. On the other hand, the type I error indicator leads to refinement

along the characteristics upstream of the point of interest. This targeted refinement yields a lower output

error with fewer degrees of freedom compared to the type II refinement.

a) b)

Fig. 18 Converging-diverging nozzle: (a) mesh adapted using the type I error indicator, based on
the adjoint-weighted residual, with 172,880 degrees of freedom and an output error of 6.947 × 10

−6.
(b) mesh adapted using the type II error indicator, with 341,648 degrees of freedom and an output
error of 2.842 × 10

−5. Reproduced with permission from.56
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V.2.2 Hypersonic Heat Transfer (Barter and Darmofal)

Barter and Darmofal apply output-based error estimation and mesh adaptation to discontinuous Galerkin

solutions containing shocks, using a discretization stabilized with smooth artificial-viscosity.65, 138 In this

discretization, the artificial viscosity on each element is interpolated with the same polynomial basis as

the state, and the coefficients for these polynomials are agglomerated into the unknown state vector. The

necessary additional equation is obtained by discretizing a diffusion partial differential equation for the

artificial viscosity.

Barter and Darmofal use several sweeps of a block-Jacobi smoother in order to approximate ψh on a

space enriched to order p + 1. As in related work, the adaptive indicator is formed by averaging localized

primal and adjoint output error estimates.

The artificial viscosity stabilization enables Barter and Darmofal to adaptively solve transonic, supersonic,

and hypersonic flow problems. A representative example is that of hypersonic flow at M∞ = 17.605,

Re = 376, 930 over a cylinder geometry, also studied in previous work.139 The problem setup and the

initial mesh for adaptation are shown in Figure 19. The output used for adaptation is the integrated heat

flux to the cylinder, non-dimensionalized to form the average Stanton number on the surface,

Qwall =

∫

qwallds; Ch =
1
πRQwall

cpρ∞V∞(Tt,∞ − Twall)
.

Extrapolation Extrapolation

No slip

Full state

R=1

a) Domain and BCs b) Initial mesh

Fig. 19 Hypersonic flow over a 2D half-cylinder at M∞ = 17.605, Re = 376, 930: domain with boundary
conditions and initial mesh for adaptation. Note, flow is from top to bottom. Reproduced with
permission from.65

BAMG is used as the mesh generator for the metric-driven adaptation, where an anisotropy metric is

defined using the Mach number interpolation error. To create meshes with curved (q = 3) anisotropic

elements for the thin boundary layer around the cylinder, Barter and Darmofal perform adaptation in a

mapped, rectangular space, transforming the requested metric appropriately as described in.66 Figure 20

shows the final adapted mesh for p = 2 and the output convergence history compared to uniform refinement.

The final adapted mesh exhibits refinement in the bow shock, but only to the extent that it impacts the

heat flux on the cylinder. Refinement is also seen in the stagnation streamline, an area to which the heat

flux output is highly sensitive. The convergence history shows that the adapted run converges to an output
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a) Adapted mesh, p = 2
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Fig. 20 Hypersonic flow over a 2D half-cylinder at M∞ = 17.605, Re = 376, 930: adaptation on
average surface Stanton number. Final adapted mesh for p = 2 and output convergence for p = 2

adaptation (“Adapt”) compared to uniform refinement at orders p = 1, 2, 3 (“Struct”). Reproduced
with permission from.65

within 0.02 percent of the final value with approximately three million degrees of freedom.

V.2.3 Laminar Flows using Simplex Cut Cells (Fidkowski and Darmofal)

Fidkowski and Darmofal use an output-based adaptive indicator to drive cut-cell h-adaptation for a high-

order discontinuous Galerkin discretization of the compressible Navier-Stokes equations.64, 110 They use an

implicit solution procedure for the primal problem that stores the full, compact-stencil, residual linearization,

so that the discrete adjoint solution requires only one transpose application of the same linear solver. The

fine-space adjoint solution ψh is approximated by reconstructing the coarse adjoint, ψH , on the same mesh

with order enriched to p + 1. The adaptive indicator is formed by averaging localized primal and adjoint

output error estimates.

The cut-cell method, illustrated in Figure 21, employs simplex elements and metric-driven global re-

meshing of the background domain to enable automated and anisotropic mesh adaptation. Meshing is

performed using BAMG with anisotropy based on interpolation error in the Mach number. Fidkowski and

Darmofal apply the cut-cell adaptive method to several inviscid and viscous flows. A representative example

is that of viscous flow around a NACA 0012 airfoil at M∞ = 0.5, α = 2o, Re = 5, 000. Drag-adapted

meshes for cubic, p = 3, solution interpolation are shown in Figure 22 for both the cut-cell method and a

boundary-conforming method that requires curving of boundary elements and is consequently not as robust.

In these meshes, areas of refinement include the boundary layer, a large extent of the wake, and, to a lesser

extent, the flow in front of the airfoil.

Figure 23 compares adaptive convergence histories of the drag error for interpolation orders p = 1, 2, 3.

The boundary-conforming and cut-cell runs converge to the same drag value, and the histories are similar.

In both sets of runs, p = 3 requires only slightly fewer degrees of freedom than p = 2, while p = 1 remains

the most expensive.
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Spline−edge
intersection

Spline
geometry

Cut edge
Embedded
    edge

Fig. 21 Illustration of the simplex cut-cell method used in64 for h-adaptation on high-order dis-
continuous Galerkin solutions. Curved cut cells are obtained by intersecting a cubic spline geometry
representation with a triangular background mesh generated using BAMG. High order integration
rules are derived on the resulting irregularly-shaped cut cells.

a) Boundary-conforming: 1929 elements b) Cut-cell: 1840 elements

Fig. 22 NACA 0012 M∞ = 0.5, α = 2
o, Re = 5, 000, p = 3 interpolation. Final boundary-conforming

and cut-cell meshes adapted on drag.64
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Fig. 23 NACA 0012 M∞ = 0.5, α = 2
o, Re = 5, 000, Drag error versus degrees of freedom for

interpolation orders p = 1, 2, 3. Dashed line indicates prescribed tolerance of 0.1 drag counts.64

VI Challenges and Ongoing Research

VI.1 Robust Mesh Adaptation

Performing mesh adaptation robustly and efficiently for complex three-dimensional configurations is still

a challenge and an area of ongoing research. The lack of robust and efficient mesh adaptation is probably the

largest barrier limiting the application of output-based adaptation to simple geometries and/or simplified

physics (i.e. inviscid flows as opposed to viscous flows).

The main robustness issue occurs during boundary point insertion on curved geometries: maintaining ge-

ometry fidelity can lead to invalid, negative-volume, elements on the interior, especially for highly-anisotropic

meshes.68 Currently, resolution of such situations is often attempted with iterative application of local op-

erators and local re-meshing.140 However, guaranteed geometric fidelity and element validity in highly

anisotropic meshes around curved geometries has yet to be demonstrated.

Efficient adaptation refers to using available degrees of freedom as effectively as possible. A notable

example of a situation in which efficient adaptation is important is in the resolution of curved, anisotropic,

solution features, as illustrated in Figure 24. Simple isotropic mesh adaptation in these areas, Figure 24a,

wastes resolution in directions where the solution is not changing significantly. In three dimensions, the

additional degrees of freedom in the two directions where the solution is not changing quickly make resolution

of thin layers impractical. Stretching elements along these directions helps significantly, especially when the

anisotropic layer is approximately straight. When the layer is curved, however, the maximum feasible aspect

ratio of linear stretched elements is bounded by the curvature of the layer since the geometry must be

resolved, as illustrated in Figure 24b. Efficient resolution of very thin and curved features, such as those

encountered in Reynolds-Averaged Navier-Stokes boundary layers, must therefore employ curved elements,

as shown in Figure 24c.

Robust boundary-conforming mesh generation and adaptation techniques currently exist for many appli-

cations requiring only isotropic meshes, e.g.,141 and such techniques have been successfully applied to drive

output-based adaptation on practical geometries, e.g.70 An exception here is mesh generation for high-order
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δ

a) Isotropic

δ

b) Linear anisotropic

δ

c) Curved anisotropic

Fig. 24 Resolution of a thin, curved, anisotropic, two-dimensional layer using various mesh adapta-
tion strategies. A resolution length of δ is required normal to the feature, whereas the solution does
not change much tangentially to the feature. Stretching elements to increase their aspect ratio, defined
as the ratio of the largest to smallest element diameters, improves efficiency of the mesh, measured
in terms of degrees of freedom required to resolve the feature. Additionally curving the elements
further improves efficiency by alleviating the curvature-imposed geometry resolution constraint.

methods that require curved elements on geometry boundaries, although in the isotropic case, node move-

ment and certain heuristics are generally sufficient. However, robust boundary-conforming meshing and

adaptation for three-dimensional anisotropic solution features are still areas of ongoing research. Curving

elements for improved efficiency adds another layer of complexity, especially when curved anisotropic features

occur away from the geometry.

Cut-cell techniques eliminate the requirement that the mesh needs to respect the geometry boundary,

and can be robust for complex geometries. However, existing Cartesian methods only allow for isotropic

refinement, except in special cases when the features are aligned with the mesh.63, 135 Simplex cut-cell

methods allow for element stretching, and hence resolution with improved efficiency.64 However, additional

research is required to extend these methods to stretch and curve elements so as to handle curved anisotropic

features in three dimensions.

VI.2 Computable Error Bounds

The output error estimate in Eqs. 18 is not a bound for the true output error in the discrete solution

because of the use of a finite-dimensional fine space, Vh. If the computational mesh is very coarse, the

fine space obtained by uniform mesh refinement or interpolation order increase may still be too coarse to

faithfully resolve the output of interest. In such a case, the output error estimate may be severely unreliable.

An example of this effect is the pressure signature adaptation on the delta wing-body sonic boom case

considered by Park, as described in Section V.1.3. The vertical bars in Figure 16a show the pressure integral

error estimate at each adaptation iteration. The relatively small size of the error bars in the first few

iterations indicates that the output error is severely under-predicted on the first meshes. On these meshes

and the fine spaces derived from them, the sonic boom signature is not at all resolved, and the output

error estimate is meaningless. The estimate only becomes accurate after six or seven adaptation iterations,

which corresponds to a substantial increase in the number of degrees of freedom. It does not start dropping

until about ten adaptation iterations. The risk of an inaccurate error estimate on coarse meshes is that an

automated adaptive process may terminate early, without sufficiently resolving the output of interest.

There exists a body of research that addresses this risk through the computation of error bounds on
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the outputs of interest.30, 142–146 The goal of this research has been to derive strict, constant-free, lower

and upper bounds for outputs of interest. The bounds calculations are based on a reformulation of the

output calculation into a constrained minimization problem with a convex objective function, with the

model equations entering the problem as equality constraints. Initially, the bounds calculations were strict

with respect to a conservatively refined computational mesh;30, 142, 143 more recently the calculations have

been extended so that the bounds are strict with respect to the exact weak solution of the partial differential

equation.144–146 These calculations rely on the solution of a local adjoint problem that transforms an infinite-

dimensional minimization problem into a finite-dimensional feasibility problem.144

This strategy has been applied to symmetric and non-symmetric coercive problems,142, 144 certain con-

strained and non-coercive problems,30 and also to problems with nonlinear outputs and equations.143, 147, 148

For nonlinear problems, the present procedure yields bounds only for sufficiently resolved meshes, where the

required mesh resolution is not known a priori .143

The bound gap, which is the difference between the upper and lower bounds on the output, can be

separated into positive contributions from each element, yielding an indicator for mesh adaptation. A

strategy that refines elements with a large contribution to the bound gap will efficiently yield a tighter

estimate of the output. The result of applying such a strategy is a solution with fully certifiable precision

of integrated outputs. Additional research in this area is necessary to extend the bounds computations to

additional equation sets, especially for aerospace Computational Fluid Dynamics applications.

VI.3 Unsteady Applications

As output-based adaptation is applied to increasingly complex flows, problems that include unsteadiness

will naturally arise. Even for applications targeting nominally steady solutions, unsteadiness is likely to

occur as wakes are resolved with adaptation. The work of Nemec et al described in Section V.1.2 is an

example of this occurring.

Existing work in the application of adjoint sensitivity analysis to unsteady problems comes largely from

shape optimization research, and ranges from frequency domain methods for periodic unsteady flows149, 150 to

time-accurate continuous and discrete adjoint methods.151–155 Incorporation of time dependence in adjoint

analysis is theoretically a well understood problem. However, the algorithmic issues involved in solving an

unsteady adjoint are substantial as the unsteady adjoint must be marched backward in time from the final

to the initial state. For nonlinear problems, the solution time history must be stored or reconstructed to

build the required Jacobians and output linearizations at each time level.

Mani and Mavriplis apply the adjoint-weighted residual technique to drive time step adaptation in un-

steady flow simulations with deforming meshes.154 For time adaptation, the time step is allowed to vary,

but the spatial mesh distribution is not changed (except for prescribed deformation). The output error is

thus calculated by evaluating the residual of the unsteady primal solution on a finer temporal discretization

and weighting it with the adjoint solution on that discretization. The results in Mani and Mavriplis’s work

indicate a computational savings over uniform temporal refinement for smooth unsteady problems. An area

of future research is combined spatial and temporal adaptation for problems exhibiting non-smooth spatial

and temporal features, where the computational savings of an output-based adaptive method could be very

significant.
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84Houston, P. and Süli, E., “hp-adaptive discontinuous Galerkin finite element methods for first-order

hyperbolic problems,” SIAM Journal on Scientific Computing, Vol. 23, No. 4, 2001, pp. 1226–1252.
85Demkowicz, L., Rachowicz, W., and Devloo, P., “A fully automatic hp-adaptivity,” Journal of Scien-

tific Computing, Vol. 17, 2002, pp. 117–142.
86Heuveline, V. and Rannacher, R., “Duality-based adaptivity in the hp-finite element method,” Journal

of Numerical Mathematics, Vol. 11, No. 2, 2003, pp. 95–113.
87Moore, P. K., “Applications of lobatto polynomials to an adaptive finite element method: A posteriori

error estimates for hp-adaptivity and grid-to-grid interpolation,” Numerische Mathematik , Vol. 94, 2003,

pp. 367–401.
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