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the particle velocity data is generated from a numerical
simulation; therefore, the velocity data is only available atSeveral techniques for the numerical integration of particle paths

in steady and unsteady vector (velocity) fields are analyzed. Most some set of discrete times, t n, for n 5 0, 1, 2, ..., N. The
of the analysis applies to unsteady vector fields, however, some particle paths may be calculated in a postprocessing or
results apply to steady vector field integration. Multistep, concurrent (coprocessing) manner. For postprocessing, the
multistage, and some hybrid schemes are considered. It is shown

time planes of velocity data are stored at some set numberthat due to initialization errors, many unsteady particle path integra-
of iterations typically determined by the amount of disktion schemes are limited to third-order accuracy in time. Multistage

schemes require at least three times more internal data storage storage available. For concurrent processing, the vector
than multistep schemes of equal order. However, for timesteps field can be updated every iteration of the flow algorithm
within the stability bounds, multistage schemes are generally more or after some set number of iterations. In either case, the
accurate. A linearized analysis shows that the stability of these

velocity field, u, is only available at some set of discreteintegration algorithms are determined by the eigenvalues of the
instances in time. A consequence of the temporally discretelocal velocity tensor. Thus, the accuracy and stability of the methods

are interpreted with concepts typically used in critical point theory. nature of the velocity data is that the timestep cannot be set
This paper shows how integration schemes can lead to erroneous by the integration algorithm. This is unlike instantaneous
classification of critical points when the timestep is finite and fixed. streamline integration (or steady velocity fields) for which
For steady velocity fields, we demonstrate that timesteps outside

the timestep can be adaptively varied to account for rapidof the relative stability region can lead to similar integration errors.
trajectory changes thereby increasing accuracy. The goalFrom this analysis, guidelines for accurate timestep sizing are sug-

gested for both steady and unsteady flows. In particular, using of this paper is to determine the factors which impact the
simulation data for the unsteady flow around a tapered cylinder, accuracy, efficiency, and memory requirements of particle
we show that accurate particle path integration requires timesteps integration schemes. Although the majority of this paper
which are at most on the order of the physical timescale of the

focuses on unsteady data integration, some discussion offlow. Q 1996 Academic Press, Inc.

the steady data or streamline integration case is also given.
Most related work is concerned with integration of

streamlines in steady flows [1–5]. However, some work onI. INTRODUCTION
unsteady flows has also been done. Darmofal and Haimes

In this paper, we analyze several numerical particle path [6] suggest a particular algorithm for higher order accurate
integration schemes for three-dimensional, unsteady data. particle path calculations. Also, Shirayama [7] has dis-
Our discussions are limited to particles which follow the cussed the effects of local truncation errors on a particular
local vector field (i.e., massless), however, these algorithms class of two-dimensional linear velocity fields. However,
can be extended to include forces acting on particles with unlike this work, Shirayama only considered schemes of
mass. The problem which we wish to solve is second-order temporal accuracy.

II. GENERAL CONSIDERATIONS
dx
dt

5 u(x, t),
Since the timestep is generally not controllable by the

particle integration algorithm in unsteady flows, a major
portion of this analysis focuses on quantifying the effectswhere x is the particle location, u is the particle velocity,

and t is the current time. In our particular application, of finite timestep size on the integration accuracy. Also,
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the particle path integration schemes may be subject to «L 5 ixn11
e 2 Sk(xn

e , un
e )i, (1)

numerical instabilities because of large timesteps. Thus, it
«G 5 ix(t) 2 xe(t)i, (2)may be necessary to use an implicit integration scheme

to obtain reasonable (although not necessarily accurate)
where xe and ue are the exact particle position and velocity.trajectories for a wide range of flow fields and timestep
The local error is the error made at a single timestep whilecombinations.
the global error measures the cumulative effects of errorsIn addition, each time plane of velocity data from numer-
from every timestep including any startup procedures. Theical simulations can generally be assumed to require large
local order of accuracy, p, is defined asamounts of computer memory for storage. Thus, algo-

rithms which need several time planes of velocity data can
be extremely memory intensive either using large amounts «L 5 O(k p11) as k R 0.
of internal memory (limiting the size of the problem) or
frequently reading from disk (impacting the computa- The global order of accuracy, r, is defined as
tional efficiency).

The velocity data is usually only available at discrete
«G 5 O(kr) as k R 0 for fixed t 5 Tf .points in space. Thus, the velocity field must be spatially

interpolated from nodal values to the desired spatial loca-
Ignoring the startup effects, a scheme with local errortion. However, in this study, we only address the time
O(k p11) gives a global error of order p because O(k p11)accuracy of the particle path integrations and our model
local errors are made for Tf /k iterations. However, if theproblems have analytic velocity distributions in space. For
local error of the startup procedure is O(ki), then thespatially discrete velocity fields, we use a trilinear interpo-
global integration error for the scheme is O(kr), wherelation scheme. The reader may consult [6] for details. Simi-
r 5 min( p, i) [8]. As we show, the startup error plays anlar interpolation schemes are also described by Shira-
important role in the design of particle path integrationyama [7].
schemes.Finally, current computational algorithms (used in com-

putational fluid dynamics) are often second-order accurate
A. Multistep Schemesin time. If we are using these integration schemes to either

debug solvers or to gain greater insight into the flow physics A generic multistep scheme has the form
about complex geometries, a reasonable constraint on the
particle integration accuracy is that it should not introduce
any additional errors. Therefore, we wish to construct par- Os

i50
aixn112i 5 k Os

i50
biu(xn112i, t n112i),

ticle integration schemes of at least third order so that the
error is smaller than the flow simulation error in the limit
as the timestep approaches zero. where s is the total number of steps, a0 5 1, and either

an112s or bn112s is nonzero. For implicit schemes, b0 ? 0
and a (typically) nonlinear system of three equations mustIII. ALGORITHM DESCRIPTIONS
be solved at every timestep for the new particle position
xn11. We solve these nonlinear equations using a Newton–The algorithms we consider may be divided into
Raphson technique. Although explicit schemes are simplermultistep and multistage schemes. In either case, we as-
to implement than implicit schemes, they are more severelysume that the velocity field is only available at equally
limited by stability restrictions. Coefficients for severalspaced time intervals such that t n 5 nk, where k is the
multistep schemes are given in Appendix A.timestep and n is the current iteration index. Almost every

An advantage of multistep schemes is that only onealgorithm we discuss is easily extendible to nonconstant
velocity field, un11, is needed to calculate the new particletimesteps. One typical example of a nonconstant timestep
position, xn11. The previous particle position and velocityalgorithm is given in Appendix B. Furthermore, we assume
data from n to n 1 1 2 s are also needed; however, thesethat the velocity field is defined for any position x.
are only point data (i.e., not field data). For a three-dimen-We also use the concepts of local and global accuracy.
sional flow, this adds a maximum of 6s additional wordsWe write a generic integration scheme for timestep k as
of storage per particle path. The storage of this data is
generally done in the computer’s internal memory for each

xn11 5 Sk(xn, un), step of the integration; therefore, we refer to this storage
as the internal memory usage. If this data were stored on
disk, then the internal memory usage measures the amountwhere Sk may include timeshift operators. The local error,

«L , and the global error, «G , may be defined by of I/O required between disk and the CPU per timestep.



184 DARMOFAL AND HAIMES

For an s-step multistep scheme, the total internal memory a :5 ku(xn, t n),
usage is bounded by

b :5 ku(xn 1 a, t n 1 k), (3)

multistep memory # Nf 1 6sNp words xn11 :5 xn 1 As(a 1 b).

where Nf is the number of words necessary to store the The second scheme is the classic 4-stage Runge–Kutta
velocity field and Np is the number of particle trajectories. algorithm which can be written
As mentioned previously, the storage requirements for a
time plane of data are considerable; thus, Nf @ Np and the a :5 ku(xn, t n),
storage for a multistep scheme is approximately the storage

b :5 ku(xn 1 Asa, t n 1 Ask),of a single velocity field.
Higher order accurate multistep schemes with s . 1 c :5 ku(xn 1 Asb, t n 1 Ask), (4)

require the generation of startup data for the first s 2 1
d :5 ku(xn 1 c, t n 1 k),iterations. Although the local truncation error of an inte-

gration scheme after initialization may be of higher order, xn11 :5 xn 1 Ah(a 1 2b 1 2c 1 d).
the presence of startup errors places a limit on the global
accuracy of many particle path integration schemes. Typi- We denote the algorithms given by Eqs. (3) and (4) as
cal approaches for generating this initialization data are RK2 and RK4, respectively. The local truncation error for
to use other multistep schemes with smaller timesteps, or RK2 is p 5 2 and for RK4 is p 5 4.
to use a multistage scheme. Unfortunately, for this prob- A difficulty with multistage schemes is that they fre-
lem, the timesteps are not controllable since they are set quently require velocity data at intermediate times be-
by the data generation algorithm. Furthermore, the first tween t n and t n11. For example, RK4 requires velocity data
iteration can only be a 1-step scheme since previous particle at the midpoint (i.e., t n 1 Ask). Since velocity data is only
position or velocity data is generally not available. Thus, available at t n, the velocity at intermediate times must be
the local accuracy of the startup scheme is limited by the interpolated from the previous or the current velocity
highest local accuracy achievable using a 1-step scheme. fields. If the interpolant introduces an error which is O(kq)
For stable 1-step schemes, Dahlquist’s first stability barrier at the required quadrature point, then the local accuracy
states that i # 3. For example, trapezoidal integration of the multistage scheme is p 5 min(q, pe), where pe is the
(1-step Adams–Moulton) has a local truncation error local truncation error of the multistage scheme with an
which is O(k3). Thus, since the global accuracy of a scheme exact interpolant. Therefore, in order to maintain fourth-
is min( p, i) and i # 3, the global error for many algorithms order accuracy in the RK4 scheme, the interpolant must
is O(k3). As we discuss in Section B, a similar situation be fourth order (q 5 4) at the half timestep. For equally
arises using multistage schemes for startup such that the spaced time intervals, the desired fourth-order interpo-
best global truncation error achievable is again O(k3). lant is

This startup error analysis suggests that the best one
could hope for is an integration scheme which has a third-

un11/2(x) 5 aThun11(x) 1 !a%hun(x)order global error. However, in some circumstances, it
should be possible to improve the startup error by altering 2 aThun11(x) 1 aQhun22(x).
the predicted particle positions after additional timeplanes
of data become available. One straightforward technique While the velocity is being interpolated in time, the spatial
for doing this would be to simply delay the integration of position remains fixed at the desired x location. For exam-
the particle position by a single iteration. Then, the first ple, in the second step of the RK4 scheme, the desired
update of the particle position would have three data location is x 5 xn 1 Asa. The resulting four-stage Runge–
planes available and a higher order accurate, 3-step scheme Kutta scheme with the fourth order interpolant is denoted
could be used increasing the startup accuracy to i 5 4. as RK44. This scheme can be thought of as a hybrid be-
Whether or not this integration delay is acceptable will tween a multistage and a multistep scheme since the base
depend on the particular application. scheme is multistage while the interpolant is essentially a

multistep approximation.
B. Multistage Schemes To illustrate the loss of accuracy which occurs when a

lower order accurate interpolant is used in conjunctionMultistage schemes are difficult to write in a single, uni-
with the RK4 scheme, we consider a linear interpolantfied form, therefore, we concentrate on two specific exam-
between t n and t n11,ples from the Runge–Kutta family of multistage schemes

[9]. First, the 2-stage Runge–Kutta algorithm often called
the Heun method is written un11/2(x) 5 Asun11(x) 1 Asun(x).
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The resulting scheme would have a local accuracy of p 5
d :5 2ku(xn 1 c, t n 1 2k),

min(2, 4) 5 2. We denote this fourstage scheme with linear
interpolation as RK42. A simple example which shows the xn12 :5 xn 1 Ah(a 1 2b 1 2c 1 d),
loss of accuracy of the RK42 scheme is a velocity field
which only depends on time u 5 u(t). Thus, using a linear which we denote the RK4 23 scheme. The particle position
interpolant with Eq. (4) and assuming u 5 u(t), the is updated only every other timestep in this scheme. The
fourstage scheme is identical to the two-stage method given RK4 23 scheme does not require any interpolant for the
in Eq. (3). Therefore, the RK42 scheme is not fourth order intermediate values because they are located at t n11. Also,
but rather it is second order. the scheme does not require any startup information and

The internal memory usage of the higher order, hybrid has a global accuracy which is fourth order, O((2k)4), spe-
schemes can be significant because q planes of velocity cifically. In comparison to the RK4 scheme, the memory
field data are needed to construct the interpolant. The usage is also reduced to 3Nf 1 3Np words which is still
entire field of velocity data must be stored because the about three times a multistep scheme memory usage. How-
particle position at the intermediate times is unknown. ever, the RK4 23 scheme has two significant disadvan-
Thus, it must be possible to calculate the velocity at any tages. First, the stability limit is halved because of the
spatial location. The total internal memory usage for a timestep doubling. We discuss this further in Section IV.
three-dimensional hybrid multistage scheme is Second, unlike the previously discussed multistep and

multistage schemes, the RK4 23 scheme is not easily ex-
tendible to nonconstant timesteps.multistage memory # qNf 1 3Np words.

Although spatial interpolation and accuracy is not ad-
dressed in this paper, an additional complication arisesThus, the ratio of multistage to multistep internal memory
when using multistage schemes when the underlying gridusage is
changes in time. In this case, the previous grid information
(i.e., spatial locations of nodes) is also necessary to interpo-multistage memory

multistep memory
5

qNf 1 3Np

Nf 1 6sNp
P q. late the velocity field at the desired intermediate time.

Thus, the memory requirements double assuming the grid
information storage is the same order as the velocity field

Since the storage for the field information is generally storage. Also, if the particular spatial location does not
much greater than the number of particles, this ratio is exist at a previous time needed to form the time interpolant
approximately q. Therefore, on memory considerations (e.g., the location was previously in the interior of a moving
alone, higher order multistep schemes are much more effi- object), the time interpolant cannot be constructed and
cient than the higher order multistage schemes. the particle integration aborts. With a multistep algorithm,

Unlike the classic RK4 scheme, the hybrid RK44 scheme the particle integration aborts only when the particle actu-
must now have special startup procedures for the initial ally encounters a domain boundary at the current time.
interpolant. At the first step of the algorithm, only two Although the RK4 schemes we have considered are ex-
velocity fields are generally available, u0 and u1. If previous plicit, they still require four velocity evaluations per time-
velocity fields are available (say, for example, the particle step. In our visualization applications for unstructured
trace initiation is delayed for q iterations of the flow solver), grids [5], the process of finding a spatial location within
then it is possible to construct a higher order interpolant the grid and then constructing the velocity interpolant is
even at the first timestep. However, in the situation where typically the most significant portion of the computational
the particle is released without any delay, the interpolant effort per timestep. By comparison, the implicit multistep
in the first step can be only a linear interpolant which has schemes, such as BD4, require a velocity evaluation for
a q 5 2 error. Therefore, we are faced with the same every subiteration of the Newton–Raphson solution pro-
accuracy barrier as in the multistep schemes. Namely, the cess. Our experience with the BD4 scheme has shown that
startup scheme has a local error which is at best O(k3), so typically 2–4 subiterations are required; thus, the number
the global error is at best O(k3). of velocity evaluations for BD4 is usually less than or equal

A final possible higher order multistage scheme is the to the number of velocity evaluations for the RK4 schemes.
RK4 scheme applied to timesteps of value 2k. This scheme As a result, no significant difference in computational ef-
is written fort exists between the RK4 and BD4 schemes.

a :5 2ku(xn, t n), IV. ANALYSIS OF LINEARIZED PROBLEM

b :5 2ku(xn 1 Asa, t n 1 k),
In this section, we consider a linearized velocity field,

such thatc :5 2ku(xn 1 Asb, t n 1 k),
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x̃n11
i 5 g(li k)x̃n

i ,

where g(li k) is the scheme dependent amplification or
growth factor. Higher order multistep schemes generate
parasitic roots, where more than one growth factor exists
for a given li k. These parasitic solutions are a result of
the numerical approximation and do not track the equation
being solved. When multiple growth factors exist, we limit
ourselves to the growth factor with the largest magnitude,
since as time goes to infinity, this root dominates all others.
For the exact answer, the amplification factor, ge(li k), is

ge(li k) 5 elik.

FIG. 1. Flow classifications in eigenvalue plane, l1,2,3, 5 eig(u/x).
In the following, we investigate the relative stability and

accuracy of: second-order, single-stage Adams–Moulton
or trapezoidal integration (TRAP); fourth-order back-

u(x, t) 5 u(0, 0) 1
u
t

t 1
u
x

x. wards differentiation (BD4); fourth-order Adams–
Bashforth (AB4); and RK4.

If we travel with velocity, u(0, 0) 1 (u/t)t, the nature of
A. Relative Stabilitythe flow around the current location is determined by the

velocity tensor, u/x. In particular, the eigenvalues of the The absolute stability region of a scheme is the area in
velocity tensor, l1,2,3 , are the fundamental quantities which the li k plane for which ug(li k)u , 1. For the exact answer,
determine the qualitative features of the flow pattern. The the left-half plane is stable while the right-half plane is
study of the eigenvalues of the velocity tensor is a well- unstable. Although many numerical algorithms are con-
researched topic in the classification of critical point flow cerned only with absolute stability, relative stability is of
[10–12]. The various possible flow patterns and the corre- primary interest for particle path integrators. For example,
sponding eigenvalue-based flow classifications are summa- if the physical mode of a system were (un)stable, the
rized in Fig. 1. resulting mode of the numerical scheme should also be

The velocity tensor eigenvalues also play a significant (un)stable.
role in determining the stability and accuracy of the numer- In Fig. 2, the magnitude of the growth factors for each
ical integration schemes. For the linear problem, a second- of these schemes is plotted. The stability boundary (from
order scheme can integrate exactly the particular solution which the relative stability boundary can be inferred) is
due to the u(0, 0) 1 (u/t)t terms. Since all of the schemes denoted by the circles. TRAP is the only scheme consid-
we analyze are at least second order, we do not consider ered for which the numerical stability boundary and the
the nonhomogeneous term. The integration of the homo- exact stability boundary are the same. For example, the
geneous portion due to u/x produces errors and it is stability boundary of RK4 does not include all of the left-
these errors which we quantify further. Neglecting the non- half plane. Thus, for the RK4 scheme, some modes which
homogeneous terms, the linearized problem becomes should be damped actually grow in time. As an example,

we use the RK4 scheme to integrate the two-dimensional
model flow from Murman and Powell [1]:dx

dt
5

u
x

x. (5)

u 5 ax 2 by, (7)
This coupled system of three equations can be decoupled

v 5 ay 1 bx. (8)into the respective eigenmodes,

The exact particle paths are then given bydx̃i

dt
5 li x̃i , (6)

xe(t) 5 exp(at)[x0 cos bt 2 y0 sin bt],

ye(t) 5 exp(at)[x0 sin bt 1 y0 cos bt].where x̃i is the amplitude of an eigenmode. The numerical
scheme is applied to Eq. (5); however, it is straightforward
to show that each eigenmode behaves as if the scheme were For this example, we set a 5 21, b 5 3 which gives an

inward spiraling flow. For these coefficients, the stabilityapplied to Eq. (6) directly. We write the update scheme as
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FIG. 2. Magnitude of growth factor in li k plane. u gu , 1, solid line; ugu 5 1, circles; ugu . 1, dashed line.

boundary of the RK4 scheme is exceeded when k $ 0.89. deceleration. Although this cannot be seen from the plot,
the region of instability for BD4 is actually bounded and,In Fig. 3, the exact particle path is compared with the RK4

paths for k 5 0.88 and k 5 0.90 for a starting location of for large values of uli ku in the right-half plane, the unstable
physical modes are actually damped by the numerical algo-(x0 , y0) 5 (1, 0). Using the unstable timestep, k 5 0.90,

clearly gives an outward spiraling path; however, the stable rithm. AB4 has significant stability constraints as is ex-
pected because of its explicit nature. By contrast, the ex-timestep, k 5 0.88 gives an inward spiraling path as one

would expect from the exact path. This type of behavior plicit multistage scheme, RK4, has a much larger relative
stability region.also can affect the integration of steady velocity fields (see

Section A).
B. Accuracy

The BD4 scheme is stable along the entire negative real
axis (only a portion of which is visible in Fig. 2); this Although a scheme may be operating within its relative

stability region, the accuracy of the algorithm is still un-can be extremely advantageous for flows exhibiting rapid

FIG. 3. Comparison of exact particle path with numerical paths for stable and unstable timesteps, RK4 algorithm. Initial particle location (x0 ,
y0 ) 5 (1, 0).
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FIG. 4. Contour plots of 2log E in li k plane.

known. The truncation error can give some accuracy infor- V. NUMERICAL STUDY OF ALGORITHM ACCURACY
mation but is only valid in the limit k R 0. Instead, we

In this section, we consider the performance of severalassess accuracy using the growth factor error, E, which we
particle path integration schemes for some simple modeldefine as
problems. The schemes, a short description, and their
global accuracy are listed in Table I. The startup schemes
for the AB4 algorithm are the lower order AB algorithms

E(li k) 5 Ug(li k) 2 ge(li k)
ge(li k) U. while the initialization method for BD4 first uses TRAP,

followed by BD2 and BD3. We use TRAP instead of BD1
in the first step of the BD4 algorithm because of the better

The growth factor error includes the effects of both ampli- accuracy at no extra cost. We compare the numerical and
fication and phase error. Figure 4 contains plots of log E exact particle positions by defining the average global error
in the li k complex plane for all four schemes. For uli ku , to be
0.5, the second order nature of the TRAP scheme is evident
in comparison to the other schemes all of which are fourth

« 5 (k/Tf ) OTf /k

i51
ixi 2 xe(t i)i,order. However, for large values of uli ku, TRAP is actually

competitive with BD4 and AB4.
The stability limitations of the AB4 scheme can be recalling that Tf is the final time. « is simply an average of

clearly seen by the significant decrease in accuracy in the the global error, «G (see Eq. (2)), at every timestep.
left-half plane. Another interesting aspect of these plots The first model problem is a steady swirling flow with
is the poor accuracy of the BD4 scheme for Real(li k) , an axial velocity gradient. Specifically, the velocity field
20.45. Although BD4 is stable along the entire negative and eigenvalues are:
real axis, its accuracy is quite poor. However, since these
modes decay quite rapidly, this should not significantly u 5 ar y
degrade the overall accuracy of the method. Of all schemes, v 5 2ar x ⇒ l1,2 5 6iarRK4 appears to offer the best accuracy over a range of
finite li k. w 5 azz l3 5 az .
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TABLE I

Global Error (r) and Summaries of Schemes Used in Numerical Studies

r Scheme Description

2 TRAP Trapezoidal integration
3 BD4 Fourth-order backwards differentiation, O(k3) startup
2 AB4 Fourth-order Adams–Bashforth, O(k2) startup
2 RK2 Second-order Runge–Kutta
2 RK42 Fourth-order Runge–Kutta, O(k2) interpolant
3 RK44 Fourth-order Runge–Kutta, O(k4) interpolant, O(k3) startup
4 RK4 23 Fourth-order Runge–Kutta, double timestep

For these results, ar 5 1.0 and az 5 20.1; thus, the swirling This model mimics a flow with large unsteadiness but rela-
tively small spatial gradients. The exact answer for thiscomponent of the flow dominates the stability and accuracy

of the results. Starting with an initial condition of x0 5 flow is simply, z 5 z0 1 t a. Thus, schemes with a11 z/t a11

as the lowest order derivative in the global error can exactlyy0 5 z0 5 1, we ran each simulation until Tf 5 100 for a
variety of timestep sizes; the results appear in Fig. 5 and integrate this velocity field. Table III shows the results for

Tf 5 1, k 5 0.02, and a 5 2 and 3. Schemes which use thethe asymptotic error slopes are tabulated in Table II. The
slopes of TRAP, AB4, and RK2 are clearly second order exact particle positions for startup are included in the table

for comparison. For the a 5 2 case, only AB4 is inaccurate;while RK4, RK44, and RK4 23 are fourth order. The BD4
algorithm is nearly third-order accurate with a slope of this is a result of the startup error from the initial AB1

iteration. When the exact startup positions are used to2.93. Thus, the impact of the startup error for AB4 and
BD4 can be clearly seen. Also, for larger timesteps, the generate the necessary initial data, (see the AB4 es results

in Table III), this startup error is eliminated and the fourth-instability of the AB4 scheme is evident in the large error.
We next consider a simple time-dependent flow with no order Adams–Bashforth scheme performs well for a 5 2.

For a 5 3, startup errors are present in the AB4, BD4,spatial velocity variations.
and RK44 results. The large error in the RK42 results is
from the use of a second-order interpolant. As discussedu 5 0
in Section III.B, this lowers the RK42 scheme to onlyv 5 0 ⇒ l1,2,3 5 0
second-order accuracy. In fact, RK42 is equivalent to the
RK2 and TRAP schemes when no spatial variations exist.w 5 at a21

FIG. 5. Results from Model #1: ar 5 1, az 5 20.1, Tf 5 100, x0 5 y0 5 z0 5 1. Note. Results for RK42 and RK44 scheme are identical for
steady vector fields.
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TABLE IIIThe loss of accuracy and equivalence of RK2, RK42, and
TRAP are clearly observed from the data of Table III. Results from Model #2
Note, these three schemes do not require any special

log « astartup procedures. From this model’s results, we conclude
that lower order startup and interpolation can significantly

Scheme 2 3
degrade the accuracy of the particle path integration espe-
cially for flows with large unsteadiness. TRAP 215.80846 23.99140

BD4 214.91478 24.67769The final model flow has a large, unsteady axial gradient
BD4 es 214.66056 214.85560of the axial velocity and steady velocity fields in the other
AB4 23.39794 24.55909directions. Specifically,
AB4 es 216.20640 215.77275
RK2 215.80846 23.99140

u 5 2x l1 5 21 RK42 215.80846 23.99140
RK44 215.80846 25.39794

v 5 20.1y ⇒ l2 5 20.1 RK44 es 216.20640 215.77275
RK4 23 2Infinity 215.57438w 5 a0zeatt l3 5 a0eatt.

Note. Tf 5 1, k 5 0.02, x0 5 y0 5 z0 5 1; es 5 exact startup.
As a0 R y, the flow has very large axial gradients initially
which die away exponentially with at t for at , 0. The

RK44 results, the predicted order of accuracy is attainedTRAP and BD4 algorithms are well-suited for this type
in this model; the RK44 scheme still attains fourth-orderof flow field because of their excellent stability properties
accuracy, contrary to the third-order startup error presentalong the negative real axis. Although neither BD4 or
in the scheme.TRAP accurately represent the large axial velocity gradi-

ent, they are stable and this allows the timestep to be set
VI. TIMESTEP LIMITSfor accurately capturing the moderate flow variations in

other directions. The results for a0 5 220 and at 5 20.1 From the previous analysis, we have found that the ei-
appear in Fig. 6 and Table II. Since we are more concerned genvalues of the velocity tensor have a major impact on
with the accuracy of the x and y directions, the abscissa is the accuracy of particle path integrations. In this section,
labeled by ax k. The TRAP and BD4 schemes perform this analysis is used to properly select the timestep for both
well over a wide range of timesteps while the other schemes steady and unsteady velocity fields. In either the steady or
suffer at moderate timesteps because of instability from unsteady case, the timestep could be constrained to satisfy
the large axial gradients. Thus, TRAP and BD4 may be E(li k) , « where « is some predetermined allowable error.
more robust than the explicit multistage schemes and may In the worst case, the cumulative error would be N E,
be desirable for some flows, especially flows with large where N is the number of integration steps. This assumes
flow variations in one direction while relatively moderate the local growth factor error does not cancel previous local
variations in the other directions. Note, the asymptotic errors. In the following, we use « 5 1023. In our applications
error slopes from Table II show that the TRAP, AB4, and of the previous integration schemes, we have found « 5
RK2 schemes are second order, BD4 is third order, and 1023 generally gives accurate results. Figure 4 can be used
RK44 and RK4 23 are fourth order. Thus, except for the to guide the selection of an appropriate timestep given an

estimate for the velocity tensor eigenvalues and a particular
integration scheme. Then, the timestep restriction can be

TABLE II satisfied by
Asymptotic Slopes of Error from Models #1 and #3 Results in

Figs. 5 and 6 kmax 5
uli ku«
ulmax u

, (9)

log « vs. log ak slope
where lmax is the largest magnitude eigenvalue and uli ku«

Scheme Model #1 Model #3 is the smallest magnitude of li k which guarantees that
E(li k) , « when uli ku , uli ku« . The procedure to enforceTRAP 2.00 2.00
these timestep limits for steady and unsteady flows is de-BD4 2.93 2.94

AB4 2.00 1.95 scribed below.
RK2 2.00 2.03
RK44 4.00 4.04 A. Steady Data
RK4 23 4.00 4.07

For steady flows, timesteps may be adaptively sized to
Note. Slopes calculated from final two data points of each line. account for local flow variations. The goal is to use a time-
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FIG. 6. Results from Model #3: a0 5 220, at 5 20.1, Tf 5 20, x0 5 y0 5 z0 5 1.

step which is as large as possible while maintaining accept- the magnitudes of the elements of u. This estimate can
be derived using the matrix norm to bound the largestable accuracy. The timestep from Eq. (9) can lead to time-

step limits which are distinctly different than those eigenvalue and then specifically employing the 1-norm and
infinity-norm to arrive at the particular expression. In prac-previously suggested by other authors [1, 3, 7]. These au-

thors suggested setting the timestep such that the particle tice, we employ a timestep limit which is a blend of both
limits,does not travel more than a given fraction of the length

of a cell in an integration step,

kmax 5 min Shl
uuu

, uli ku«
ul̃max u

D . (11)
kmax 5

hl
uuu

, (10)

The cell fraction timestep limit is used to avoid errors whenwhere l is a measure of the local cell size, h is the allowable
the flow may have significant variations in the velocityfraction of the cell size which a particle may travel in a
tensor from cell-to-cell.single step, and uuu is the magnitude of the local velocity.

Problems associated with timestep limits based on Eq.However, this timestep limit could result in significant dif-
(10) have been observed by Murman and Powell [1] forficulties in a region where the flow speed is near zero and
trajectory integrations of vortical flows using the modelthe cell size is finite. In this case, the timestep can grow
velocity field in Eqs. (7) and (8), as well as computedunbounded, resulting in significant errors unless the eigen-
conical flow vortex solutions. In their case, trajectory limitvalues of the velocity tensor are small.
cycles occurred as the particle approached the center ofFrom a practical point of view, the timestep limit of Eq.
the vortex; this phenomenon is a result of the timestep(9) requires the computation of the eigenvalues of the local
increasing as the particle neared the core axis and uuu Rvelocity tensor. Since this is expensive even for a 3 3 3
0. The limit cycle occurs at a radial location where thematrix, a more efficient technique would be to use an
timestep is no longer in the relative stability region ofestimate for the magnitude of the largest possible eigen-
the integrator. We illustrate this using a forward Eulervalue. One possible estimate for the largest eigenvalue is
integration scheme (i.e., AB1) which is also the integratorl̃max , defined as
used by Murman and Powell. For a forward Euler scheme,
the constraint that E , 0.001 requires that uli ku« 5 0.04ul̃max u 5 min[max(uux u, uuy u, uuz u),
approximately. To duplicate the previous results of Mur-

max(u=uu, u=vu, u=w u)] $ ulmax u, man and Powell, a grid of square cells with length l 5 0.08
is used, the velocity constants are a 5 2As and b 5 3, and
the cell fraction is h 5 1.0. Then, a particle path is inte-where ux is the x derivative of the velocity vector, = is the

gradient operator, and the vector norm uuu is the sum of grated starting from (x, y) 5 (1, 0) using a forward Euler
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FIG. 7. Particle trajectories for steady flows using forward Euler integrator and different timestep limits.

integrator and the timesteps based on Eqs. (10) and (11).
kmax 5 min Shl

uuu
, uli ku«
ul̃max u

, hutuD , (12)The results are shown in Fig. 7. The limit cycle previously
noted by Murman and Powell is evident when the timestep
is set by Eq. (10); however, the problem is eliminated by where tu is the approximate timescale of the flow unsteadi-
the use of Eq. (11). Murman and Powell eliminated this ness and hu is some fraction used to ensure the flow un-
limit cycle by increasing the accuracy of their integrator steadiness is accurately integrated. To satisfy the timestep
and decreasing h. However, this strategy does not guaran- limit of Eq. (12), the user must have some knowledge of
tee the problem is eliminated for all flowfields and grids. the largest eigenvalue and the timescales expected in the
A better strategy which corrects the central difficulty is to flow. To guarantee that all possible particle paths are accu-
use a timestep based on the local eigenvalues of the velocity rately calculated, this constraint must be satisfied at all
tensor. As can be seen from Fig. 7, acceptable answers can spatial locations, or, at a minimum, the constraint should
be obtained when the correct timestep limit is used, even be satisfied at all spatial locations for which the particle
with a low accuracy integrator. paths are desired.

To better understand the practical implications of Eq.
B. Unsteady Data

(12), we calculated the eigenvalue spectrum for the tapered
cylinder calculation of Jespersen and Levit [13] at NASAFor unsteady flows, the timestep cannot be varied by

the particle integration algorithm and is set by the timestep Ames. This computation features unsteady vortex shed-
ding off of a tapered cylinder at a Reynolds number ofbetween available planes of velocity data. Before visualiza-

tion, the timestep is generally sized by the user. If the 150 based on midspan cylinder radius, R. The convective
timescale of the flow is defined as t 5 R/Uy , and at thisuser is coprocessing, the timestep can be set equal to the

timestep of the flow algorithm. If the user is postprocessing, Reynolds number, we expect the timescale of the unsteadi-
ness to be the same order as t. Thus, based solely on thethe timestep must then be set not only by the desired

accuracy level but also by the amount of available external expected unsteadiness, the maximum timestep should be
on the order of hut. The eigenvalues are from the velocitymemory. In general, the particle timestep, k, is an integer

multiple, m, of the flow solver timestep, Dt, data at t 5 1200t. To calculate the eigenvalues, the hexahe-
dral computational cells were divided into six tetrahedra.
Tetrahedral cells result in a unique linear interpolationk 5 mDt.
and therefore constant gradients and eigenvalues within
each tetrahedron. The outer envelope for the velocity ten-Minimizing the total external memory requires the user to

maximize m while preserving accuracy. sor eigenvalue spectrum is shown in Fig. 8. The imaginary
portion of the envelope extends to approximately 60.8The timestep limit of Eq. (11) is based solely on spatial

variations of the flow; however, for unsteady flows, the and the real portion extends from 20.53 to 0.45. Note, the
eigenvalue contour spikes along the real axis correspondtemporal variations should also be considered when de-

termining the appropriate timestep size. This suggests the to the one purely real eigenvalue which always exists. In
order for the eigenvalue spectrum to be contained withinfollowing addition to the timestep limit,



3D PARTICLE PATH INTEGRATION ALGORITHMS 193

FIG. 8. Outer envelope of velocity tensor eigenvalues for Jespersen and Levit [13] tapered cylinder calculation.

the E 5 0.001 contour in Fig. 4, RK4 and BD4 require constraint must be used. However, regardless of whether
the weak or strong timestep constraint is used, we concludekmax 5 0.7t and 0.3t, respectively. A weaker constraint

would require that the eigenvalue timestep limit be satis- that accurate particle path integrations for this data set
require timesteps at most on the order of the physicalfied only over a significant portion of the flow. The applica-

bility of this weaker accuracy constraint can be judged timescale of the flow.
Finally, the calculation of accurate particle paths in ausing Fig. 9 which is a plot of the distribution of the eigen-

value magnitude. Over 90% of the eigenvalues for this postprocessing mode could produce significant demands
on the external memory requirements if the simulationcalculation have magnitude below 0.2. If we enforce the

weak constraint by containing all eigenvalues with magni- length lasts several physical timescales. In the Jespersen
and Levit data set, the computational timestep was Dt 5tude below 0.2 in the E 5 0.001 contour, the approximate

timestep requirements for RK4 and BD4 are kmax 5 2.8t 0.1t. Thus, strict enforcement of the accuracy constraint
requires m 5 7 and 3 for RK4 and BD4 while weak enforce-and 1.2t. Although only a small fraction of the eigenvalues

are near magnitude 1.0, if particle paths will be integrated ment requires m 5 28 and 12 for the same schemes. Thus,
the RK4 scheme requires less external memory than thethrough these regions, then the previous strong timestep
BD4. For the strict constraint, the number of data planes
is on the order of the number of integration steps of the
flow solver. The weak constraint allows an order of magni-
tude decrease in the external memory requirements. If the
unsteadiness timescale, tu , is large, such that kmax is being
restricted by the eigenvalue accuracy constraint, some of
the external memory demands could be lessened by con-
structing an interpolant between data planes. Then, using
the interpolant to reconstruct the velocity data at the
smaller timestep required by the eigenvalue constraint, it
should be possible to maintain accuracy as well as to de-
crease the external memory demands. A different ap-
proach to alleviate the external memory demands of post-
processing unsteady data sets would be to calculate and/
or visualize the particle paths in a coprocessing mode [14].

VII. CONCLUSIONS

We have analyzed a variety of particle path integrationFIG. 9. Fraction of eigenvalues, f(lt), with magnitude less than ultu
for Jespersen and Levit [13] tapered cylinder calculation. schemes suitable for use with unsteady velocity fields. In
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TABLE Vparticular, we addressed implementation, stability, and ac-
curacy issues for a variety of multistep and multistage Adams–Bashforth Coefficients
schemes. Many multistage and multistep schemes have

Number of step, s Order, p b1 b2 b3 b4been shown to be limited to third-order accuracy due to
startup errors. Furthermore, from a linear analysis, the

1 1 1importance of the eigenvalues of the velocity tensor matrix
2 2 Ds 2As

in determining the stability and accuracy of a generic inte- 3 3 SaDs 2AaHs aTs

gration scheme has been shown. For large timesteps out- 4 4 GsGf 2GsLf DsJf 2sOf

side of the region of relative stability, integration schemes
can result in an incorrect classification of critical points.
Similar errors occur for streamline integration in steady

Bashforth, Adams–Moulton, and backwards differentia-(or instantaneous) velocity fields if the timestep is cho-
tion. The general forms for the coefficients are shown insen improperly.
Table IV and the specific coefficients for the schemes areFrom the schemes tested, the higher order Runge–Kutta
presented in Tables V–VII.scheme, RK44 and RK4 23, and the higher order back-

wards differentiation scheme, BD4, perform well. The
APPENDIX B: NONCONSTANT TIMESTEPRK44 scheme is generally the most accurate scheme tested

ALGORITHMSfor finite timesteps but it incurs a much larger internal
memory penalty than the BD4 scheme. While the RK44 Most of the algorithms which we have discussed for
scheme requires the internal storage of four velocity fields, constant timesteps can easily be extended to nonconstant
the BD4 scheme only requires the current velocity field. timesteps. As an example, we derive the nonconstant
Also, the backwards differentiation scheme is generally timestep version of the BD4 scheme. For the constant
more robust than the multistage schemes for flows with timestep algorithm, the position coefficients, ai , can be
large spatial gradients in one direction. Depending on the found in two equivalent manners: (1) using a truncation
demands of the particular application, the BD4 and RK44 error analysis and eliminating consecutively higher error
or RK4 23 schemes offer the best peformance of the algo- terms, (2) differentiating a polynomial interpolant. Al-
rithms tested. though both techniques yield the same results, the polyno-

Finally, using the velocity data from an unsteady flow mial interpolant method allows easier generalization to
simulation, we found the maximum timestep between data nonconstant timesteps. Specifically, consider a polynomial
frames to be at most on the order of the physical timescale interpolant, xp(t), of the form
of the flow for accurate particle path integrations. This
result seems likely to hold true for most flows and suggests
that simultaneous calculation of flow field and particle xp(t) 5 O4

i50
ci(t) xn112i,

paths may be necessary to eliminate the disk storage of
large amounts of velocity data.

where

APPENDIX A: MULTISTEP SCHEME COEFFICIENTS

ci(t) 5 p
j?i

t 2 t n112j

t n112i 2 t n112j
.

In this study, three families of schemes are used for the
multistep particle path integration algorithms: Adams–

Differentiating the interpolant gives

TABLE IV d
dt

xp(t) 5 O4
i50

xn112i d
dt

ci(t).
General Form of Multistep Algorithms

Scheme 0 1 2 3 4

TABLE VIAdams–Bashforth ai x x
bi x x x x Adams–Moulton Coefficients

Adams–Moulton ai x x
Number of step, s Order, p b0 b1 b2 b3bi x x x x x

Backwards diff. ai x x x x x 1 2 As As
bi x 2 3 aTs aIs 2aQs

3 4 sOf AsLf 2sTf sQf
Note. x is a nonzero coefficient.
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