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A semi-coarsened multigrid algorithm with a point block Jacobi, multi-stage
smoother for second-order upwind discretizations of the two-dimensional Euler
equations which produces convergence rates independent of grid size for moder-
ate subsonic Mach numbers is presented. By modification of this base algorithm to
include local preconditioning for low Mach number flows, the convergence becomes
largely independent of grid size and Mach number over a range of flow conditions
from nearly incompressible to transonic flows, including internal and external flows.
A local limiting technique is introduced to increase the robustness of precondition-
ing in the presence of stagnation points. Computational timings are made showing
that the semi-coarsening algorithm requiresO(N) time to lower the fine grid resid-
ual six orders of magnitude, whereN is the number of cells. By comparison, the
same algorithm applied to a full-coarsening approach requiresO(N3/2) time, and,
in nearly all cases, the semi-coarsening algorithm is faster than full coarsening with
the computational savings being greatest on the finest grids.c© 1999 Academic Press
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1. INTRODUCTION

An important aspect of any computational method is robustness. A robust computational
method not only solves a given class of problems but does so in a reliable, predictable
manner from case to case. In practice, robustness issues can arise in many different ways.
For example, an algorithm which provides accurate answers in a reasonable amount of
time for one case may suddenly require a significant amount of time to arrive at the same
level of accuracy for a different case. Another common (and perhaps worse) difficulty is a
typically reliable algorithm which simply diverges and fails to return any useful information
for a particular problem. In either situation, these algorithms exhibit non-robust behavior.
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FIG. 1. Multigrid coarsening strategies. (a) Full coarsening and (b) semi-coarsening.

In this paper, we present a robust method for solving second-order upwind discretizations
of the steady, two-dimensional Euler equations based on semi-coarsening multigrid, point
block Jacobi multi-stage relaxation, and low Mach number local preconditioning. As we
will show, the proposed algorithm is very robust, with its convergence rate being nearly
independent of grid size and Mach number for both internal and external flows.

A robust multigrid algorithm requires the careful matching of the coarsening strategy
with the iterative scheme or smoother. In particular, the smoother must effectively damp
any modes which cannot be represented on coarser grids (without aliasing) [1, 2]. The most
common coarsening strategy for multigrid on structured grids is full coarsening, in which
every other point is removed in both directions as illustrated in Fig. 1. For typical upwind
discretizations, the use of full coarsening generally requires an implicit relaxation in order
to produce grid-independent convergence rates. This approach has been followed by several
researchers, including Euler [3–7] and Navier–Stokes [8, 9] applications.

The necessity for implicit relaxation with full-coarsening multigrid arises from the exis-
tence of grid-aligned modes, i.e., error modes with long streamwise wavelengths but short
cross-stream wavelengths. For upwind discretizations which do not introduce numerical
dissipation normal to characteristics, these grid-aligned modes cannot be easily damped
by simple point relaxations such as the multi-stage point block Jacobi relaxation algorithm
employed in this work. The difficulty with damping grid-aligned error modes is a direct con-
sequence of the upwind discretization; thus, schemes with more isotropic numerical dissipa-
tion [10] may not suffer these problems. However, schemes with more isotropic numerical
dissipation are also likely to be less accurate [11–13]. In contrast to convection-dominated
problems, point relaxation in combination with full-coarsening multigrid generally works
well for elliptic problems with isotropic physical dissipation [1].

In this paper, we explore the use of semi-coarsening which is a more complex coars-
ening strategy devised by Mulder [14, 15] specifically for the Euler equations and other
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convection-dominated flows. In semi-coarsening, a fine grid is associated with two coarser
grids, each independently coarsened in a single grid direction. A typical family of semi-
coarsened grids is shown in Fig. 1. While the semi-coarsening algorithm is more complex
than full coarsening, the smoothing requirements are significantly reduced. In particular,
a simple, point smoother is now sufficient for achieving smoothing of all fine grid error
modes [14, 15, 2].

We select a point block Jacobi, multi-stage relaxation method as our smoother for a
second-order upwind discretization. An advantage of point block Jacobi is its simplicity
as it requires the inversion and storage of only the local block matrix arising from a lin-
earization of the discrete equations. Also, point block Jacobi relaxation has been shown to
be an effective smoother of high-high frequency errors for the 2-D discrete Euler [14, 15]
and Navier–Stokes equations [2]. A multi-stage implementation of point block Jacobi is
required for stability as a single-stage, damped Jacobi method is not stable for second-
order discretizations. For the proposed semi-coarsening algorithm, convergence rates for
moderate Mach numbers are nearly grid independent, implying that the total work for this
algorithm isO(N), whereN is the number of cells. We note that similarO(N) convergence
for semi-coarsening and point block Jacobi has been previously observed by Mulder [15].

While semi-coarsening with point block Jacobi smoothing gives robust convergence rates
for moderate Mach numbers, the performance severely degrades at lower Mach numbers.
To alleviate this problem, we introduce the low Mach number preconditioning of Turkel
[16] by modifying the upwind flux function [17] while retaining the point block Jacobi
relaxation based on the modified fluxes. We refer to this approach as the preconditioned
Jacobi. Mavriplis [18] and Turkel [19] have previously studied this method for incorporating
low Mach number preconditioning.

Unfortunately, the full benefits of local preconditioning, especially at low Mach num-
bers, have been difficult to achieve because local preconditioners designed for good low
Mach number performance inevitably have poor robustness at stagnation points [20, 21].
Darmofal and Schmid [21] have shown that this lack of robustness is due to unlimited
transient amplification of perturbations stemming from a highly non-orthogonal (in fact,
degenerate) eigenvector structure of the preconditioned equations asM→ 0. The most
common technique for avoiding this robustness problem is based on limiting the effect of
preconditioning below a multiple of the freestream Mach number. Since this multiple is
typically greater than one, the limit often acts globally and thus destroys the locality of the
preconditioning. Furthermore, for problems in which a reference Mach number is inappro-
priate or non-existent, this type of limiting will be difficult to realize. Examples of these
types of flows would be a hypersonic flow about a blunt body (which would contain regions
of subsonic flow) or flow of a high-speed jet into a stationary fluid.

In this paper, we develop of a new method for improving the robustness of local precon-
ditioners. This new method relies on strictly local information and, as a result, acts locally to
avoid transient amplification of perturbations. In addition, we show through numerical tests
that the preconditioned block Jacobi algorithm is quite robust even without resorting to local
preconditioning limiting. Thus, the overall robustness of the algorithm is a result of not only
the preconditioner limiting technique but also the point block Jacobi smoothing. Utilizing
the preconditioned Jacobi relaxation with semi-coarsening, convergence rates have only
a small dependence on Mach number. Furthermore,O(N) convergence is demonstrated
over a wide range of Mach numbers, includingM∞→ 0 for both internal and external
flows.
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2. NUMERICAL METHOD

2.1. Discretization

Employing a cell-centered, finite volume algorithm on a structured grid composed of
quadrilateral cells, the two-dimensional Euler equations in semi-discrete form can be written
as

A
dU

dt
+ R= 0, (1)

whereA is the cell area andU is the cell-average conservative state vector defined asU =
(ρ, ρu, ρv, ρE). The cell residual,R, is defined as

R=
4∑

k=1

Ĥnk1sk,

where1sk is the length andĤnk is the numerical flux approximation for facek. Using an
approximate Riemann solver (and dropping the subscript,k), Ĥn is given by

Ĥn = 1
2[H(UL)+ H(UR)] − 1

2|Â|(UR−UL),

whereÂ= ∂Hn/∂U is the flux Jacobian evaluated using a Roe average [22]. For our second-
order scheme, we approximate the left and right states,UL andUR, using van Leer’sκ scheme
[23]. This reconstruction is actually performed on the primitive variables,ρ, u, v, and p,
instead of the conserved variables. For the results in this paper, we useκ = 0. Also, we did
not limit the reconstruction; thus, near shocks, the solutions may not be monotonic.

Low Mach number preconditioning is incorporated into the algorithm by modifying the
flux function,

Ĥn = 1
2[H(UL)+ H(UR)] − 1

2P̂−1|P̂Â|(UR−UL), (2)

whereP̂ is a local flux preconditioner. This modification is required for stability and impro-
ves the accuracy for low Mach number flows [17]. Details for the implementation of the
modified flux function are given in the Appendix.

For the flux preconditioner, we have chosen a form of Turkel’s preconditioning [16].
This preconditioner takes on a particularly simple form when expressed in the symmetrizing
variables,dŨT= [dp/ρc, du, dv, dp− c2dρ]. In symmetrizing variables, the specific form
of Turkel’s preconditioner we use is a diagonal matrix,

P̃=


ε 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Although not obvious, this preconditioner is identical to the preconditioner of Weiss and
Smith [24].P̃ can be related to the preconditioner,P̂, appearing in the flux function through
the similarity transformation

P̃= MP̂M−1,
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whereM is the transformation matrix from the conserved variables to the symmetrizing
variables, i.e.,dŨ =M dU. In Section 3, we discuss rationale for choosingε, but we note
here that we can return to the unpreconditioned flux by settingε= 1.

Boundary conditions have been implemented using a ghost cell approach. In particular,
at solid surfaces, the normal velocity component is reflected while the density and pressure
are taken directly from the first interior cell at the boundary. This boundary condition, while
being quite robust, is lower order. Future research should investigate the effects of higher
order boundary conditions on the convergence and robustness of the multigrid algorithm.

2.2. Smoothing

The smoothing algorithm is based on point block Jacobi relaxation and multi-stage inte-
gration. Specifically, we modify the semi-discrete Euler equation from Eq. (1) to include a
cell residual preconditioner,Pc, such that

A
dU

dt
+ PcR= 0. (3)

The role of the residual preconditioner is to guarantee good smoothing of high-high fre-
quency error modes for the semi-coarsening multigrid algorithm. Good smoothing of high-
high modes can be accomplished using a point block Jacobi preconditioner [2] which we
approximate as

P−1
c = (1− κ)

1tmax

2A

4∑
k=1

P̂−1
k |P̂kÂk|1sk.

For the case without low Mach number flux preconditioning, the preconditionerP̂k is
eliminated from the expression forPc. Finally, a four-stage integration of Eq. (3) gives

U (1) = Un − α(1) 1tmax

A
Pn

c Rn,

U (2) = Un − α(2) 1tmax

A
Pn

c R(1),

U (3) = Un − α(3) 1tmax

A
Pn

c R(2),

Un+1 = Un − α(4) 1tmax

A
Pn

c R(3).

For the coefficientsαi , we use the optimal damping schemes of Lynn and Van Leer [25, 26],
which are(0.203, 0.451, 0.906, 1.466) for full coarsening and(0.182, 0.412, 0.785, 1.401)
for semi-coarsening. The preconditionerPc is frozen at the first stage of an iteration, allowing
an LU factorization and efficient back-solves to be performed on all subsequent stages. We
note that the inclusion of1tmax/A in Pc cancels with the same term in the multi-stage update.
Thus, in practice,1tmax/A is never calculated when using the block Jacobi preconditioner.

2.3. Multigrid

The semi-coarsening multigrid method was implemented using a full approximation stor-
age (FAS) scheme [1] and follows the algorithm described by Mulder [14, 15] with a few
exceptions. First, we solve the second-order discretization on all grids unlike Mulder [15],
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who employs a defect correction strategy in which a first-order discretization is used on
coarse grids. Use of defect correction may increase the efficiency of the method but was
beyond the scope of the current work. Also, Mulder developed two anti-symmetric pro-
longation operators which he alternates on successive multigrid cycles. We have found
this approach problematic, often producing non-monotonic convergence histories in con-
junction with the switching between prolongation operators. Instead, we use a symmetric
prolongation operator [27] such that the correction,1U , from two coarse grids to a fine
grid is defined by

1U = P I1UI + P J1UJ − 1
2

(
P JRJP I1UI + P IRIP J1UJ

)
,

whereP I /J are theI /J prolongation operators,RI /J are theI /J restriction operators, and
1UI /J is the change on theI /J-coarsened grid. Linear interpolation is used for prolongation
and area-weighted averaging for restriction. A V-cycle is used with two pre-smoothing and
two post-smoothing iterations. The current algorithm starts from the finest grid with an
initially uniform flow (i.e., impulsive start). We have also implemented a full-coarsening
multigrid method for comparisons with semi-coarsening. A detailed description of the
algorithms is given by Siu [28].

3. DEFINITION OF ε

As shown by Turkel [16], for good low Mach number preconditioning, the value ofε

should be proportional toM2; in this case, asM→ 0, the preconditioned eigenvalues all
remain proportional to the flow speed. A useful measure of the effectiveness of precondi-
tioning is the characteristic condition number,κg, defined as the ratio of largest to smallest
propagation speeds for an isolated point disturbance [17] which is equivalent to the ratio
of largest to smallest group velocities [29]. The optimal variation ofε which minimizesκg

over all Mach numbers [28] is given by

εopt =
{

2M2/(1− 2M2) for M < 0.5,

1 for M ≥ 0.5.
(4)

With a block Jacobi iterative scheme, we have found that slightly better convergence is
given byε of the form

εcut =
{

M2
/(

1− α2
cutM

2
)

for M <Mcut,

1 for M ≥Mcut,
(5)

whereα2
cut= (1− M2

cut)/M2
cut andMcut is the user-defined Mach number above which no

preconditioning is used. Specifically, for all of the preconditioned block Jacobi results in
this paper, we useMcut= 0.5. Figure 2 contains plots ofκg for the Euler equations (without
preconditioning), the Euler equations with block Jacobi (no flux preconditioning), and the
Euler equations with preconditioned block Jacobi (Turkel flux preconditioning withε= εcut

andMcut= 0.5). The poor conditioning of the Euler equations is clearly seen atM = 0 and
M = 1. Without any low Mach number preconditioning, block Jacobi has conditioning
identical to that of the Euler equations untilM = 0.5, above which block Jacobi is an
improvement. The combination of block Jacobi preconditioning with flux preconditioning
proves effective at removing low Mach number stiffness.
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FIG. 2. Characteristic condition number,κg, for Euler (solid line), block Jacobi (ε= 1, dashed line), and
preconditioned block Jacobi (ε= εcut andMcut= 0.5, dash-dotted line).

Although the wave propagation stiffness is substantially improved at low Mach numbers
using the flux preconditioning, a major source of trouble lies in the lack of robustness as
M→ 0. Darmofal and Schmid [21] have shown that many local preconditioners can tran-
siently amplify perturbations by a factor of 1/M asM→ 0. To demonstrate this, we consider
the linearized, one-dimensional Euler equations in symmetrizing variables preconditioned
by the Turkel preconditioner

∂Ũ

∂t
+ P̃Ã

∂Ũ

∂x
= 0,

where

dŨ =
(

dp
ρ̄c̄

du

)
, P̃=

[
ε 0

0 1

]
, Ã =

[
ū c̄
c̄ ū

]
.

This can be Fourier transformed and solved for all wave numbersk,

Û (k, t) = G(k, t)Û0(k),

where

G(k, t) = exp(−ikP̃Ãt),

with Û (k, t)being the Fourier-transformed state vector with wave numberk andÛ0(k)being
the corresponding initial condition. Figure 3 is a plot of‖G(k, t)‖ versus time forM = 0
using different values ofε. As can be clearly seen, the potential for significant transient
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FIG. 3. Maximum amplification,‖G‖, versus time forM = 0 with varying
√
ε.

growth exists atM = 0 asε→ 0. Specifically, the maximum growth over all time behaves
asGmax= 1/

√
ε at M = 0. Also, as shown in Fig. 3, the temporal evolution scales with

wave number such that higher wave number modes will achieve maximum amplification in
shorter times. These results suggest the need to limitε such that it does not approach zero
at stagnation points.

We can gain some additional insight into the transient growth for this preconditioner by
calculating the initial perturbations which lead to the largest possible transient amplification
Gmax. In fact, this worst-case disturbance is a mode with all of its initial energy in the pressure
perturbation, i.e.,̂U0≈ (1, 0)T. Using this as the initial condition, the transient response of
the Fourier-transformed pressure,p̂/ρ̄c̄, and velocity,û, is calculated and shown in Fig. 4
for M = 0 andε= 0.01. As can be clearly seen, a unit-magnitude pressure disturbance
creates an amplified velocity perturbation with magnitude 1/

√
ε= 10.

The typical approach for constructing a limit forε is to requireε to be greater than some
multiple of the freestream Mach number [21, 30, 31]. For example, if the desired value of
ε=M2, the limited value would be

ε = max
(
M2, ηM2

∞
)
.

With this limit, the amplification can still reach 1/(
√
ηM∞), which could be significant at

lower freestream Mach numbers. A typical value forη= 3.0 [31]. This approach works
reasonably well for airfoil flows but the high value ofη means that the limit is often active
throughout the computational domain.

In developing a newε limit, the key idea is to recognize that when perturbations are small,
the maximum amplification can be large; however, for large perturbations, the maximum
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FIG. 4. Behavior ofp̂/ρ̄c̄ (solid line) andû (dashed line) versus time for the most amplified initial condition
with M = 0 andε= 0.01.

amplification must be small. This suggests making the limit a function of the local flow
perturbations. The specific limit1 which we have found to work successfully for a variety
of flows is

εlimnew =
| p̂0(k)|
ρ̄c̄2

. (6)

As shown in the preceding analysis of the preconditioned system’s transient growth, pres-
sure perturbations are the most dangerous disturbances and result in velocity perturbations
bounded by

|û(k, t)| ≤ 1√
ε

| p̂0(k)|
ρ̄c̄

. (7)

Thus, substitutingεlimnew from Eq. (6) into Eq. (7), we may show that the velocity perturba-
tion squared is bounded by

|û(k, t)|2 ≤ | p̂0(k)|
ρ̄

.

This is reminiscent of the incompressible Bernoulli equation and suggests that the magnitude
of velocity perturbations will correctly scale with pressure perturbations whenε is required
to be greater thanεlimnew. This limit can also be interpreted as a linearity condition since it
guarantees that the square of the velocity perturbation is less than the pressure perturbation.

1 This limit came from a suggestion by Jonathon Weiss of Fluent to include pressure variations in theε cutoff.
The authors acknowledge his contribution.
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In our preconditioning strategy, the values ofε are needed only during the flux calculation.
These flux values ofε are calledεflux. To determineεflux, a new value ofε is calculated for
every face,

εface= min[1,max(ε̄L, ε̄R, εlim)], (8)

whereε̄L,R are the values ofε from Eq. (5) using the left and right cell-average states. When
using the old limit,

εlimold = ηε∞,

whereε∞ is the value ofε evaluated atM∞ using Eq. (5). For the new limit, we approximate
| p̂| by the difference in cell-average pressures,| p̄R− p̄L |, giving

εlimnew =
| p̄R− p̄L |
ρ̂ĉ2

. (9)

The newεface values are limited only with respect to pressure variations across the face;
however, pressure gradients in all directions should be accounted for when limitingε. Thus,
the values ofεface are sent to the cells with the cell values ofε being the maximum of the
four face values which surround it,

εcell = 4
max
k=1

εfacek . (10)

Finally, the valueεflux used in the flux calculations is the maximum value ofεcell from the
two cells surrounding a face,

εflux=max
(
εcellL , εcellR

)
.

We note that the process of maximizing theε over faces and cells as described above
naturally raises the value ofε even without recourse to the new limit.

4. RESULTS

The convergence rates presented in the following results include cycle counts, work units,
and CPU timings required to converge the solution six orders of magnitude from the initial
residual. Convergence is measured using the RMS residual of all components of the residual
vector (i.e., mass, momentum, and energy). A single work unit is equal to the amount of
work required to evaluate the residual on the finest grid. Also, the total amount of work
includes only the work required to perform smoothing passes on all of the grids but not any
intergrid transfers.

4.1. Bump Flow Results

The first set of tests simulates flow over a solid bump between 0≤ x≤ 1 described by
y= 0.042 sin2(πx). The domain is 5 unit lengths long and 2 lengths high. The grid is
structured with clustering toward the wall boundary. A sample grid and flow solution are
shown in Fig. 5. Grid sizes range from 32× 16 to 256× 128.

The results for the Jacobi algorithm in Table I show a pronounced dependence on Mach
number. In particular, at low Mach numbers, the convergence rates significantly degrade
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TABLE I

Bump Flow with Jacobi Results

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
32× 16 67 1492 46 2393
64× 32 113 2551 64 3825

128× 64 241 5457 73 4659
256× 128 DNC DNC 81 5338

M∞ = 0.3
32× 16 37 824 14 729
64× 32 63 1422 14 838

128× 64 102 2310 14 894
256× 128 168 3808 14 923

M∞ = 0.5
32× 16 23 513 8 417
64× 32 35 791 8 479

128× 64 52 1178 8 512
256× 128 101 2290 8 528

M∞ = 0.8
32× 16 28 624 10 521
64× 32 42 949 10 599

128× 64 48 1088 15 958
256× 128 80 1814 16 1055

Note.Six orders drop in residual. DNC, did not converge in 300 cycles.

FIG. 5. Sample bump grid andCp data. (a) 32× 16 grid and (b)Cp contours,M∞ = 0.1, preconditioned Jacobi.
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TABLE II

Bump Flow with Preconditioned Jacobi Results

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
32× 16 20 446 7 365
64× 32 21 475 7 419

128× 64 33 748 7 448
256× 128 65 1474 7 462

M∞ = 0.3
32× 16 19 423 7 365
64× 32 23 520 7 419

128× 64 36 816 7 448
256× 128 71 1610 7 462

M∞ = 0.5
32× 16 23 513 8 417
64× 32 35 791 8 479

128× 64 52 1178 8 511
256× 128 101 2290 8 528

M∞ = 0.8
32× 16 28 624 10 521
64× 32 42 949 10 599

128× 64 48 1088 15 958
256× 128 80 1814 16 1055

Note.Six orders of magnitude drop in residual.

from similar grid sizes at higher Mach numbers. For example, for a grid of 128× 64 cells,
the M∞= 0.1 case converges (i.e., the residual drops six orders of magnitude) in 252
full-coarsening cycles while theM∞= 0.5 case converges almost five times faster, needing
only 52 full-coarsening cycles. For semi-coarsening, the results are even more dramatic with
M∞= 0.1 andM∞= 0.5 converging in 73 and 8 cycles, respectively. While this degradation
in convergence rate is observed most significantly atM∞= 0.1, the effect is also evident at
M∞= 0.3.

By comparison, the results for the preconditioned Jacobi algorithm in Table II show very
little dependence on Mach number for full and semi-coarsening with the lowest Mach num-
ber cases converging fastest. The semi-coarsening performance is particularly impressive,
with the total range of cycles for all Mach numbers and all grids being only from 7 cycles
for the M∞= 0.1 cases to 16 cycles for the finest grid,M∞= 0.8 case. We note also that
for M∞≥ 0.5, the Jacobi and preconditioned Jacobi converge in almost exactly the same
amount of cycles (or work). This result is expected since the preconditioning is turned off
for M ≥ 0.5 by the definition ofε in Eq. (5).

Another interesting aspect of the bump flow convergence results is the dependence of con-
vergence rate on grid size for full and semi-coarsening. Tables I and II clearly show that full
coarsening requires an increasing number of cycles (or work units) to converge with an in-
creasing grid size for Jacobi and preconditioned Jacobi. In fact, for the largest grids, the total
cycles or work units for convergence are increasing by almost exactly a factor of 2 for a factor
of 4 increase in grid size. This suggests that the full-coarsening algorithm requiresO(N3/2)
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FIG. 6. Variation of convergence with grid size. Bump flow with full coarsening forM∞ = 0.1. Solid, 32× 16;
dashed, 64× 32; dash-dotted, 128× 64; dotted, 256× 128. (a) Jacobi and (b) preconditioned Jacobi.

operations to converge to a fixed level. Convergence histories for full coarsening with
M∞= 0.1 are shown in Fig. 6. As described in the Introduction, the poor performance of the
full-coarsening algorithm is attributable to the lack of damping for grid-aligned error modes.

The results for semi-coarsening are distinctly superior to those for full coarsening with
respect to grid dependence. For Jacobi, theM∞= 0.3 and 0.5 cases are grid independent,
requiring 14 cycles and 8 cycles to converge, respectively, for all grid sizes. AtM∞= 0.8, the
coarsest two grids converge in 10 cycles while the finer grids jump to 15 and 16 cycles. The
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difficulty, we believe, lies with the presence of a shock wave in the steady solution. We have
found this type of grid dependence for many problems with shocks. Several researchers
have proposed modifications in the multigrid algorithm to better handle discontinuous
flow variations; however, these have not been pursued for this work. For the low-speed
M∞= 0.1 case, the Jacobi algorithm in conjunction with semi-coarsening is no longer grid
independent, with the 32× 16 grid requiring 46 cycles and the 256× 128 grid requiring
81 cycles to converge (see the convergence histories in Fig. 7a). However, preconditioned

FIG. 7. Variation of convergence with grid size. Bump flow with semi-coarsening forM∞ = 0.1. Solid,
32× 16; dashed, 64× 32; dash-dotted, 128× 64; dotted, 256× 128. (a) Jacobi and (b) preconditioned Jacobi.
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Jacobi with semi-coarsening maintains grid independence at low Mach numbers. This is
shown in Fig. 7b in which the convergence histories versus work units for all grid sizes are
nearly identical. The beneficial effect of low Mach number preconditioning is even felt at
M∞= 0.3. In comparison to the Jacobi algorithm which required 14 cycles to converge for
all grids, the preconditioned Jacobi algorithm converges in 7 cycles for all grids, giving a
factor of 2 improvement.

4.2. Duct Flow Results

A second set of cases was performed for duct flows. All conditions are the same as those
for the bump tests except the upper boundary condition. The upper boundary of the domain
is now a solid wall instead of a farfield. With the farfield boundary condition approach,
error modes can propagate out of the domain. However, with a solid wall boundary on top,
acoustic error modes will reflect back into the domain and could hinder with convergence.
Results for Jacobi and preconditioned Jacobi duct cases are shown in Tables III and IV. All
of the trends observed in the bump flow results are also evident in the duct flow cases.

4.3. Airfoil Results

The third set of tests simulates flow over a NACA 0012 airfoil. The grid sizes range from
96× 16 to 384× 128, and the farfield boundaries are 20 chord lengths away. The farfield
boundary model is simply the uniform freestream although more accurate models could have

TABLE III

Duct Flow with Jacobi Results

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
32× 16 67 1492 46 2393
64× 32 113 2551 64 3825

128× 64 240 5435 73 4659
256× 128 DNC DNC 80 5338

M∞ = 0.3
32× 16 37 824 14 729
64× 32 64 1445 14 838

128× 64 106 2401 14 894
256× 128 182 4125 14 923

M∞ = 0.5
32× 16 23 513 9 469
64× 32 37 836 8 479

128× 64 62 1405 8 512
256× 128 109 2471 8 528

M∞ = 0.8
32× 16 28 624 11 573
64× 32 37 836 10 599

128× 64 46 1042 10 639
256× 128 68 1542 21 1385

Note.Six orders of magnitude drop in residual. DNC, did not converge
in 300 cycles.
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TABLE IV

Duct Flow with Preconditioned Jacobi Results

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
32× 16 20 446 7 365
64× 32 23 520 7 419

128× 64 39 884 7 448
256× 128 71 1610 7 462

M∞ = 0.3
32× 16 19 424 7 365
64× 32 25 565 7 419

128× 64 43 975 7 448
256× 128 76 1723 7 462

M∞ = 0.5
32× 16 23 513 8 417
64× 32 37 836 8 479

128× 64 62 1405 8 511
256× 128 109 2471 8 528

M∞ = 0.8
32× 16 28 624 11 573
64× 32 37 836 10 599

128× 64 46 1042 10 639
256× 128 68 1542 21 1385

Note.Six orders of magnitude drop in residual.

been incorporated. A typical grid and a transonic solution are shown in Fig. 8. One set of
grids contained 96× 16, 192× 32, and 384× 64 cells. A second set of grids was generated
by doubling the number of cells in the direction normal to the airfoil surface, giving 96× 32,
192× 64, and 384× 128 cells. Clustering was used to allow better resolution of the flow
properties in critical areas.

Convergence data for all NACA 0012 results are given in Tables V–VIII. The results
follow the same trends observed with the bump and duct flows. For the Jacobi algorithm,
the performance atM∞= 0.1 is extremely poor with all but the one case (semi-coarsening
on the finest grid) failing to converge in 300 multigrid cycles. Furthermore, as illustrated in
the convergence history plots in Figs. 9 and 10, many of these low Mach number solutions
appeared to completely stall and never converge six orders of magnitude. As before, the low
Mach number preconditioning completely alleviates this problem. The beneficial effect of
preconditioned Jacobi is also observed atM∞= 0.3 with a factor of 2 or more improvement
compared to Jacobi in most cases. At higher Mach numbers, the convergence of both Jacobi
and preconditioned Jacobi is almost identical.

As observed with the bump and duct flow results, the number of cycles required by full
coarsening to converge six orders of magnitude increases with increasing grid size. For the
finer grids, the amount of work approximately doubles with a fourfold increase in grid size,
implying anO(N3/2) algorithm. Convergence histories for full coarsening withM∞= 0.1
are shown in Fig. 9. In both the Jacobi and preconditioned Jacobi results, the dependence
of convergence on grid size can be easily observed. As described in the Introduction, the
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FIG. 8. Sample NACA 0012 grid andCp data. (a) 192× 32 grid and (b)Cp contours,M∞ = 0.8, preconditioned
Jacobi.

poor performance of the full-coarsening algorithm is attributable to the lack of damping for
grid-aligned error modes.

At Mach numbers of 0.5 and 0.8, the semi-coarsening algorithm with Jacobi precondition-
ing performs nearly independent of grid size. At low Mach numbers, the Jacobi algorithm
with semi-coarsening is no longer grid independent; however, the incorporation of low
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TABLE V

NACA 0012 Flow with Jacobi Results for Set 1 Grids

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
96× 16 DNC DNC DNC DNC

192× 32 DNC DNC DNC DNC
384× 64 DNC DNC DNC DNC

M∞ = 0.3
96× 16 78 1737 27 1405

192× 32 117 2641 29 1734
384× 64 183 4144 29 1852

M∞ = 0.5
96× 16 47 1047 17 885

192× 32 74 1671 15 897
384× 64 131 2967 16 1022

M∞ = 0.8
96× 16 39 869 26 1353

192× 32 61 1377 25 1495
384× 64 107 2424 23 1469

Note.Six orders of magnitude drop in residual. DNC, did not converge
in 300 cycles.

TABLE VI

NACA 0012 Flow with Preconditioned Jacobi

Results for Set 1 Grids

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
96× 16 35 780 18 937

192× 32 51 1152 14 838
384× 64 87 1971 14 894

M∞ = 0.3
96× 16 34 758 16 833

192× 32 52 1174 13 778
384× 64 87 1971 13 831

M∞ = 0.5
96× 16 39 869 17 885

192× 32 67 1513 15 897
384× 64 128 2899 16 1022

M∞ = 0.8
96× 16 38 847 26 1353

192× 32 61 1377 26 1555
384× 64 106 2401 23 1469

Note.Six orders of magnitude drop in residual.
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TABLE VII

NACA 0012 Flow with Jacobi Results for Set 2 Grids

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
96× 32 DNC DNC DNC DNC

192× 64 DNC DNC DNC DNC
384× 128 DNC DNC 177 11664

M∞ = 0.3
96× 32 81 1829 24 1435

192× 64 142 3216 31 1979
384× 128 277 6278 33 2175

M∞ = 0.5
96× 32 59 1332 16 957

192× 64 103 2333 17 1086
384× 128 205 4646 17 1121

M∞ = 0.8
96× 32 59 1332 16 957

192× 64 108 2446 17 1086
384× 128 195 4420 21 1385

Note.Six orders of magnitude drop in residual. DNC, did not converge
in 300 cycles.

TABLE VIII

NACA 0012 Flow with Preconditioned Jacobi

Results for Set 2 Grids

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work

M∞ = 0.1
96× 32 48 1084 12 718

192× 64 83 1880 12 767
384× 128 147 3332 11 726

M∞ = 0.3
96× 32 50 1129 12 718

192× 64 85 1925 11 703
384× 128 156 3536 11 726

M∞ = 0.5
96× 32 55 1242 16 957

192× 64 102 2310 17 1086
384× 128 204 4624 17 1121

M∞ = 0.8
96× 32 59 1332 15 897

192× 64 108 2446 16 1022
384× 128 194 4397 20 1319

Note.Six orders of magnitude drop in residual.
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FIG. 9. Variation of convergence with grid size. NACA 0012 flow with full coarsening atM∞ = 0.1 for set 2
grids. Solid, 96× 32; dashed, 192× 64; dash-dotted, 384× 128. (a) Jacobi and (b) preconditioned Jacobi.

Mach number preconditioning again alleviates this problem. Convergence histories for the
semi-coarsening results are plotted in Fig. 10.

4.4. CPU Timings

To further demonstrate the dependence of convergence on grid size, we plot the total
CPU time required when running the simulations on a single SGI R10000 processor for the
M∞= 0.1 cases with preconditioned Jacobi in Figs. 11 and 12 for the bump and airfoil flows,
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FIG. 10. Variation of convergence with grid size. NACA 0012 flow with semi-coarsening atM∞ = 0.1 for
set 2 grids. Solid, 96× 32; dashed, 192× 64; dash-dotted, 384× 128. (a) Jacobi and (b) preconditioned Jacobi.

respectively. The full-coarsening CPU times (marked by×) show a nonlinear increase
with respect to grid size while the semi-coarsening times (marked by◦) appear linear.
Approximate curve fits for the timings are also shown in the figures. Specifically, for bump
flows, the full-coarsening curve fit is

CPUfull ≈ (4.4× 10−4)N3/2 s,

and the semi-coarsening curve fit is

CPUsemi≈ (2.3× 10−2)N s,



FIG. 11. CPU seconds versus number of cells,N. Bump flow with preconditioned Jacobi atM∞ = 0.1.
(×) Full coarsening and(◦) semi-coarsening. Curve fits are given by CPUfull = (4.4× 10−4)N3/2 and CPUsemi=
(2.3× 10−2)N.

FIG. 12. CPU seconds versus number of cells,N. NACA 0012 flow with preconditioned Jacobi atM∞ =
0.1. (×) Full coarsening and(◦) semi-coarsening. Curve fits are given by CPUfull = (8.2× 10−4)N3/2 and
CPUsemi= (3.8× 10−2)N.

749
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whereN is the total number of cells. For the airfoil results, the full-coarsening curve fit is

CPUfull ≈ (8.2× 10−4)N3/2 s,

and the semi-coarsening curve fit is

CPUsemi≈ (3.8× 10−2)N s.

Thus, to good approximation, full coarsening is anO(N3/2)algorithm while semi-coarsening
is O(N). At coarser grid sizes, while semi-coarsening is usually faster than full coarsening,
the CPU difference is minor; however, the real benefit of semi-coarsening is apparent for
finer grids where the performance of full coarsening degrades.

4.5. Effect ofε Limiter

As shown from the cases above, the newε limiter is a robust method which converged well
in all tests. To assess the relative merits of the old (i.e., freestream-based) limiting and new
limiting, we ran a set of cases on the NACA 0012 192× 32 grid. For the old limit, several

TABLE IX

NACA 0012 Flow Convergence Results for Old and Newε-Limits

Full coarsening Semi-coarsening

εlim Cycles Work Cycles Work

M∞ = 0.1
Old: η = 0 51 1152 14 838
Old: η = 1 52 1174 14 838
Old: η = 2 59 1332 13 778
Old: η = 3 69 1558 15 897
Old: η = 4 77 1738 17 1017

New 51 1152 14 838

M∞ = 0.3
Old: η = 0 52 1174 13 778
Old: η = 1 53 1197 13 778
Old: η = 2 65 1468 14 838
Old: η = 3 76 1716 16 957
Old: η = 4 85 1919 20 1196

New 52 1174 13 778

M∞ = 0.5
Old: η = 0 67 1513 15 897
Old: η = 1 74 1671 15 897
Old: η = 2 74 1671 15 897
Old: η = 3 74 1671 15 897
Old: η = 4 74 1671 15 897

New 67 1513 15 897

M∞ = 0.8
Old: η = 0 61 1377 26 1555
Old: η = 1 61 1377 25 1495
Old: η = 2 61 1377 25 1495
Old: η = 3 61 1377 25 1495
Old: η = 4 61 1377 25 1495

New 61 1377 26 1555

Note.Grid 192× 32 cells. Six orders of magnitude drop in residual.
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different values ofη were used. The results are given in Table IX. The old and newε limits
perform similarly except for large values ofη for which a noticeable drop in convergence rate
is typically observed. For the higher Mach number flows, the convergence rate for the old
limit is particularly insensitive to the value ofη. This would seem to indicate that the poten-
tially beneficial effect of low Mach number preconditioning in stagnation regions is not im-
portant for these flows. For higher Mach number flows with significant regions of low-speed
flow such as occurs with separation, the effect of low-speed preconditioning andε limiting
may be more pronounced. Notably, the newε limit performs well without any tuning.

To demonstrate the local limiting effect of the newε limit, we investigate the old and
new limiter activity forM∞= 0.1 on a 192× 32 grid. For the old limit,η= 3.0. Figure 13
shows a contour plot ofεcell− ε(Mcell) for the converged solution, whereεcell is defined in

FIG. 13. Plots ofεcell− ε(Mcell) with 41 equally spaced contours from 0 to 0.03 for NACA 0012,M∞ = 0.1,
andα∞ = 1.25◦ on a 192× 32 grid. (a) Oldε limit (η= 3) and (b) newε limit.
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Eq. (10) andε(Mcell) is the value ofε evaluated with the local cell Mach number. Thus,
in regions where no limiting occurs and Mach number variations are small, this quantity
will be essentially zero. As shown in the plot, the newε limit is active only near the body
while the oldε limit is active throughout the flow. Surprisingly, the oldε limit converges
only slightly slower than the newε limit even though the old limit is active through an
appreciable part of the flow.

Another interesting observation from the airfoil results is thatη= 0 not only converges
but often gives the best convergence rate for a test case. However, this is contrary to what
several researchers have found [32, 18, 20, 33], particularly with airfoil problems where
a stagnation point is present. This suggests that the use of the block Jacobi scheme, the
maximization ofε over several cells as described in Section 3, or both may be contributing
to the robustness of the local preconditioning observed here. In the solutions shown so far,
theε limits on the cell face are influenced by a total of eight cells composed of the nearest
neighbors of the two cells at the face. The algorithm will pick the largest value ofε from
this eight-cell stencil. Thus, even withη= 0, the influence from the other cells in the stencil
can still keepε from going to zero.

In order to gain better insight into the effect of the eight-cell stencil, the algorithm for
determiningεflux was modified to use only the Mach number from the two reconstructed
states at the face. No otherε-limiting process was used (i.e., no freestream or1p-based
cutoff). Table X shows the results for the NACA 0012 airfoil with preconditioned Jacobi
and semi-coarsening for the set 2 grids. Only one case becomes unstable (the finest grid at
M∞= 0.1), while the other cases converge almost identically to the local limiter results in

TABLE X

Convergence Results for NACA 0012 Flow

Using Semi-coarsening Algorithm with Noε

Limiting for Set 2 Grids

Semi-coarsening

Grid Cycles Work

M∞ = 0.1
96× 32 12 718

192× 64 12 767
384× 128 UNS UNS

M∞ = 0.3
96× 32 12 718

192× 64 11 703
384× 128 11 726

M∞ = 0.5
96× 32 15 897

192× 64 17 1086
384× 128 17 1121

M∞ = 0.8
96× 32 15 897

192× 64 16 1022
384× 128 20 1319

Note.Six orders of magnitude drop in residual. UNS,
unstable.



ROBUST MULTIGRID FOR THE EULER EQUATIONS 753

Table VIII. The conclusion we draw is that the Jacobi formulation increases the robustness of
the overall algorithm and, in combination with the limiting strategy described in Section 3,
provides a robust and efficient algorithm for Euler calculations.

5. CLOSING REMARKS

We have developed a semi-coarsening multigrid algorithm using a point block Jacobi
smoother with local preconditioning implemented for improved low Mach number perfor-
mance. The locally preconditioned semi-coarsening algorithm converges at a rate which
is nearly independent of grid size and Mach number for internal and external flows. CPU
timings show that the computational work to converge six orders of magnitude isO(N) for
semi-coarsening, whereN is the number of cells. In contrast, the full-coarsening algorithm
computational work isO(N3/2).

Furthermore, a preconditioning limiting strategy based on pressure changes which acts
locally to limit the preconditioning in a stagnation point has been explored. This new lim-
iting strategy in conjunction with the point block Jacobi smoother significantly increases
the robustness for flows with stagnation points. In fact, based on the tests performed in this
study, the point block Jacobi smoother may be the most important contributor to the added
robustness.

While the semi-coarsened multigrid algorithm with local preconditioning has performed
quite robustly for the cases presented, the algorithm must still be tested in more demanding
circumstances. For example, the grids for all cases in this study are relatively well behaved
with aspect ratios near unity and little stretching over a significant portion of the compu-
tational domain. Similarly, viscous and, more importantly, turbulent cases have not been
investigated. These more severe applications remain for future work.

APPENDIX

In this Appendix, we describe the modified flux for the form of Turkel’s preconditioner uti-
lized in this research. The flux function in Eq. (2) can be expanded into its characteristic form,

Ĥ = 1

2
[H(UL)+ H(UR)] − 1

2

4∑
i=1

|λi |∗1wi P̂−1Eri ,

whereλi are the eigenvalues andEr i are the right eigenvectors of the matrixPA. The wave
strengths,1wi , are the projection of the conserved state vector changes,1U , onto the
corresponding left eigenvector,El T

i , of PA; i.e.,1wi =El T
i 1U . Leavingε a free parameter,

the preconditioned eigenvalues and eigenvectors are

λ1 = 1
2[(1+ ε)ug− τ ],

λ2 = ug,

λ3 = ug,

λ4 = 1
2[(1+ ε)ug+ τ ],

whereug is the velocity component normal to the cell face, and

τ =
√
(1− ε)2u2

g+ 4εc2,
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with c the speed of sound. For the results contained in this paper, we have applied an entropy
fix to these eigenvalues; specifically, we define

|λi |∗ =
{
1λi , if |λi | < 1λi ,

|λi |, if |λi | ≥ 1λi ,

where1λi = 2|λi L − λi R|.
The corresponding preconditioned right eigenvectors are

P−1Er1 = 1

ετ


s+

us+ − 2εc2nx

vs+ − 2εc2ny

Hs+ − 2εc2ug

 ,

P−1Er2 =


0
−ny

nx

vg

 ,

P−1Er3 =


1
u
v

1
2(u

2+ v2)

 ,

P−1Er4 = 1

ετ


s−

us− + 2εc2nx

vs− + 2εc2ny

Hs− + 2εc2ug

 ,

where

s+ = τ + (1− ε)ug,

s− = τ − (1− ε)ug.

Note,vg is the velocity tangential to the grid,H is the stagnation enthalpy, and(nx, ny) are
the(x, y) components of the unit face normal. The left eigenvectors are

El 1 = 1

4c2


s−ug+ (γ − 1)(u2+ v2)

−s−nx − (γ − 1)u

−s−ny − (γ − 1)v

2(γ − 1)

 ,

El 2 =


−vg

−ny

nx

0

 ,
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El 3 = 1

c2


c2− 1

2(γ − 1)(u2+ v2)

(γ − 1)u

(γ − 1)v

−(γ − 1)

 ,

El 4 = 1

4c2


−s+ug+ (γ − 1)(u2+ v2)

s+nx − (γ − 1)u

s+ny − (γ − 1)v

2(γ − 1)

 .
Finally, the wave strengths are given by

1w1 = 1

2c2

(
1p− 1

2
ρs−1ug

)
,

1w2 = ρ1vg,

1w3 = 1ρ −1p/c2,

1w4 = 1

2c2

(
1p+ 1

2
ρs+1ug

)
.
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