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A semi-coarsened multigrid algorithm with a point block Jacobi, multi-stage
smoother for second-order upwind discretizations of the two-dimensional Euler
equations which produces convergence rates independent of grid size for moder-
ate subsonic Mach numbers is presented. By modification of this base algorithm to
include local preconditioning for low Mach number flows, the convergence becomes
largely independent of grid size and Mach number over a range of flow conditions
from nearly incompressible to transonic flows, including internal and external flows.
A local limiting technique is introduced to increase the robustness of precondition-
ing in the presence of stagnation points. Computational timings are made showing
that the semi-coarsening algorithm requi@@\) time to lower the fine grid resid-
ual six orders of magnitude, whet¢ is the number of cells. By comparison, the
same algorithm applied to a full-coarsening approach req@@s*?) time, and,
in nearly all cases, the semi-coarsening algorithm is faster than full coarsening with
the computational savings being greatest on the finest gridsio99 Academic Press
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1. INTRODUCTION

An important aspect of any computational method is robustness. A robust computati
method not only solves a given class of problems but does so in a reliable, predict
manner from case to case. In practice, robustness issues can arise in many different
For example, an algorithm which provides accurate answers in a reasonable amou
time for one case may suddenly require a significant amount of time to arrive at the s
level of accuracy for a different case. Another common (and perhaps worse) difficulty
typically reliable algorithm which simply diverges and fails to return any useful informati
for a particular problem. In either situation, these algorithms exhibit non-robust behay
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FIG. 1. Multigrid coarsening strategies. (a) Full coarsening and (b) semi-coarsening.

In this paper, we present a robust method for solving second-order upwind discretiza
of the steady, two-dimensional Euler equations based on semi-coarsening multigrid, |
block Jacobi multi-stage relaxation, and low Mach number local preconditioning. As
will show, the proposed algorithm is very robust, with its convergence rate being ne
independent of grid size and Mach number for both internal and external flows.

A robust multigrid algorithm requires the careful matching of the coarsening strat
with the iterative scheme or smoother. In particular, the smoother must effectively d:
any modes which cannot be represented on coarser grids (without aliasing) [1, 2]. The
common coarsening strategy for multigrid on structured grids is full coarsening, in wh
every other point is removed in both directions as illustrated in Fig. 1. For typical upw
discretizations, the use of full coarsening generally requires an implicit relaxation in ot
to produce grid-independent convergence rates. This approach has been followed by s
researchers, including Euler [3—7] and Navier—Stokes [8, 9] applications.

The necessity for implicit relaxation with full-coarsening multigrid arises from the exi
tence of grid-aligned modes, i.e., error modes with long streamwise wavelengths but ¢
cross-stream wavelengths. For upwind discretizations which do not introduce nume
dissipation normal to characteristics, these grid-aligned modes cannot be easily dal
by simple point relaxations such as the multi-stage point block Jacobi relaxation algori
employed in this work. The difficulty with damping grid-aligned error modes is a direct cc
sequence of the upwind discretization; thus, schemes with more isotropic numerical dis
tion [10] may not suffer these problems. However, schemes with more isotropic nume
dissipation are also likely to be less accurate [11-13]. In contrast to convection-domin
problems, point relaxation in combination with full-coarsening multigrid generally wor
well for elliptic problems with isotropic physical dissipation [1].

In this paper, we explore the use of semi-coarsening which is a more complex cc
ening strategy devised by Mulder [14, 15] specifically for the Euler equations and of
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convection-dominated flows. In semi-coarsening, a fine grid is associated with two coz
grids, each independently coarsened in a single grid direction. A typical family of se
coarsened grids is shown in Fig. 1. While the semi-coarsening algorithm is more com
than full coarsening, the smoothing requirements are significantly reduced. In partici
a simple, point smoother is now sufficient for achieving smoothing of all fine grid er
modes [14, 15, 2].

We select a point block Jacobi, multi-stage relaxation method as our smoother f
second-order upwind discretization. An advantage of point block Jacobi is its simpli
as it requires the inversion and storage of only the local block matrix arising from a |
earization of the discrete equations. Also, point block Jacobi relaxation has been shov
be an effective smoother of high-high frequency errors for the 2-D discrete Euler [14,
and Navier—Stokes equations [2]. A multi-stage implementation of point block Jacok
required for stability as a single-stage, damped Jacobi method is not stable for sec
order discretizations. For the proposed semi-coarsening algorithm, convergence rate
moderate Mach numbers are nearly grid independent, implying that the total work for
algorithmisO(N), whereN is the number of cells. We note that simifafN) convergence
for semi-coarsening and point block Jacobi has been previously observed by Mulder |

While semi-coarsening with point block Jacobi smoothing gives robust convergence
for moderate Mach numbers, the performance severely degrades at lower Mach nurr
To alleviate this problem, we introduce the low Mach number preconditioning of Turl
[16] by modifying the upwind flux function [17] while retaining the point block Jacok
relaxation based on the modified fluxes. We refer to this approach as the preconditit
Jacobi. Mavriplis [18] and Turkel [19] have previously studied this method for incorporati
low Mach number preconditioning.

Unfortunately, the full benefits of local preconditioning, especially at low Mach nur
bers, have been difficult to achieve because local preconditioners designed for gooc
Mach number performance inevitably have poor robustness at stagnation points [20,
Darmofal and Schmid [21] have shown that this lack of robustness is due to unlimi
transient amplification of perturbations stemming from a highly non-orthogonal (in fa
degenerate) eigenvector structure of the preconditioned equatiobls—a®. The most
common technique for avoiding this robustness problem is based on limiting the effec
preconditioning below a multiple of the freestream Mach number. Since this multiple
typically greater than one, the limit often acts globally and thus destroys the locality of
preconditioning. Furthermore, for problems in which a reference Mach number is inap|
priate or non-existent, this type of limiting will be difficult to realize. Examples of thes
types of flows would be a hypersonic flow about a blunt body (which would contain regic
of subsonic flow) or flow of a high-speed jet into a stationary fluid.

In this paper, we develop of a new method for improving the robustness of local prec
ditioners. This new method relies on strictly local information and, as aresult, acts locall
avoid transient amplification of perturbations. In addition, we show through numerical te
that the preconditioned block Jacobi algorithm is quite robust even without resorting to I
preconditioning limiting. Thus, the overall robustness of the algorithm is a result of not o
the preconditioner limiting technique but also the point block Jacobi smoothing. Utilizi
the preconditioned Jacobi relaxation with semi-coarsening, convergence rates have
a small dependence on Mach number. FurthermOrd\y) convergence is demonstratec
over a wide range of Mach numbers, includiMy, — O for both internal and external
flows.
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2. NUMERICAL METHOD

2.1. Discretization

Employing a cell-centered, finite volume algorithm on a structured grid composec
quadrilateral cells, the two-dimensional Euler equations in semi-discrete form can be wr
as

du
A— + R=0, 1
at 1)
whereAis the cell area and is the cell-average conservative state vector defingdias
(p, pu, pv, pE). The cell residualR, is defined as

4
R=Y HnAs.
k=1

whereAs, is the length andd n. IS the numerical flux approximation for fake Using an
approximate Riemann solver (and dropping the subsddjptl,, is given by

Hn = 3[H (UL + H(UR)] - LIA|(Ur — Up),

whereA = dH,/aU is the flux Jacobian evaluated using a Roe average [22]. For our secc
order scheme, we approximate the left and right stikeandUg, using van Leer's scheme
[23]. This reconstruction is actually performed on the primitive varialpesi, v, and p,
instead of the conserved variables. For the results in this paper, we-ti8eAlso, we did
not limit the reconstruction; thus, near shocks, the solutions may not be monotonic.

Low Mach number preconditioning is incorporated into the algorithm by modifying tl
flux function,

An=3[H(UL) + H(UR)] — 3P HPAIUR — U, @

1
2
whereP is a local flux preconditioner. This modification is required for stability and impr
ves the accuracy for low Mach number flows [17]. Details for the implementation of 1
modified flux function are given in the Appendix.

For the flux preconditioner, we have chosen a form of Turkel's preconditioning [1
This preconditioner takes on a particularly simple form when expressed in the symmetri
variablesdUT =[dp/pc, du, dv, dp— c2dp]. In symmetrizing variables, the specific form
of Turkel's preconditioner we use is a diagonal matrix,

Rl
Il

oo on

o or o

oOrr OO

» O O O

Although not obvious, this preconditioner is identical to the preconditioner of Weiss
Smith [24].P can be related to the precondition@rappearing in the flux function through
the similarity transformation

P=MPM™,
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whereM is the transformation matrix from the conserved variables to the symmetriz
variables, i.e.dU =M dU. In Section 3, we discuss rationale for choosingut we note
here that we can return to the unpreconditioned flux by settiad .

Boundary conditions have been implemented using a ghost cell approach. In partic
at solid surfaces, the normal velocity component is reflected while the density and pres
are taken directly from the first interior cell at the boundary. This boundary condition, wk
being quite robust, is lower order. Future research should investigate the effects of hi
order boundary conditions on the convergence and robustness of the multigrid algoritl

2.2. Smoothing

The smoothing algorithm is based on point block Jacobi relaxation and multi-stage i
gration. Specifically, we modify the semi-discrete Euler equation from Eq. (1) to includ
cell residual preconditioneP., such that

A%—U +PR=0. 3)

The role of the residual preconditioner is to guarantee good smoothing of high-high
guency error modes for the semi-coarsening multigrid algorithm. Good smoothing of hi
high modes can be accomplished using a point block Jacobi preconditioner [2] whict
approximate as

At
P-l=(1—x) ZmaXZPk IPcAk| As.
k=1

For the case without low Mach number flux preconditioning, the preconditi@més
eliminated from the expression fB%. Finally, a four-stage integration of Eq. (3) gives

Atmax

U® =u"—o® —"2pIR",
A

U@ =u"- Atmaxp“ R,
A

U® =un-— Atmaxp” R?,
A

U n+1 __ =U n__ Atmax Pn R(3)
A

For the coefficients;, we use the optimal damping schemes of Lynn and Van Leer [25, 2
which are(0.203 0.451, 0.906, 1.466) for full coarsening and0.182 0.412 0.785 1.401)

for semi-coarsening. The preconditiofgiis frozen at the first stage of an iteration, allowing
an LU factorization and efficient back-solves to be performed on all subsequent stages
note that the inclusion akt,x/ Ain P, cancels with the same term in the multi-stage updat
Thus, in practiceAtnax/ A is never calculated when using the block Jacobi precondition

2.3. Multigrid

The semi-coarsening multigrid method was implemented using a full approximation s
age (FAS) scheme [1] and follows the algorithm described by Mulder [14, 15] with a f
exceptions. First, we solve the second-order discretization on all grids unlike Mulder [:
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who employs a defect correction strategy in which a first-order discretization is usec
coarse grids. Use of defect correction may increase the efficiency of the method but
beyond the scope of the current work. Also, Mulder developed two anti-symmetric
longation operators which he alternates on successive multigrid cycles. We have f
this approach problematic, often producing non-monotonic convergence histories in
junction with the switching between prolongation operators. Instead, we use a symm
prolongation operator [27] such that the correctignt), from two coarse grids to a fine
grid is defined by

AU = P' AU, + PYAU, — 3(PPRyP' AUl + PRI PYAU,),

whereP'/ are thel /J prolongation operator% ,; are thel /J restriction operators, and
AU, ,; isthe change on the/ J-coarsened grid. Linear interpolation is used for prolongatic
and area-weighted averaging for restriction. A V-cycle is used with two pre-smoothing
two post-smoothing iterations. The current algorithm starts from the finest grid with
initially uniform flow (i.e., impulsive start). We have also implemented a full-coarseni
multigrid method for comparisons with semi-coarsening. A detailed description of
algorithms is given by Siu [28].

3. DEFINITION OF e

As shown by Turkel [16], for good low Mach number preconditioning, the value of
should be proportional tM?; in this case, adl — 0, the preconditioned eigenvalues all
remain proportional to the flow speed. A useful measure of the effectiveness of precc
tioning is the characteristic condition numbey, defined as the ratio of largest to smalles
propagation speeds for an isolated point disturbance [17] which is equivalent to the |
of largest to smallest group velocities [29]. The optimal variatioa which minimizescg
over all Mach numbers [28] is given by

2M2/(1—2M2) for M < 0.5,
€opt = (4)

1 forM > 0.5.

With a block Jacobi iterative scheme, we have found that slightly better convergenc
given bye of the form

M2/(1—a2,M?)  for M < Mgy,
€cut = )
for M = MCUta

wherea?,= (1 — M2,)/M2, and Mq is the user-defined Mach number above which n
preconditioning is used. Specifically, for all of the preconditioned block Jacobi result:
this paper, we usBl., = 0.5. Figure 2 contains plots af, for the Euler equations (without
preconditioning), the Euler equations with block Jacobi (no flux preconditioning), and
Euler equations with preconditioned block Jacobi (Turkel flux preconditioningemithac,
andM=0.5). The poor conditioning of the Euler equations is clearly seévi at0 and

M =1. Without any low Mach number preconditioning, block Jacobi has conditioni
identical to that of the Euler equations unifl =0.5, above which block Jacobi is an
improvement. The combination of block Jacobi preconditioning with flux preconditioni
proves effective at removing low Mach number stiffness.
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FIG. 2. Characteristic condition numbety, for Euler (solid line), block Jacobk(= 1, dashed line), and
preconditioned block Jacobi & ¢.; and M, = 0.5, dash-dotted line).

Although the wave propagation stiffness is substantially improved at low Mach numk
using the flux preconditioning, a major source of trouble lies in the lack of robustnes:
M — 0. Darmofal and Schmid [21] have shown that many local preconditioners can tr
siently amplify perturbations by a factor of 1 asM — 0. To demonstrate this, we considet
the linearized, one-dimensional Euler equations in symmetrizing variables preconditic
by the Turkel preconditioner

o0  ~~0aU

4 PAT =0,
at T ax

dp —  —

~ = ~ 0 ~ u c
= (7 P |€ A=Y °
du (du)’ {0 1} [C u}

This can be Fourier transformed and solved for all wave nunibers

where

Uk, 1) = Gk, t)Ug(k),
where
Gk, t) = exp(—ikPAt),

with U (k, t) being the Fourier-transformed state vector with wave nutkbadU o(k) being
the corresponding initial condition. Figure 3 is a plot|@(k, t)| versus time foiM =0
using different values of. As can be clearly seen, the potential for significant transie
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FIG. 3. Maximum amplification] G||, versus time foM = 0 with varying./e.

growth exists aM =0 ase — 0. Specifically, the maximum growth over all time behave
asGmax=1/./€ at M =0. Also, as shown in Fig. 3, the temporal evolution scales wi
wave number such that higher wave number modes will achieve maximum amplificatic
shorter times. These results suggest the need todisuth that it does not approach zerc
at stagnation points.

We can gain some additional insight into the transient growth for this preconditioner
calculating the initial perturbations which lead to the largest possible transient amplifica
Gmax- Infact, thisworst-case disturbance is amode with all of its initial energy in the press
perturbation, i.elUo~ (1,07, Using this as the initial condition, the transient response
the Fourier-transformed pressuf®,oc, and velocity,d, is calculated and shown in Fig. 4
for M =0 ande =0.01. As can be clearly seen, a unit-magnitude pressure disturba
creates an amplified velocity perturbation with magnituge/d= 10.

The typical approach for constructing a limit fors to requirec to be greater than some
multiple of the freestream Mach number [21, 30, 31]. For example, if the desired valus
€ = M?, the limited value would be

e = max(M?%, nM2).

With this limit, the amplification can still reactyl,/7M..), which could be significant at
lower freestream Mach numbers. A typical value fioe 3.0 [31]. This approach works
reasonably well for airfoil flows but the high value pfneans that the limit is often active
throughout the computational domain.

In developing a new limit, the key idea is to recognize that when perturbations are sm¢
the maximum amplification can be large; however, for large perturbations, the maxin
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FIG. 4. Behavior ofp/oc (solid line) andi (dashed line) versus time for the most amplified initial conditior
with M =0 ande =0.01.

amplification must be small. This suggests making the limit a function of the local fl¢
perturbations. The specific limitvhich we have found to work successfully for a variety
of flows is

Dy (K
Elimpey = |p/?—((:2)|~ (6)

As shown in the preceding analysis of the preconditioned system’s transient growth, |
sure perturbations are the most dangerous disturbances and result in velocity perturb:
bounded by

1 P
Ve pc
Thus, substituting;im,..,, from Eg. (6) into Eg. (7), we may show that the velocity perturbe
tion squared is bounded by

Ak, ] <

@)

P
Thisis reminiscent of the incompressible Bernoulli equation and suggests that the magn
of velocity perturbations will correctly scale with pressure perturbations wlerequired
to be greater thaaim,.,. This limit can also be interpreted as a linearity condition since
guarantees that the square of the velocity perturbation is less than the pressure perturt

1 This limit came from a suggestion by Jonathon Weiss of Fluent to include pressure variations outbf.
The authors acknowledge his contribution.
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In our preconditioning strategy, the valueg @fre needed only during the flux calculation
These flux values of are calledks,y. To determines,y, a new value ot is calculated for
every face,

€face = min[l, max(e_L, E_R, GIim)]’ (8)

wheree|_ g are the values of from Eq. (5) using the left and right cell-average states. Whe
using the old limit,

6|im0|d = ]7600 )

wheree, is the value ot evaluated aM, using Eq. (5). For the new limit, we approximate
| p| by the difference in cell-average pressut@g, — p |, giving
|Pr— 1|

€limpew — T )
The newesace Values are limited only with respect to pressure variations across the f
however, pressure gradients in all directions should be accounted for when limitihgs,
the values ok, are sent to the cells with the cell valuesedbeing the maximum of the
four face values which surround it,

4
€cell = r?(’Laj_xefacer(- (10)

Finally, the values;yx used in the flux calculations is the maximum valueQf from the
two cells surrounding a face,

Eflux = max(eceIIL s EceIIR)-

We note that the process of maximizing thever faces and cells as described abov
naturally raises the value efeven without recourse to the new limit.

4. RESULTS

The convergence rates presented in the following results include cycle counts, work L
and CPU timings required to converge the solution six orders of magnitude from the in
residual. Convergence is measured using the RMS residual of all components of the res
vector (i.e., mass, momentum, and energy). A single work unit is equal to the amour
work required to evaluate the residual on the finest grid. Also, the total amount of w
includes only the work required to perform smoothing passes on all of the grids but not
intergrid transfers.

4.1. Bump Flow Results

The first set of tests simulates flow over a solid bump betweenx & 1 described by
y =0.042sirf(xx). The domain is 5 unit lengths long and 2 lengths high. The grid
structured with clustering toward the wall boundary. A sample grid and flow solution .
shown in Fig. 5. Grid sizes range from 3216 to 256x 128.

The results for the Jacobi algorithm in Table | show a pronounced dependence on |
number. In particular, at low Mach numbers, the convergence rates significantly deg
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TABLE |
Bump Flow with Jacobi Results

Full coarsening Semi-coarsening
Grid Cycles Work Cycles Work
Ms = 0.1
32x 16 67 1492 46 2393
64 x 32 113 2551 64 3825
128x 64 241 5457 73 4659
256x 128 DNC DNC 81 5338
M, = 0.3
32x 16 37 824 14 729
64 x 32 63 1422 14 838
128x 64 102 2310 14 894
256x 128 168 3808 14 923
M, = 0.5
32x 16 23 513 8 417
64 x 32 35 791 8 479
128x 64 52 1178 8 512
256 x 128 101 2290 8 528
M, = 0.8
32x 16 28 624 10 521
64 x 32 42 949 10 599
128 x 64 48 1088 15 958
256x 128 80 1814 16 1055

Note.Six orders drop in residual. DNC, did not converge in 300 cycles.

FIG.5. Sample bump grid an@, data. (a) 3% 16 grid and (b)C, contoursM,, = 0.1, preconditioned Jacobi.
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TABLE Il
Bump Flow with Preconditioned Jacobi Results

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work
M, =0.1

32x 16 20 446 7 365

64 x 32 21 475 7 419

128x 64 33 748 7 448

256 x 128 65 1474 7 462
M, = 0.3

32x 16 19 423 7 365

64 x 32 23 520 7 419

128x 64 36 816 7 448

256 x 128 71 1610 7 462
M, = 0.5

32x 16 23 513 8 417

64 x 32 35 791 8 479

128x 64 52 1178 8 511

256x 128 101 2290 8 528
M, = 0.8

32x 16 28 624 10 521

64 x 32 42 949 10 599

128x 64 48 1088 15 958

256 x 128 80 1814 16 1055

Note.Six orders of magnitude drop in residual.

from similar grid sizes at higher Mach numbers. For example, for a grid oikl@8cells,
the M., =0.1 case converges (i.e., the residual drops six orders of magnitude) in
full-coarsening cycles while thil, = 0.5 case converges almost five times faster, needi
only 52 full-coarsening cycles. For semi-coarsening, the results are even more dramatic
M, = 0.1 andM,, = 0.5 converging in 73 and 8 cycles, respectively. While this degradati
in convergence rate is observed most significantiylat= 0.1, the effect is also evident at
Mo, =0.3.

By comparison, the results for the preconditioned Jacobi algorithm in Table 1l show v
little dependence on Mach number for full and semi-coarsening with the lowest Mach n
ber cases converging fastest. The semi-coarsening performance is particularly impre
with the total range of cycles for all Mach numbers and all grids being only from 7 cyc
for the M, = 0.1 cases to 16 cycles for the finest grid,, = 0.8 case. We note also that
for My, > 0.5, the Jacobi and preconditioned Jacobi converge in almost exactly the s
amount of cycles (or work). This result is expected since the preconditioning is turnec
for M > 0.5 by the definition ok in Eq. (5).

Another interesting aspect of the bump flow convergence results is the dependence o
vergence rate on grid size for full and semi-coarsening. Tables | and Il clearly show that
coarsening requires an increasing number of cycles (or work units) to converge with a
creasing grid size for Jacobi and preconditioned Jacobi. In fact, for the largest grids, the
cycles orwork units for convergence are increasing by almost exactly a factor of 2 for a fa
of 4 increase in grid size. This suggests that the full-coarsening algorithm reQuike%2)
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FIG.6. Variation of convergence with grid size. Bump flow with full coarsening\or = 0.1. Solid, 32x 16;
dashed, 64 32; dash-dotted, 128 64; dotted, 256« 128. (a) Jacobi and (b) preconditioned Jacobi.

operations to converge to a fixed level. Convergence histories for full coarsening \
My = 0.1 are shown in Fig. 6. As described in the Introduction, the poor performance of
full-coarsening algorithm is attributable to the lack of damping for grid-aligned error mode
The results for semi-coarsening are distinctly superior to those for full coarsening v
respect to grid dependence. For Jacobi,thge= 0.3 and 05 cases are grid independent,
requiring 14 cycles and 8 cyclesto converge, respectively, for all grid sizé4, At 0.8, the
coarsest two grids converge in 10 cycles while the finer grids jump to 15 and 16 cycles.
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difficulty, we believe, lies with the presence of a shock wave in the steady solution. We t
found this type of grid dependence for many problems with shocks. Several researt
have proposed modifications in the multigrid algorithm to better handle discontinu
flow variations; however, these have not been pursued for this work. For the low-sj
My = 0.1 case, the Jacobi algorithm in conjunction with semi-coarsening is no longer
independent, with the 3% 16 grid requiring 46 cycles and the 256128 grid requiring

81 cycles to converge (see the convergence histories in Fig. 7a). However, preconditi
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FIG. 7. Variation of convergence with grid size. Bump flow with semi-coarseningMgr=0.1. Solid,
32 x 16; dashed, 64 32; dash-dotted, 128 64; dotted, 256« 128. (a) Jacobi and (b) preconditioned Jacobi.
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Jacobi with semi-coarsening maintains grid independence at low Mach numbers. T
shown in Fig. 7b in which the convergence histories versus work units for all grid sizes
nearly identical. The beneficial effect of low Mach number preconditioning is even fel
M = 0.3. In comparison to the Jacobi algorithm which required 14 cycles to converge
all grids, the preconditioned Jacobi algorithm converges in 7 cycles for all grids, givin
factor of 2 improvement.

4.2. Duct Flow Results

A second set of cases was performed for duct flows. All conditions are the same as't
for the bump tests except the upper boundary condition. The upper boundary of the do
is now a solid wall instead of a farfield. With the farfield boundary condition approac
error modes can propagate out of the domain. However, with a solid wall boundary on
acoustic error modes will reflect back into the domain and could hinder with converger
Results for Jacobi and preconditioned Jacobi duct cases are shown in Tables Il and I\
of the trends observed in the bump flow results are also evident in the duct flow cases

4.3. Airfoil Results

The third set of tests simulates flow over a NACA 0012 airfoil. The grid sizes range fr
96 x 16 to 384x 128, and the farfield boundaries are 20 chord lengths away. The farfi
boundary modelis simply the uniform freestream although more accurate models could

TABLE Il
Duct Flow with Jacobi Results

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work
M, =0.1

32x 16 67 1492 46 2393

64 x 32 113 2551 64 3825

128 x 64 240 5435 73 4659

256 x 128 DNC DNC 80 5338
M, =0.3

32x 16 37 824 14 729

64 x 32 64 1445 14 838

128x 64 106 2401 14 894

256 x 128 182 4125 14 923
M, =05

32x 16 23 513 9 469

64 x 32 37 836 8 479

128x 64 62 1405 8 512

256 x 128 109 2471 8 528
M, = 0.8

32x 16 28 624 11 573

64 x 32 37 836 10 599

128x 64 46 1042 10 639

256 x 128 68 1542 21 1385

Note.Six orders of magnitude drop in residual. DNC, did not converge
in 300 cycles.
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TABLE IV
Duct Flow with Preconditioned Jacobi Results

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work
M, =01

32x 16 20 446 7 365

64 x 32 23 520 7 419

128 x 64 39 884 7 448

256 x 128 71 1610 7 462
M, = 0.3

32x 16 19 424 7 365

64 x 32 25 565 7 419

128 x 64 43 975 7 448

256 x 128 76 1723 7 462
M, = 0.5

32x 16 23 513 8 417

64 x 32 37 836 8 479

128 x 64 62 1405 8 511

256 x 128 109 2471 8 528
My = 0.8

32x 16 28 624 11 573

64 x 32 37 836 10 599

128 x 64 46 1042 10 639

256 x 128 68 1542 21 1385

Note.Six orders of magnitude drop in residual.

been incorporated. A typical grid and a transonic solution are shown in Fig. 8. One s¢
grids contained 9& 16, 192x 32, and 384« 64 cells. A second set of grids was generate
by doubling the number of cells in the direction normal to the airfoil surface, giving 38,
192 x 64, and 384« 128 cells. Clustering was used to allow better resolution of the flc
properties in critical areas.

Convergence data for all NACA 0012 results are given in Tables V=VIII. The rest
follow the same trends observed with the bump and duct flows. For the Jacobi algorit
the performance a1, = 0.1 is extremely poor with all but the one case (semi-coarseni
on the finest grid) failing to converge in 300 multigrid cycles. Furthermore, as illustratec
the convergence history plots in Figs. 9 and 10, many of these low Mach number solut
appeared to completely stall and never converge six orders of magnitude. As before, th
Mach number preconditioning completely alleviates this problem. The beneficial effec
preconditioned Jacobi is also observeflgt = 0.3 with a factor of 2 or more improvement
compared to Jacobi in most cases. At higher Mach numbers, the convergence of both J
and preconditioned Jacobi is almost identical.

As observed with the bump and duct flow results, the number of cycles required by
coarsening to converge six orders of magnitude increases with increasing grid size. Fc
finer grids, the amount of work approximately doubles with a fourfold increase in grid si
implying anO(N*2) algorithm. Convergence histories for full coarsening wit, = 0.1
are shown in Fig. 9. In both the Jacobi and preconditioned Jacobi results, the depenc
of convergence on grid size can be easily observed. As described in the Introduction
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FIG.8. Sample NACA 0012 grid an@, data. (a) 192« 32 grid and (b)C, contoursM,, = 0.8, preconditioned
Jacobi.

poor performance of the full-coarsening algorithm is attributable to the lack of damping
grid-aligned error modes.

AtMach numbers of 0.5 and 0.8, the semi-coarsening algorithm with Jacobi precondit
ing performs nearly independent of grid size. At low Mach numbers, the Jacobi algori
with semi-coarsening is no longer grid independent; however, the incorporation of
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TABLE V
NACA 0012 Flow with Jacobi Results for Set 1 Grids

Full coarsening Semi-coarsening
Grid Cycles Work Cycles Work
M, =01
96 x 16 DNC DNC DNC DNC
192 x 32 DNC DNC DNC DNC
384 x 64 DNC DNC DNC DNC
M, = 0.3
96 x 16 78 1737 27 1405
192x 32 117 2641 29 1734
384 x 64 183 4144 29 1852
M, = 0.5
96 x 16 47 1047 17 885
192 x 32 74 1671 15 897
384 x 64 131 2967 16 1022
M, = 0.8
96 x 16 39 869 26 1353
192 x 32 61 1377 25 1495
384 x 64 107 2424 23 1469

Note.Six orders of magnitude drop in residual. DNC, did not converge
in 300 cycles.

TABLE VI
NACA 0012 Flow with Preconditioned Jacobi
Results for Set 1 Grids

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work
M, =0.1

96 x 16 35 780 18 937

192x 32 51 1152 14 838

384 x 64 87 1971 14 894
M, =0.3

96 x 16 34 758 16 833

192x 32 52 1174 13 778

384 x 64 87 1971 13 831
M, = 0.5

96 x 16 39 869 17 885

192x 32 67 1513 15 897

384 x 64 128 2899 16 1022
M, = 0.8

96 x 16 38 847 26 1353

192x 32 61 1377 26 1555

384 x 64 106 2401 23 1469

Note.Six orders of magnitude drop in residual.
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TABLE VII
NACA 0012 Flow with Jacobi Results for Set 2 Grids

Full coarsening Semi-coarsening
Grid Cycles Work Cycles Work
M, =01
96 x 32 DNC DNC DNC DNC
192x 64 DNC DNC DNC DNC
384x 128 DNC DNC 177 11664
M, = 0.3
96 x 32 81 1829 24 1435
192 x 64 142 3216 31 1979
384x 128 277 6278 33 2175
M, = 0.5
96 x 32 59 1332 16 957
192 x 64 103 2333 17 1086
384x 128 205 4646 17 1121
M, = 0.8
96 x 32 59 1332 16 957
192 x 64 108 2446 17 1086
384x 128 195 4420 21 1385

Note.Six orders of magnitude drop in residual. DNC, did not converge
in 300 cycles.

TABLE VIl
NACA 0012 Flow with Preconditioned Jacobi
Results for Set 2 Grids

Full coarsening Semi-coarsening

Grid Cycles Work Cycles Work
M, =0.1

96 x 32 48 1084 12 718

192x 64 83 1880 12 767

384x 128 147 3332 11 726
M, =0.3

96 x 32 50 1129 12 718

192x 64 85 1925 11 703

384x 128 156 3536 11 726
M, =05

96 x 32 55 1242 16 957

192x 64 102 2310 17 1086

384x 128 204 4624 17 1121
M, =0.8

96 x 32 59 1332 15 897

192x 64 108 2446 16 1022

384x 128 194 4397 20 1319

Note.Six orders of magnitude drop in residual.
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FIG. 9. Variation of convergence with grid size. NACA 0012 flow with full coarseniniylat=0.1 for set 2
grids. Solid, 96x 32; dashed, 192 64; dash-dotted, 384 128. (a) Jacobi and (b) preconditioned Jacobi.

Mach number preconditioning again alleviates this problem. Convergence histories fo
semi-coarsening results are plotted in Fig. 10.

4.4, CPU Timings

To further demonstrate the dependence of convergence on grid size, we plot the
CPU time required when running the simulations on a single SGI R10000 processor fo
My, = 0.1 cases with preconditioned Jacobiin Figs. 11 and 12 for the bump and airfoil flo
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FIG. 10. Variation of convergence with grid size. NACA 0012 flow with semi-coarseniniglat=0.1 for
set 2 grids. Solid, 9& 32; dashed, 192 64; dash-dotted, 384 128. (a) Jacobi and (b) preconditioned Jacobi.

respectively. The full-coarsening CPU times (marked-)yshow a nonlinear increase
with respect to grid size while the semi-coarsening times (marked) appear linear.
Approximate curve fits for the timings are also shown in the figures. Specifically, for bu
flows, the full-coarsening curve fit is

CPUyu ~ (4.4 x 1004)N%? s,
and the semi-coarsening curve fit is
CPUsemi ~ (2.3 x 109N s,
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FIG. 11. CPU seconds versus number of cels, Bump flow with preconditioned Jacobi &, =0.1.
(x) Full coarsening ando) semi-coarsening. Curve fits are given by GRE: (4.4 x 1074)N%?2 and CPWgyi=
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whereN is the total number of cells. For the airfoil results, the full-coarsening curve fit
CPUy ~ (8.2 x 1004)N%? s,

and the semi-coarsening curve fit is
CPUsemi~ (3.8 x 109N s.

Thus, to good approximation, full coarsening isa¢N */?) algorithm while semi-coarsening
is O(N). At coarser grid sizes, while semi-coarsening is usually faster than full coarsen
the CPU difference is minor; however, the real benefit of semi-coarsening is apparen
finer grids where the performance of full coarsening degrades.

4.5. Effect ofe Limiter

As shown from the cases above, the rdimiter is a robust method which converged well
in all tests. To assess the relative merits of the old (i.e., freestream-based) limiting and
limiting, we ran a set of cases on the NACA 0012 2932 grid. For the old limit, several

TABLE IX
NACA 0012 Flow Convergence Results for Old and New-Limits

Full coarsening Semi-coarsening
€lim Cycles Work Cycles Work
My =0.1
Old:n=0 51 1152 14 838
Old:in=1 52 1174 14 838
Old:in=2 59 1332 13 778
Old:n =3 69 1558 15 897
Old:n=4 77 1738 17 1017
New 51 1152 14 838
M, =0.3
Old:n=0 52 1174 13 778
Old:n=1 53 1197 13 778
Old:n=2 65 1468 14 838
Old:n =3 76 1716 16 957
Old:n=4 85 1919 20 1196
New 52 1174 13 778
M, =05
Old:n=0 67 1513 15 897
Old:in=1 74 1671 15 897
Old:n=2 74 1671 15 897
Old:n =3 74 1671 15 897
Old:n=4 74 1671 15 897
New 67 1513 15 897
M, =0.8
Old:n=0 61 1377 26 1555
Old:in=1 61 1377 25 1495
Old:n =2 61 1377 25 1495
Old:n =3 61 1377 25 1495
Old:n=4 61 1377 25 1495
New 61 1377 26 1555

Note.Grid 192x 32 cells. Six orders of magnitude drop in residual.
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different values of; were used. The results are given in Table IX. The old andenkmits
perform similarly except for large valuespfor which a noticeable drop in convergence rati
is typically observed. For the higher Mach number flows, the convergence rate for the
limit is particularly insensitive to the value gf This would seem to indicate that the poten
tially beneficial effect of low Mach number preconditioning in stagnation regions is not i
portant for these flows. For higher Mach number flows with significant regions of low-sp
flow such as occurs with separation, the effect of low-speed preconditioninglemniting
may be more pronounced. Notably, the nelimit performs well without any tuning.

To demonstrate the local limiting effect of the newimit, we investigate the old and
new limiter activity forM,, = 0.1 on a 192« 32 grid. For the old limit = 3.0. Figure 13
shows a contour plot adee; — € (Mcgy) for the converged solution, wheegy is defined in

FIG. 13. Plots Ofee — € (Mcey) With 41 equally spaced contours from 0 to 0.03 for NACA 008R, =0.1,
anda,, = 1.25° on a 192x 32 grid. (a) Olde limit ( = 3) and (b) neve limit.
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Eqg. (10) and: (M) is the value of evaluated with the local cell Mach number. Thus
in regions where no limiting occurs and Mach number variations are small, this quar
will be essentially zero. As shown in the plot, the neWimit is active only near the body
while the olde limit is active throughout the flow. Surprisingly, the aldimit converges
only slightly slower than the new limit even though the old limit is active through an
appreciable part of the flow.

Another interesting observation from the airfoil results is that0 not only converges
but often gives the best convergence rate for a test case. However, this is contrary to
several researchers have found [32, 18, 20, 33], particularly with airfoil problems wh
a stagnation point is present. This suggests that the use of the block Jacobi schem
maximization ofe over several cells as described in Section 3, or both may be contribut
to the robustness of the local preconditioning observed here. In the solutions shown s
thee limits on the cell face are influenced by a total of eight cells composed of the nea
neighbors of the two cells at the face. The algorithm will pick the largest valéefraim
this eight-cell stencil. Thus, even with=0, the influence from the other cells in the stenci
can still keepe from going to zero.

In order to gain better insight into the effect of the eight-cell stencil, the algorithm 1
determiningenux Was modified to use only the Mach number from the two reconstruct
states at the face. No othedlimiting process was used (i.e., no freestream\@rbased
cutoff). Table X shows the results for the NACA 0012 airfoil with preconditioned Jacc
and semi-coarsening for the set 2 grids. Only one case becomes unstable (the finest (
My = 0.1), while the other cases converge almost identically to the local limiter results

TABLE X
Convergence Results for NACA 0012 Flow
Using Semi-coarsening Algorithm with Noe
Limiting for Set 2 Grids

Semi-coarsening

Grid Cycles Work
M, = 0.1

96 x 32 12 718

192x 64 12 767

384x 128 UNS UNS
M, = 0.3

96 x 32 12 718

192x 64 11 703

384x 128 11 726
M, = 0.5

96 x 32 15 897

192x 64 17 1086

384x 128 17 1121
M, = 0.8

96 x 32 15 897

192 x 64 16 1022

384x 128 20 1319

Note.Six orders of magnitude drop in residual. UNS,
unstable.
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Table VIII. The conclusion we draw is that the Jacobi formulation increases the robustne
the overall algorithm and, in combination with the limiting strategy described in Sectior
provides a robust and efficient algorithm for Euler calculations.

5. CLOSING REMARKS

We have developed a semi-coarsening multigrid algorithm using a point block Jac
smoother with local preconditioning implemented for improved low Mach number perf
mance. The locally preconditioned semi-coarsening algorithm converges at a rate w
is nearly independent of grid size and Mach number for internal and external flows. C
timings show that the computational work to converge six orders of magnit@eNs for
semi-coarsening, wheig is the number of cells. In contrast, the full-coarsening algorith
computational work i€ (N%/?),

Furthermore, a preconditioning limiting strategy based on pressure changes which
locally to limit the preconditioning in a stagnation point has been explored. This new li
iting strategy in conjunction with the point block Jacobi smoother significantly increa:
the robustness for flows with stagnation points. In fact, based on the tests performed it
study, the point block Jacobi smoother may be the most important contributor to the ac
robustness.

While the semi-coarsened multigrid algorithm with local preconditioning has perforn
quite robustly for the cases presented, the algorithm must still be tested in more demat
circumstances. For example, the grids for all cases in this study are relatively well beh:
with aspect ratios near unity and little stretching over a significant portion of the com
tational domain. Similarly, viscous and, more importantly, turbulent cases have not t
investigated. These more severe applications remain for future work.

APPENDIX

Inthis Appendix, we describe the modified flux for the form of Turkel’s preconditioner u
lizedinthis research. The flux functionin Eq. (2) can be expanded into its characteristic fc

4
3 1 1 * D—1z
H= E[H(UL)-F H(UR)] — E;IMI AwiP7r,

wherel,; are the eigenvalues amgare the right eigenvectors of the matfA. The wave
strengths Awj, are the projection of the conserved state vector changds,onto the
corresponding left eigenvectdr, of PA; i.e., Aw; =1, AU. Leavinge a free parameter,
the preconditioned eigenvalues and eigenvectors are

A= %[(1 + e)ug — 7],

)\.2 == UQ,

A3 = Ug,

A= 3[1+eug+ 1],

whereuy is the velocity component normal to the cell face, and

T = \/(1 — €)2UZ + dec?,
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with cthe speed of sound. For the results contained in this paper, we have applied an en
fix to these eigenvalues; specifically, we define

A)»i, If |)\.i| < A)\,i,
[Ail* = .
[Ail, if [Ai] = AL,

whereAr =2|Ai. — Aigl.
The corresponding preconditioned right eigenvectors are

S+
pif, — 1 ust — 2ec?n, ’
et | vst — 2ec?ny
Hs* — 2ec?uq
0
Pl = | T,
Nx
Vg
1
. u
Pl = ; ,
32+ v?)
.
P17, — 1| us + 2ec?ny ’

€t | vs + 2€Czny
Hs™ + 2ec?uqg
where

S+ = T+(1—6)Ug»

ST =17—(1- ey

Note,vq is the velocity tangential to the gridH is the stagnation enthalpy, aqg,, ny) are
the (x, y) components of the unit face normal. The left eigenvectors are

STUg+ (y — D(u? +?)

i 1 —Ssny —(y —u

17 42 —sny—(y — v
2(y - 1

- -n

="

2 n |’
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— 2y = D2 +v?)

|->3 _ i (y —Du
c2 (y — v '
—-(y—D
—sTug + (y — (U2 + v?)
- 1 s'ny — (y — Du
47 4e2 stny — (y — v
2(y -1

Finally, the wave strengths are given by

Th

1 1
Awy = 55| AP = 5ps AUg |,

Awy = pAuvyg,
Awz = Ap — Ap/c?,

1 1,
Awg =55 AP+ 5pSTAU ).
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