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Abstract

We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of

the compressible Navier–Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of

elements are formed using coupling based on a p = 0 discretization of the scalar convection–diffusion equation. Fourier

analysis of the two-level p-multigrid algorithm for convection–diffusion shows that element line Jacobi presents a sig-

nificant improvement over element Jacobi especially for high Reynolds number flows and stretched grids. Results from

inviscid and viscous test cases demonstrate optimal hp + 1 order of accuracy as well as p-independent multigrid conver-

gence rates, at least up to p = 3. In addition, for the smooth problems considered, p-refinement outperforms h-refine-

ment in terms of the time required to reach a desired high accuracy level.

� 2005 Published by Elsevier Inc.
1. Introduction

While computational fluid dynamics has achieved significant maturity, computational costs can be

extremely large when high accuracy simulations are required. The development of a practical high-order

solution method could diminish this problem by significantly decreasing the computational time required
to achieve an acceptable error level. An attractive approach for achieving high-order accuracy is the discon-

tinuous Galerkin (DG) formulation, in which element-to-element coupling exists only through fluxes at the

shared boundaries between elements. This limited coupling is an enabling feature which permits the devel-

opment of an efficient high-order solver. Furthermore, the DG formulation is well-suited for general

unstructured meshes, and, due to its elementwise discontinuous representation, it is a natural method for

h and p adaptation.
0021-9991/$ - see front matter � 2005 Published by Elsevier Inc.

doi:10.1016/j.jcp.2005.01.005

* Corresponding author. Tel.: +1 617 258 0743x5548; fax: +1 617 258 5143.

E-mail address: darmofal@mit.edu (D.L. Darmofal).

mailto:darmofal@mit.edu


K.J. Fidkowski et al. / Journal of Computational Physics 207 (2005) 92–113 93
DG methods have been developed extensively for hyperbolic conservation laws, and, to a lesser extent,

for diffusive operators. Bassi and Rebay [1–3] have performed numerous studies for the Euler and Navier–

Stokes equations, showing the potential benefits of high-order accuracy with DG in these applications. Fur-

ther details on DG methods are given by Cockburn and Shu [4], who outline the state-of-the-art in this field

and provide implementation details.
As noted by Cockburn and Shu, an area which has received less attention is solution algorithms for high-

order DG discretizations. This paper considers the application of multigrid for the solution of high-order

DG discretizations of the compressible Navier–Stokes equations. Multigrid for the solution of the Euler

equations was pioneered by Jameson in 1983 [5], and since then there have been numerous advances in

the field. In particular, Mavriplis extended multigrid to unstructured meshes [6], and Allmaras [7] presented

a thorough 2D preconditioner analysis investigating the requirements for the proper elimination of all error

modes. In addition, Pierce and Giles [8] studied efficient preconditioners for the Euler and Navier–Stokes

equations on structured meshes, preconditioners which were then applied to anisotropic, unstructured
meshes by Mavriplis [9].

In the context of DG approximations, Hemker et al. [10] analyzed block Jacobi smoothing strategies

with h-multigrid for 1D diffusion problems. This work shows that for diffusion, better iterative performance

can be attained by forming blocks from unknowns on the interfaces between elements, as opposed to the

more apparent choice of element-wise partitioning. In addition, p-multigrid, or multi-order, solution strat-

egies have been studied for high-order DG [11,12], showing several advantages such as ease of implemen-

tation and order-independent convergence rates.

In this paper, a p-multigrid algorithm with an element line Jacobi smoother is presented for the solution
of high-order DG discretizations of the compressible Navier–Stokes equations [13–15]. Section 2 gives a

description of a DG discretization for the compressible Navier–Stokes equations developed by Bassi and

Rebay [3] and used throughout this paper. Section 3 then presents the p-multigrid and element line Jacobi

algorithms. The element lines are formed from the strongest element-to-element coupling as determined by

a low-order (p = 0) discretization of the convection–diffusion equation. Fourier analysis of the two-level

p-multigrid algorithm for convection–diffusion shows that element line Jacobi is significantly better than

element Jacobi especially for high Reynolds number flows and stretched grids. Finally, computational re-

sults for some sample aerodynamic applications confirm the benefits of the p-multigrid and element line
smoothing and show that high-order solutions obtained with this algorithm can provide significant reduc-

tions in the computational time required to achieve desired accuracy levels.
2. Discontinuous Galerkin discretization

The steady, 2D, compressible Navier–Stokes equations in strong, conservation form are given by
r �FiðuÞ � r �Fvðu;ruÞ ¼ 0; ð1Þ

where u = (q,qu,qv,qE)T is the conservative state vector, Fi ¼ ðFx

i ;F
y
i Þ is the inviscid flux, and

Fv ¼Avru ¼ ðFx
v;F

y
vÞ is the viscous flux.

Denote by Vp
h the space of discontinuous vector-valued polynomials of degree p on a subdivision Th of

the domain X into elements such that X ¼
S

j2T h
j. The DG discretization of (1) is given by the following

form: find uh 2Vp
h such that Rðwh; uhÞ ¼ 0; 8wh 2Vp

h, where
Rðwh; vhÞ � �
X
j2T h

Z
j
rwT

h �FiðvhÞdxþ
Z
Ci

wþh � w�h
� �T

Hiðvþh ; v�h ; n̂Þdsþ
Z
oX

wþh
T
Hb

i ðvþh ; vbh; n̂Þds

þVðwh; vhÞ; ð2Þ
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and Vðwh; vhÞ denotes the discretization of the viscous terms. In (2), Ci is the union of interior faces, and oX
is the domain boundary. The ()+ and ()� notation indicates the trace value taken from opposite sides of a

face; n̂ is the unit normal pointing outward from the ()+ elements, and Hiðvþh ; v�h ; n̂Þ and Hb
i ðvþh ; vbh; n̂Þ are

numerical flux functions approximating Fi on interior and boundary faces, respectively. In this work, the

Roe flux was used for Hiðvþh ; v�h ; n̂Þ [16].
The viscous terms are discretized using the second form of Bassi and Rebay (BR2) [3]. This discretization

was chosen because it achieves optimal order of accuracy while maintaining a compact stencil [17]. To write

the discretization in a concise form, jump, sÆt, and average, {Æ}, operators are defined on interior faces as

follows:
sst ¼ sþn̂þ þ s�n̂�; fug ¼ 1

2
ðuþ þ u�Þ;
where s is a spatial scalar quantity and u is a spatial vector quantity. Both operators produce spatial
vectors. Using this notation, Vðwh; vhÞ is given by
Vðwh; vhÞ ¼
X
j2T h

Z
j
rwT

h � ðAvrvhÞdx�
Z
Ci

svht
T � fAT

vrwhg þ swht
T � fAvrvhg

� �
ds

þ
Z
Ci

gf swht
T � fdfgdsþ

Z
oX
ðvbh � vþh Þ

TðAT
vrwhÞþ � n̂ds�

Z
oX

wþh
TðAvrvhÞb � n̂ds

þ
Z
oX

gfw
þ
h
T
dbf � n̂ds; ð3Þ
where df and dbf are auxiliary variables associated with faces and defined by the following weak statement:

find df 2 ½Vp
h�
2
such that 8sh 2 ½Vp

h�
2
,
Z

X
sTh � df dx ¼

Z
rf

svht
T � fAT

v shgds ð4Þ
for interior faces, and
Z
X
sTh � d

b
f dx ¼

Z
rf

ðvþh � vbhÞ
T½ðAT

v shÞ � n̂�
þ
ds; ð5Þ
for boundary faces, where rf denotes the face indexed by f. The auxiliary variables are locally eliminated

from (2) by solving (4) or (5) at each face in the domain. See [3,14] for a more detailed derivation of the

BR2 discretization.

The quantity gf appearing in (3) is a stabilization parameter. The discretization originally proposed by

Bassi and Rebay [3] does not include this additional parameter and is therefore equivalent to gf = 1. How-

ever, the analysis by Brezzi et al. [18] shows that a sufficient condition for stability is gf P 3 for discretiza-
tion of the 2D Poisson equation on triangular grids. For p P 1, optimal accuracy can be proven using this

stability result [18,17]. However, for p = 0, the BR2 discretization does not produce an optimally accurate

solution for gf P 3 [14]. To recover optimal accuracy for p = 0, the following definition of gf is used at inte-

rior edges of triangular elements:
gf ¼
3

1þ 1
2

hþr
h�r
þ h�r

hþr

� � ;

where hþr and h�r are the heights of the elements adjoining edge r. For boundary edges, gf = 3/2.

To obtain high-order convergence rates, curved boundaries must be approximated to high order. For

DG discretizations of inviscid flows, Bassi and Rebay [1] have shown that superparametric representations
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are required for p = 1 discretizations. For the results reported in this paper, piecewise cubic interpolations

of the geometry were used regardless of the order of solution approximation (p 6 3). Even in these curved

boundary elements, the solution basis is polynomial in the physical space – that is, the basis functions are

defined in a reference element different from the one used in numerical integration. Appendix A gives a

description of the implementation of such a basis.
The boundary conditions on oX are imposed weakly by constructing an exterior boundary state, vbh, and

a normal derivative of the state, ðrv � n̂Þb, that are functions of the interior quantities and boundary con-

dition data. These quantities are then used to construct the inviscid and viscous fluxes at the domain bound-

aries, as described in Appendix B.

The final discrete form is obtained by choosing a basis for the polynomial approximation space. In this

work, two types of basis functions are used: a nodal Lagrange basis with equispaced nodes, and a hierar-

chical basis composed of vertex, edge, and bubble functions, as described in [19]. The hierarchical basis

offers better conditioning and, as described in Section 3.3, simplifies the multigrid prolongation and restric-
tion operators. Regardless of the particular basis, the DG discretization produces a system of nonlinear,

algebraic equations, denoted as
rðuÞ ¼ 0; ð6Þ
where u = [u1,u2, . . . ,uN] is the vector of degrees of freedom for the chosen basis such that
uhðxÞ ¼
XN
i¼1

ui/iðxÞ;
and /i(x) are the piecewise discontinuous, polynomial basis functions.
3. Solution method

3.1. Preconditioners

To smooth the errors on a given discretization level, a general preconditioned iterative scheme is used,
vnþ1 ¼ vn � xP�1rðvnÞ; ð7Þ

where the preconditioner matrix, P, is an approximation to the Jacobian, or/ov, and x is the under-relax-

ation factor. Two types of preconditioners are examined: element Jacobi and element line Jacobi. In

element Jacobi, the unknowns on a single element are solved for simultaneously. Thus, the initial precon-

ditioner matrix, Melem, is the block diagonal of the Jacobian.

The element line Jacobi scheme improves upon element Jacobi by solving implicitly on lines of elements

connected along directions of strong convection or grid anisotropy. For example, for viscous flows, line

preconditioning is an important ingredient in removing the stiffness associated with regions of high grid

anisotropy frequently used in viscous layers [7,9,20].
The measure of coupling used in constructing the lines is based on a p = 0 discretization of the scalar

transport operator,
r � ðqusÞ � r � ðlrsÞ;

where qu and l are taken from the solution at the current iteration. Specifically, the coupling between two

elements j and k that share a face is given by, Cj,k ” max(|orj/osk|, |ork/osj|), where r is the discrete scalar

transport operator for p = 0. The initial preconditioner Mline consists of block-tridiagonal subsystems
formed from or/ov for each line of elements.
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To improve the robustness during the initial iterations, the preconditioners for the element and element

line smoothers are augmented by an unsteady term, resulting in P ¼MþM=Dt, where M is Melem or

Mline and M is the mass matrix
Mi;j ¼
Z
X
/i/j dx:
Note that for the DG approximation, M is a block diagonal matrix since each basis function is non-

zero inside only a single element. As the solution converges, Dt!1. Specifically, Dt is first calculated

using the initialized flow and an initial CFL number, CFL0. Following each successful multigrid itera-

tion, the CFL number is augmented according to CFL = gCFL*CFL, and Dt is recalculated. A successful

iteration is defined as one which does not require extra under-relaxation (that is, aside from x) in the
state update or the multigrid prolongation. Such extra under-relaxation is performed to ensure physical

values for variables such as density and pressure. In particular, changes in pressure and density are

limited to b percent of their current values. If extra under-relaxation is required, the CFL number is

not increased. As the solution converges, the requested updates decrease in magnitude so that no extra

under-relaxation is required, leading to CFL!1) Dt!1. In practice, CFL0 = 1, gCFL = 10, and

b = 10% are used.

Inversion of P in the element line smoother uses a block-tridiagonal algorithm, which involves the

LU decomposition of the block diagonal. As the dominant cost of the element line Jacobi solver (espe-
cially for high-order schemes) is this LU decomposition, the computational cost of the element line

Jacobi smoother scales as that of the simpler element Jacobi. However, the performance of the element

line Jacobi smoother is significantly better due to the increased implicitness along strongly coupled

directions.

3.2. Line creation

The effectiveness of the element line Jacobi smoother depends on the length and quality of lines
used. After computing the elemental coupling, lines of elements are formed using the line creation algo-

rithm developed by Fidkowski [13]. The line creation process is divided into two stages: line creation

and line connection. In describing line creation, let N(j; f) denote the element adjacent to element j

across face f, and let F(j) denote the set of faces enclosing element j. Then, the line creation algorithm

proceeds as follows:

Stage I: Line creation

1. Obtain a seed element i.
2. Call MakePath(i) – forward path.

3. Call MakePath(i) – backward path.

4. Return to (1). The algorithm is finished when no more seed elements exist.

MakePath(j)
While path not terminated:

For element j, pick the face f 2 F(j) with highest connectivity, such that element k = N(j; f) is not

part of the current line. Terminate the path if face f is a boundary face or if Cj, k is not one of
the top two distinct connectivities in element k (terminate if top two distinct connectivities do

not exist). Otherwise, assign element j to the current line, set j = k, and continue.

After completing Stage I, it is possible that the endpoints of two lines are adjacent to each other [13].

However, for best solver performance, it is desirable to use lines of maximum length. Thus, Stage II, or line

connection, is employed:
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Stage II: Line connection

1. Loop through endpoint elements, j, of all lines. Denote byHj � F(j) the set of faces h of j that are bound-

ary faces or that have N(j;h) as an endpoint element of another line.

2. Choose h 2 Hj of maximum connectivity. If h is not a boundary face, let k = N(j;h).

3. If k has no other neighboring line endpoints or boundary faces of equal or higher connectivity, then
connect the two lines to which j and k belong.

Both stages of the line creation algorithm result in a unique set of lines for a given flow condition, inde-

pendent of seed element. A detailed proof of this statement is given in [13]. The sketch of the proof is as

follows. First, following Stage I, a given pair of neighboring elements, j, k, are connected if and only if

Cj, k is one of the top two connectivities in j and in k. This observation can be verified by examining the

MakePath algorithm. It implies uniqueness after Stage I because it provides a rule for connecting a given

pair of neighboring elements regardless of the seed elements used for the algorithm.

Next, after Stage II, two neighboring endpoint elements, j and k, of distinct lines will be joined to form
one line if and only if Cj, k is maximum over the set of faces in Hj and Hk. This observation follows directly

from the Stage II line connection algorithm. It implies uniqueness after Stage II because it dictates whether

two line endpoints will be connected regardless of the order in which the endpoints are visited. Thus, the set

of lines is unique after both stages of the line creation algorithm.

The lines formed for a 2D NACA 0012 test case are shown in Fig. 1. In the outer, convection-dominated

flow, the lines follow the streamline direction. In the boundary layer and wake, the effects of high aspect

ratio and diffusion couple elements in the direction normal to convection, resulting in lines normal to

the streamlines.

3.3. p-Multigrid

The use of multigrid techniques is motivated by the observation that the smoothers developed in Section

3.1 are ineffective at eliminating low-frequency error modes on the fine grid. In standard h-multigrid, spa-

tially coarser grids are used to correct the error on the fine grid. On the coarse grids, low-frequency error

modes from the fine grid appear as high-frequency modes, and are therefore effectively eliminated by the

smoothers. p-Multigrid is motivated by the same principle except that lower-order approximations serve
as the coarse levels [21]. p-Multigrid fits naturally into the high-order DG, unstructured grid framework,
Fig. 1. Lines formed around NACA 0012 at M = 0.5, Re = 5000, a = 0�.
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since spatially coarser meshes are not used. Furthermore, the prolongation and restriction operators

between orders are local to the elements.

To accommodate the nonlinearity in the system of equations, multigrid is implemented using the full

approximation scheme (FAS), introduced by Brandt [22]. For a two-level FAS method, the exact solution

on a coarse level is used to correct the solution on the fine level. Specifically, the procedure is as follows:

� Perform m1 smoothing iterations on the fine level: vp vp�xP�1rp(vp).
� Restrict the state and residual to the coarse level: vp�1  ~I

p�1
p vp; fp�1  Ip�1p rpðvpÞ þ rp�1ðvp�1Þ.

� Solve the coarse level problem: rp�1(up�1) = fp�1.

� Prolongate the coarse level error and correct the fine level state: vp  vp þ Ipp�1ðup�1 � vp�1Þ.
� Perform m2 smoothing iterations on the fine level: vp vp�xP�1rp(vp).

When the fine level residual is zero, the coarse level correction is zero since up�1 = vp�1. In this work, the
p � 1 discretization is chosen as the coarse approximation. However, further efficiencies might be possible

with greater reductions in the order. For example, Rønquist and Patera have used p/2 reductions. For the

relatively low p values considered in the current work, reducing the order to p � 1 is nearly equivalent to

p/2, and, thus, p � 1 was chosen for simplicity.

The state prolongation and residual restriction operators can be defined in a standard manner using the

bases of the approximation spaces [23,24]. Specifically, assuming the approximation spaces are nested (i.e.

Vp�1
h �Vp

h), a unique set of coefficients, ap�1ij exists relating the p � 1 and p basis functionsX

/p�1

i ¼
j

ap�1ij /p
j :
Thus, the state prolongation operator can be defined as Ipp�1 ¼ ðap�1Þ
T
. Similarly, the weighted residual for a

p � 1 basis function can be written as a linear combination of weighted residuals from the p basis functions !

Rð/p�1

i ; vphÞ ¼ R
X
j

ap�1ij /p
j ; v

p
h ¼

X
j

ap�1ij Rð/p
j ; v

p
hÞ:
Thus, the residual restriction operator can be defined as, Ip�1p ¼ ap�1, i.e. the transpose of the prolongation
operator. ~I

p�1
p is the state restriction operator and does not have to be the same as the residual restriction,

since it represents the restriction of a physical state as opposed to a weighted residual. In this work, an L2

orthogonal projection was chosen, giving the following definition:
~I
p�1
p ¼ ðMp�1Þ�1Np�1; where Mp�1

k;i ¼
Z
X
/p�1

k /p�1
i dx; Np�1

k;j ¼
Z
X
/p�1

k /p
j dx:
The operators are sparse globally, but take the form of possibly dense matrices locally on each element.

With a Lagrange basis, the local operators are dense. However, with a hierarchical basis, Ipp�1 is the identity
matrix with zero rows appended, and Ip�1p is the identity matrix with zero columns appended. Further

details on the operator definitions can be found in [13].

To improve the efficiency of the multigrid method, the two-level correction scheme is extended to V-
cycles and full multigrid (FMG). In a V-cycle, one or more levels are used in a recursive fashion to correct

the fine level solution. FMG solves the coarse-level problems (though usually only in an approximate man-

ner) prior to iterating on the fine-level problem, thereby potentially reducing the overall solution time as

well as increasing the robustness by improving the starting solutions on the finer level approximations.

To determine when to switch approximation orders in the FMG process, a residual-based approach is used.

At the end of each V-cycle, the order p weighted residuals are compared to the order p + 1 weighted resid-

uals for the current p level approximation [13]. When the L1 norm of the order p weighted residuals is smal-

ler than gswitch times the order p + 1 weighted residuals, the approximation level is raised to p + 1. The
evaluation of the p + 1 weighted residuals adds only marginally to the solution cost because the calculation
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is done only once per multigrid V-cycle and only for the V-cycles that occur before the finest level is reached

(i.e. only on the first few V-cycles). Unless otherwise noted, this residual-based switching approach is used

with gswitch = 0.5 for all FMG results.
4. Fourier analysis

To determine appropriate values of the under-relaxation parameter, x, and to quantify the perfor-

mance of the smoothers and p-multigrid, Fourier analysis is performed for convection–diffusion in one

and two dimensions with periodic boundary conditions. The convection–diffusion equations with constant

velocity, V = (a,b), are given by
aux � muxx ¼ f ðxÞ on ½�1; 1�;
Raux þ buy � mðuxx þ uyyÞ ¼ f ðx; yÞ on ½�1; 1� � ½�1; 1�:
Full-upwinding is used for the inter-element inviscid flux, and the BR2 scheme is used for the viscous flux.

In one-dimension, only the element Jacobi method for pure convection (m = 0) is analyzed. In particular,

the algorithm�s asymptotic convergence rate is shown to be independent of order for p P 0. For 2D con-

vection–diffusion, element and element line Jacobi, with and without p-multigrid, are analyzed. In two

dimensions, the algorithms do exhibit p-dependence, although for element line Jacobi with p-multigrid, this
dependence is weak for the moderate p considered.
4.1. Element jacobi for 1D convection

For this analysis, a Lagrange basis is used on equi-spaced nodes. However, the eigenvalues are

unchanged for any non-degenerate basis of the same polynomial approximation since changing the basis

results in a similarity transformation of the DG system of equations. In addition, although a > 0 is

assumed, analogous results hold for general values of a.
Defining the error at iteration n as en ” vn � u, the preconditioned iterative scheme in (7) becomes,

en+1 = Sen where S = I � xP�1A and A is the matrix arising from the DG discretization of the convection

equation. The action of A on en can be expressed in stencil form. Specifically, for any element j,
ÂU ê
n
j�1 þ Â0ê

n
j þ ÂDê

n
jþ1 ¼ r̂nj ; ð8Þ
where ênj and r̂nj are the length p + 1 error and residual vectors, respectively, for element j at iteration n, and

ÂU ; Â0; and ÂD are (p + 1) · (p + 1) matrices obtained from the DG discretization. For example, for p = 2

using the equidistant Lagrange basis
ÂU ¼ �a
0 0 1

0 0 0

0 0 0

0
B@

1
CA; Â0 ¼

1

2
a

1 4
3
� 1

3

� 4
3

0 4
3

1
3
� 4

3
1

0
B@

1
CA; ÂD ¼ 0:
Thus, the only non-zero contribution from the upwind element (i.e. ÂU ) is due to the influence of its down-

wind interface value, while the downwind element contribution (i.e. ÂD) is identically zero. For the element
Jacobi preconditioner, P is a block-diagonal matrix with diagonal blocks, P̂ ¼ Â0.

Due to the assumed periodicity, the eigenmodes of S will be of the form, êj ¼ expðijhxÞê0, with hx 2 {mph
: "m 2 �M/2 + 1, . . . ,M/2}, and h = 2/M, where M is the number of elements. For an error of this form,

the evolution equation simplifies to



100 K.J. Fidkowski et al. / Journal of Computational Physics 207 (2005) 92–113
ênþ1j ¼ ŜðhxÞênj ; where ŜðhxÞ ¼ I� xÂ
�1
0 ðÂUe

�ihx þ Â0 þ ÂDe
ihxÞ:
For the equi-distant Lagrange basis with full-upwinding
ŜðhxÞ ¼ I� xðI� Ûe�ihxÞ; where Û ¼ �Â�10 ÂU ¼
0 � � � 0 1

..

. . .
. ..

. ..
.

0 � � � 0 1

0
B@

1
CA:
The eigenvalues of Ŝ are 1 � x(1 � exp ihx) (corresponding to the eigenvalue of the standard p = 0 upwind

discretization) and p-repeated values of 1 � x (corresponding to the p higher-order degrees of freedom).

Thus, for the element Jacobi preconditioner, the iterative method has the same eigenvalues for all pP 0

implying that the asymptotic convergence rate will be independent of p for p P 0.

4.2. p-multigrid for 2D convection–diffusion

The error evolution for a two-level multigrid scheme is given by
enþ1 ¼Mpen; where Mp ¼ ðSpÞm2KpðSpÞm1 :

Sp = I � xP�1Ap is the smoothing operator, with x the under-relaxation factor, and Kp ¼
I� Ipp�1ðAp�1Þ�1Ip�1p Ap is the two-grid correction operator. m1 and m2 are the number of pre- and post-

smoothing iterations; m1 = 1 and m2 = 1 were used for the analysis.

Fourier analysis of the two-level multigrid algorithm proceeds in a manner similar to the analysis in Sec-

tion 4.1. In two dimensions, however, the eigenvalues depend on wave numbers in both directions, hx and

hy. In general, the eigenvalues of the iterative algorithm depend on the following factors: smoother choice;

fine and coarse orders; element Reynolds number, Re ” aDx/m; element aspect ratio, AR = Dx/Dy; flow an-
gle, a ¼ tan�1ðb=aÞ; x; hx and hy. The details of two-level multigrid Fourier analysis can be found in various

texts on multigrid, e.g. [23,25,26].

For element line smoothing, the lines are formed based on the coupling between elements for the p = 0

discretization of convection–diffusion. Since the problem considered has constant coefficients (i.e. constant

velocity, viscosity, and grid), the line direction is constant over the grid. In particular, the direction of the

lines is horizontal when
Dy jaj þ m
Dx

� �
P Dx jbj þ m

Dy

� �
and vertical otherwise [14].

The eigenvalues of Mp are calculated as a function of x for four specific cases: (a) nearly inviscid,
AR = 1,Re = 10,000, (b) moderate Reynolds number, AR = 1,Re = 100, (c) low Reynolds number,

AR = 1,Re = 10, and (d) boundary layer, AR = 100,Re = 10,000. The asymptotic convergence rate is

bounded by the spectral radius of Mp, q(Mp). As will be shown, for some flow conditions, isolated regions

exist in wavenumber space (hx,hy), where q(M
p)! 1. This indicates that some grid dependence will exist for

the algorithms (observed in the results of Section 5). For the purpose of choosing appropriate values of x,
the performance of the iterative algorithms is quantified using the average eigenvalue (i.e. amplification

factor) over all the modes.

The average amplification factors for p = 3 are shown in Fig. 2. A comprehensive study of the
parameter space 0 6 p 6 3, 1 6 AR 6 500, 0 6 Re 6 10,000, 1� 6 a 6 25�, and 0 < x < 1 revealed that

all of the algorithms are stable in this range. In terms of choosing the under-relaxation factor to opti-

mize the average amplification, a value of x � 0.8 is reasonable for all algorithms. In practice, although

this value may not be optimal for all conditions, it has been shown to perform well for the majority of
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Fig. 2. Average amplification factor of Mp versus x for various AR and Re, at a = 1�.
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the cases tested. The average amplification factors for p = 1 to p = 3 are tabulated in Tables 1–4 for

x = 0.8. The results show clearly that the element Jacobi algorithm is the weakest algorithm while

the p-multigrid algorithm with element line Jacobi smoothing is the strongest. In particular, the line

smoother is significantly better than the element smoother for the boundary layer conditions
(AR = 100, Re = 10,000). As shown in the tables, the performance of p-multigrid with element line

smoothing is nearly independent of p in this range, and even the other algorithms generally have a

weak dependence on p.

The profiles of the p = 3/p = 2 multigrid amplification factors for the choice of x = 0.8 are shown in

Fig. 3. In these profiles, the multigrid amplification factor, g, of a mode refers to the maximum eigen-

value for that mode (as each mode is associated with several eigenvectors for p > 0). While in all cases

g is low over most of the mode space, there are isolated regions where g tends to 1. In particular, for

the AR = 1, Re = 10,000 case, modes that are low frequency in the streamwise direction (hx � 0)
are poorly damped. This effect suggests an h, or grid resolution, dependence which is observed in

Section 5.



Table 1

Element Jacobi average amplification factors for x = 0.8

Order AR = 1 Re = 10,000 AR = 1 Re = 100 AR = 1 Re = 10 AR = 100 Re = 10,000

p = 3 8.11E�1 7.70E�1 9.10E�1 9.47E�1
p = 2 8.09E�1 7.16E�1 8.52E�1 9.08E�1
p = 1 8.05E�1 7.32E�1 7.23E�1 8.09E�1

Table 2

Element-line Jacobi average amplification factors for x = 0.8

Order AR = 1 Re = 10,000 AR = 1 Re = 100 AR = 1 Re = 10 AR = 100 Re = 10,000

p = 3 2.45E�1 6.30E�1 8.59E�1 3.59E�1
p = 2 2.32E�1 4.34E�1 7.61E�1 3.60E�1
p = 1 2.26E�1 2.74E�1 5.27E�1 3.66E�1

Table 3

p-Multigrid with element smoothing: average amplification factors for x = 0.8

Fine/coarse orders AR = 1 Re = 10,000 AR = 1 Re = 100 AR = 1 Re = 10 AR = 100 Re = 10,000

p = 3/p = 2 5.11E�1 2.71E�1 3.93E�1 7.07E�1
p = 2/p = 1 5.58E�1 2.53E�1 3.51E�1 5.98E�1
p = 1/p = 0 6.05E�1 3.94E�1 3.62E�1 4.96E�1

Table 4

p-Multigrid with element line smoothing: average amplification factors for x = 0.8

Fine/coarse orders AR = 1 Re = 10,000 AR = 1 Re = 100 AR = 1 Re = 10 AR = 100 Re = 10,000

p = 3/p = 2 6.78E�2 1.26E�1 2.64E�1 5.47E�2
p = 2/p = 1 5.85E�2 9.45E�2 2.22E�1 5.79E�2
p = 1/p = 0 4.97E�2 7.17E�2 2.20E�1 1.21E�1
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5. Results

This section presents accuracy and solver performance results for an inviscid duct flow and a viscous

airfoil flow. These results are representative of the algorithm�s performance on a wider variety of smooth

flow test cases, which are documented in the theses of Fidkowski [13] and Oliver [14] for a preliminary

implementation of the current algorithm. For timing, full multigrid was used with a hierarchical basis, 8

pre- and post-smoothing sweeps for p > 0, and 150 sweeps on the coarsest level (p = 0). The large number

of p = 0 smoothing sweeps was meant to ensure adequate solution of the coarse-level problem. An exact
solve or h-multigrid at p = 0 may be more efficient alternatives, although these have not yet been investi-

gated. All cases were started from a converged p = 0 solution and were run on an Intel Pentium 4

3.0 GHz system with 896 MB RAM.

5.1. Inviscid flow in a 2D duct

A representative, smooth inviscid case is that of duct flow over a Gaussian bump perturbation. The do-

main and an intermediate mesh are depicted in Fig. 4. The bump geometry was represented using piecewise
cubic polynomials for all solution approximation orders. Wall boundary conditions were enforced on the

top and bottom of the channel. At the outflow, the static pressure was set, and at the inflow, the total
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temperature, total pressure, and flow angle (0�) were prescribed, resulting in a free-stream Mach number of

M = 0.5. For this mesh and flow, the element lines formed by the solver spanned the horizontal length of

the bump domain.

Four meshes (324, 1296, 5184, and 20,736 elements) were used in a convergence study. The output of

interest was the L2 norm of the entropy error, keSkL2 , where eS = S � Sfs and Sfs is the free-stream entropy.

The results in Fig. 5(a) show that optimal error convergence, keSkL2 	 hpþ1, is approximately attained. Fig.

5(b) shows the accuracy versus CPU time for each run. Timings for p = 0 were not obtained because the
converged p = 0 solutions served as the starting points for FMG at higher orders. A solution was deemed

converged in post-processing at the iteration when the output error was first within one percent of the zero-

residual error value. The advantage of higher-order for obtaining accurate solutions is clearly evident.

To study the asymptotic behavior of residual and output errors, an additional FMG run was performed

in which the residual was fully converged on each level (as opposed to the residual-based switching

normally used). The resulting residual history is shown in Fig. 6(a). As shown, the p-multigrid convergence

rate does not degrade, and even improves slightly, with increasing order, at least up to order 3. In addition,

the accompanying step-like error plot in Fig. 6(b) illustrates that truncation-level error is attained with only
a few p-multigrid iterations after transfer to a finer level. Thus, in practice, it is not necessary to converge to

machine zero residual to obtain outputs of interest to truncation-level accuracy [22].
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While the performance of p-multigrid with element line Jacobi smoothing is generally independent of

p (for the orders tested), h dependence has been observed. Fig. 7 shows the residual convergence for

p = 1 and p = 3 on the first three meshes. In both cases, the number of iterations required to converge

the residual increases with the number of elements. In particular, for p = 1, on the coarsest mesh, the

residual converges to 10�10 in approximately 13 iterations, while on the fine mesh, 19 iterations are

required. For these same cases, the element line smoother was run without p-multigrid, resulting in

the convergence histories in Fig. 8. As shown, the smoother alone exhibits much stronger h-dependence

than when combined with p-multigrid, although the smoother convergence remains p-independent (for
the orders tested).

Fig. 9 compares four different solution algorithms: element Jacobi, element line Jacobi, p-multigrid with

element Jacobi smoothing, and p-multigrid with element line Jacobi smoothing in term of CPU time. As

shown, incorporation of p-multigrid significantly improves the solver performance. In all cases, the combi-

nation of p-multigrid with element line smoothing is the best solver, and as p increases, it becomes relatively

more efficient.
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5.2. Viscous flow over a NACA 0012 airfoil

A representative viscous case is that of M = 0.5, Re = 5000, laminar flow over a NACA 0012 airfoil at

a = 0�. A set of four structured grids was used to generate the data. The meshes were created by mod-
ifying a baseline grid provided by Swanson [27] and coarsening three times, resulting in four nested

meshes containing 672, 2688, 10,752, and 43,008 elements. The coarsest mesh is shown in Fig. 10. On

the airfoil surface, a no-slip, adiabatic boundary condition was imposed. As mentioned earlier, the

boundary was represented with piecewise cubic polynomials for all orders of solution approximation.

The boundary nodes were placed using a slightly modified version of the analytic definition of the NACA

0012:
y ¼ 
0:6ð0:2969
ffiffiffi
x
p
� 0:1260x� 0:3516x2 þ 0:2843x3 � 0:1036x4Þ: ð9Þ
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In (9), the x4 coefficient of the traditional definition of the NACA 0012 has been modified such that the

trailing edge (x = 1) has zero thickness.

The drag error for each grid and interpolation order is shown in Fig. 11. The drag error is defined as the

difference between the drag for a given case and the drag computed from the p = 3 solution on the 43,008
element mesh. Fig. 11(a) shows that the drag error converges at approximately O(h2p) for all p P 1 cases

not including the second p = 3 grid refinement.While it is not clear why the p = 3 rate degrades for the second

refinement, it is possible that superconvergent results should be expected for the drag error in this case [28].

For comparison, results computed by FUN2D, which uses a node-centered finite volume algorithm, on

the same meshes are shown in Fig. 11(b) [29,30]. The convergence of the FUN2D and p = 1 methods in terms

of DOF is very similar. However, the p = 2 and p = 3 results are significantly better. For example, the drag

for the 2688 element p = 2 solution (6.5 · 104 DOF) is within 0.1 drag counts of the finest grid, p = 3 result,

while the drag for the finest grid, p = 1 solution (43,008 elements, 5.2 · 105 DOF) has an error of approxi-
mately 0.3 counts. Thus, at error levels of practical interest, higher-order solutions provide significantly

better accuracy per DOF than p = 1 solutions on more refined meshes. However, this DOF comparison does
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Fig. 10. Coarse NACA 0012 mesh, 672 elements.
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not imply that the high-order solver outperforms FUN2D in terms of CPU time. While a CPU time com-

parison is presented in Fig. 12, the FUN2D results from Fig. 11(b) are not included because no attempt

was made to optimize the performance of FUN2D or the current solver for the problem considered.

Fig. 12 shows the drag error versus CPU time. The values plotted were obtained using a drag-based stop-
ping criterion. Specifically, the calculation was stopped when the change in the drag per iteration was less

that 0.01 drag counts, 10; 000jcnþ1d � cnd j < 0:01, for three consecutive iterations. This stopping criterion was

used to minimize the computational time required to compute the drag given the knowledge that the drag

converges to engineering tolerance faster than the residual converges to machine zero. Clearly, the higher-

order solutions produce smaller error in less time than the p = 1 solution. For example, to achieve a drag

error of approximately 0.1 counts, the p = 1 solution would take approximately 100 times longer than either

the p = 2 or p = 3 solutions.

As in the inviscid case, while the multigrid performance was seen to be p-independent for the orders
tested, h dependence was observed. Fig. 13 shows this effect in the residual convergence for p = 1 and

p = 3 on three meshes. Compared to the inviscid case, the h dependence is stronger. For p = 1, on the

672 element mesh, the residual converges to 10�10 in approximately 15 multigrid iterations, while on the

fine mesh, 36 iterations are required.
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Fig. 14 shows the performance of the element line Jacobi smoother with varying h and p. Note that these

results were obtained using an under-relaxation factor of x = 0.6 because a weak unsteadiness was observed

when using only the element line smoother with x = 0.8. This unsteadiness exhibited itself as a Kelvin–

Helmholtz-like instability in the wake downstream of the airfoil which was damped when x was lowered.

As in the inviscid case, the convergence of the residual using only the element line smoother is

strongly h dependent. However, unlike the inviscid results, a slight p dependence is also present. For

example, on the 2688 element mesh, for p = 1, the residual converges to 10�10 in approximately 3/4

the number of element line Jacobi iterations required to converge the p = 3 residual to the same level.
Thus, in addition to reducing the h dependence of the element line smoother, p-multigrid also decreases

the p dependence.

Fig. 15 shows the performance of the four different solution algorithms compared in the inviscid case.

Again, the incorporation of the element line Jacobi smoother significantly improves performance, and

p-multigrid with element line Jacobi smoothing is the most efficient solver.
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6. Conclusions

This paper presented a solution algorithm for the compressible Navier–Stokes equations discretized

using a discontinuous Galerkin method. The algorithm combines p-multigrid with an element line smoo-
ther. Fourier analysis is done to quantify the performance of the proposed algorithm and to compare it

with simpler variations (such as element Jacobi with/without p-multigrid or element line Jacobi without

p- multigrid). Simulations of an inviscid bump flow and a high Reynolds number airfoil flow are also per-

formed. The analysis and results show that for the combination of element line smoothing and p-multigrid,

the residual converges at nearly p-independent rates but has some asymptotic h dependence. Furthermore,

the efficiency in terms of CPU time of the proposed algorithm compared to other solution approaches im-

proves as the order of accuracy is increased. Finally, the simulations show that high-order solutions

obtained with this algorithm can provide significant reductions in the computational time required to
achieve desired accuracy levels.
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Appendix A. Representation on curved elements

In Section 2, the comment was made that the solution basis used for curved elements is polynomial in the

physical space. The importance of this fact is evident in the evaluation of a typical integral over a curved

element:
Z
j
f ð/Þdx ¼

X
g

wgf ð/ÞjJjdn; ðA:1Þ
where numerical quadrature is used in the reference element corresponding to the curved element. In (A.1),

wg is the weight corresponding to quadrature point g; / represents the basis functions; x represents the

coordinates in the physical space, and n represents the coordinates in the reference space, as shown in

Fig. 16. A is the nonlinear mapping from the reference element to the curved element, and J = ox/on is

the Jacobian of the mapping. If the basis functions, /, are defined in the standard fashion on the reference
element, (A.1) becomes
Z

j
f ð/Þdx ¼

X
g

wgf ð/ðngÞÞjJjdn; ðA:2Þ
where ng are the quadrature point coordinates. However, with this definition, the basis functions trans-

formed to the physical space (x) do not necessarily form a complete basis of the desired order, since the

mapping A is nonlinear for curved elements. An alternative used in this work is to define the basis in a

reference triangle corresponding to the shadow of the curved element, where the shadow is defined as

the triangle formed by connecting the curved element vertices with straight lines (see Fig. 16, dashed lines).

Since the resulting reference-to-global shadow transformation, B, is linear, the basis functions thus defined

form a complete basis of the desired degree in the physical space. With this definition, (A.1) becomes
Z
j
f ð/Þdx ¼

X
g

wgf ð/ðB�1AngÞÞjJjdn: ðA:3Þ
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Fig. 16. Reference and shadow triangles corresponding to a curved element.
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That is, the quadrature points in the original reference element are transformed to the shadow reference

element via the mapping B�1A, and the basis functions are evaluated using these transformed points. Note

that in the case of a linear element, B = A and B�1A is the identity, so that the standard representation,

(A.2) is recovered. Finally, if the element in the physical space is severely curved, such that the vertices

are colinear, the shadow triangle definition has to be modified (for example by using a bounding box of
the curved element).
Appendix B. Boundary conditions

Boundary conditions are enforced weakly via the domain boundary integrals appearing in (2). To eval-

uate these integrals, the two terms vbh and ðAvrvhÞb must be defined.

B.1. Full-state condition

In cases where the entire state vector at the boundary, ubh, is known, the inviscid flux is computed using

the Riemann solver exactly as if the face were an interior face:
Table

Types

Condit

Subson

Supers

Subson

Supers
Hb
i ðvþh ; vbh; n̂Þ ¼Hiðvþh ; ubh; n̂Þ:
No conditions are set on the viscous flux. Thus, ðAvrvhÞb is set by interpolating ðAvrvhÞþ to the boundary.

dbf is computed using vbh via (5).

B.2. Inflow/outflow conditions

At an inflow/outflow boundary, the boundary state, vbh, is defined using the outgoing Riemann invar-

iants and given boundary data. Table 5 details the inflow/outflow conditions used in this work. Note
that, while the Euler equations are well-posed with just the boundary conditions listed in Table 5, the

Navier–Stokes equations are not. Conditions – numeric and/or physical – are needed to set

ðAvrvhÞb and dbf . For this work, ðAvrvhÞb is set by extrapolating from the interior of the domain,

and dbf is computed via (5).

B.3. Adiabatic, no slip wall conditions

For a no slip, adiabatic wall, the velocity components and normal temperature gradient at the wall are
prescribed: ub = 0, vb = 0, oT/on|b = 0. To compute the boundary state, the static pressure, p, and stagnation

enthalpy per unit mass, H, are set using interior data:
p ¼ ðc� 1ÞqEþ; H ¼ qEþ þ p
qþ

) vbh ¼ qþ; 0; 0; qEþð ÞT:
5

of inflow/outflow boundary conditions

ion Number of BCs Value specified Outgoing invariant

ic inflow 3 TT,pT,a J+
onic inflow 4 q,qu,qv,qE None

ic outflow 1 p J+,v, s

onic outflow 0 None J+,J�,v, s
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The adiabatic condition, combined with the no slip condition, requires the viscous flux associated with the

energy equation to be zero. The interior viscous flux is used for the other components. Furthermore, since

the energy equation viscous flux is specified, the corresponding component of the auxiliary variable, dbf , is

set to zero. All other auxiliary variable components are computed as stated in (5).
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