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Axisymmetric vortex core flows, in unconfined and confined geometries, are examined
using a quasi-one-dimensional analysis. The goal is to provide a simple unified view of
the topic which gives insight into the key physical features, and the overall parametric
dependence, of the core area evolution due to boundary geometry or far-field pressure
variation. The analysis yields conditions under which waves on vortex cores propagate
only downstream (supercritical flow) or both upstream and downstream (subcritical
flow), delineates the conditions for a Kelvin–Helmholtz instability arising from the
difference in core and outer flow axial velocities, and illustrates the basic mechanism
for suppression of this instability due to the presence of swirl. Analytic solutions
are derived for steady smoothly, varying vortex cores in unconfined geometries
with specified far-field pressure and in confined flows with specified bounding area
variation. For unconfined vortex cores, a maximum far-field pressure rise exists
above which the vortex cannot remain smoothly varying; this coincides with locally
critical conditions (axial velocity equal to wave speed) in terms of wave propagation.
Comparison with axisymmetric Navier–Stokes simulations and experimental results
indicate that this maximum correlates with the appearance of vortex breakdown
and marked core area increase in the simulations and experiments. For confined
flows, the core stagnation pressure defect relative to the outer flow is found to
be the dominant factor in determining conditions for large increases in core size.
Comparisons with axisymmetric Navier–Stokes computations show that the analysis
captures qualitatively, and in many instances, quantitatively, the evolution of vortex
cores in confined geometries. Finally, a strong analogy with quasi-one-dimensional
compressible flow is demonstrated by construction of continuous and discontinuous
flows as a function of imposed downstream core edge pressure.

1. Introduction
Vortex cores in pressure gradients are a feature of many flows of technological

interest. Well-known examples are the vortex above a low-aspect-ratio swept wing
and the tip clearance vortex that occurs in turbomachinery blading. In these situations,
as well as in many others, the central element is a vortex subjected to a pressure rise in
the direction along its axis, with the possible consequence of large expansion of vortex
core area. A direct result of this expansion on compressor or pump performance, for
example, is decreased effective flow area, and hence decreased pressure rise capability.

The behaviour of vortex cores in pressure gradients is the subject of this paper.
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The goal is to provide a unified model of such flows, in external (unconfined) as well
as internal (confined) geometries. The spirit of the analysis is much akin to the use of
one-dimensional compressible flow theory, namely to provide a simple tool for physical
insight, understanding of flow regimes, parametric behaviour and structure, and useful
estimates of the magnitudes of the effects of interest. Further, while the simplicity
of the model places some limitations on the accuracy, comparison with experiments
and computations give confidence that the model is a useful representation of many
aspects of vortex core flows.

The model employs a control volume formulation similar to that of Landahl &
Widnall (1971), extended to include time dependence, interaction with a flowing exter-
nal stream, and the influence of bounding geometry and conforming geometry. While
Landahl & Widnall only considered discontinuous jumps between two columnar vor-
tex states, we show that in general both continuous and discontinuous solutions need
to be considered and that the former are most likely in confined flows.

Similar models for unconfined vortex cores have previously been derived by Lund-
gren & Ashurst (1989), Marshall (1991, 1993), and Leonard (1994). Lundgren &
Ashurst use a control volume formulation similar to that followed in this work. Mar-
shall and Leonard employ (different) weighted residual techniques which have the
advantage of allowing extension to more complex core velocity distributions. These
previous models are more general than the present analysis (including the ability to
describe non-axisymmetric disturbances), but in the limit of long-wave, axisymmetric
disturbances, all the approaches reduce to essentially identical descriptions. The de-
liberate narrowing in scope of the present analysis arises from the desire to exhibit
clearly the array of different physical effects that are associated with even the basic
geometric configuration of a straight axisymmetric core (Mahesh 1996). While we
thus re-iterate previous results for the behaviour of waves in unconfined situations
and the existence of discontinuous solutions, new results are presented regarding:
(i) the extension to steady and unsteady confined vortex cores where geometry is
prescribed, (ii) the behaviour of smoothly varying core flows including numerous
experimental and computational comparisons, and (iii) the analogy with quasi-one-
dimensional compressible flow including solutions with ‘vortex shocks’ (Lundgren &
Ashurst 1989; Marshall 1991, 1993; Krishnamoorthy & Marshall 1994; Marshall &
Krishnamoorthy 1997).

Anticipating the results to be shown, we will demonstrate that the model appears to
capture a number of important features of vortex cores in axial pressure gradients. A
linearized analysis of wave propagation on the core shows, following Benjamin (1962),
the distinction between supercritical states, for which all waves propagate downstream,
and subcritical states, for which waves can also propagate upstream. The manner in
which the global flow parameters affect the stabilizing effect of swirl (the ‘stiffening
effect of vortex lines’, Yih 1980) on the Kelvin–Helmholtz instability associated with
the axial velocity difference between core and free stream can also be seen explicitly.
For steady, continuous vortex cores, a general closed-form solution is derived and
used to analyse the sensitivity of core area growth to parameters such as swirl ratio,
core-to-duct area ratio, axial velocity ratio, and pressure rise (for unconfined flow) or
duct geometry (for confined flow). For unconfined flows it is shown that a maximum
far-field pressure rise exists beyond which a steady, continuous flow cannot occur.

Comparisons with experiments and axisymmetric Navier–Stokes simulations show
the model provides good quantitative estimates for core area behaviour in a varying-
area duct. Also, the maximum theoretical far-field pressure rise correlates well with
the appearance of vortex breakdown in the simulations and experiments. These com-
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Figure 1. Schematic of the quasi-one-dimensional model for confined flow showing a vortex core
of radius δ(z, t) with control volume end points z0 and z1, and pipe wall at RD(z).

parisons complement previous results of Krishnamoorthy & Marshall (1994) and
Marshall & Krishnamoorthy (1997) concerning the validity of the unconfined flow
model for the cutting of a vortex by a thin blade. They found that experimentally
observed propagation speeds of vortex breakdowns generated by vortex cutting are
consistent with the model propagation speeds of ‘vortex shocks.’ Marshall & Krish-
namoorthy (1997) have also shown that the predictions of core area variation and
force on the blade compare well with the results from direct numerical simulations.

Finally, the strong analogy with quasi-one-dimensional compressible flow is demon-
strated by, to the authors’ knowledge, the first construction of its kind of steady vortex
core flows subjected to an external pressure gradient with an imposed downstream
core pressure; the latter plays a role analogous to back pressure in quasi-one-
dimensional flow. Depending on the specific conditions, there will be either smoothly
varying flows or flows that include a discontinuous jump or ‘vortex shock’ in order
to match the required back pressure. The smoothly-varying flows have a constant
flux-averaged stagnation pressure throughout the domain while the discontinuous
flows lose flux-averaged stagnation pressure due to the ‘shock.’

2. Assumptions
The flow to be described is a Rankine (solid body rotation) vortex core, surrounded

by an irrotational swirling flow. The vortex core centre is aligned with the z -axis. The
core radius, δ, and axial velocity, w, are functions of axial coordinate, z, and time, t, as
indicated in figure 1. At every axial location, the Rankine swirl velocity distribution
is assumed, so that

v(r, z, t) =


Γ∞
2πδ

r

δ
, r 6 δ

Γ∞
2πr

, r > δ,

(2.1)

with the far-field circulation, Γ∞, constant. The maximum swirl velocity occurs at the
core edge and is

vmax =
Γ∞
2πδ

.

The vortex core swirl ratio, Ω, is defined as

Ω ≡ vmax

w
.
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The fluid is taken as incompressible with constant density, ρ. In the quasi-one-
dimensional treatment adopted, the core axial velocity is uniform in r.

With the approximation that the radial velocities are negligible, the radial momen-
tum equation reduces, for steady as well as unsteady flow, to

∂p

∂r
= ρ

v2

r
. (2.2)

Equations (2.1) and (2.2) plus the assumption that the flow outside the vortex core is
irrotational, imply that the axial velocity outside the core is uniform in r, although
its value need not be the same as in the core.

An expression for the static pressure is obtained by integrating (2.2) with the swirl
velocity distribution of (2.1) to yield

p(r, z, t)− pδ(z, t) =


−1

2
ρ

(
Γ∞
2πδ

)2 [
1−

( r
δ

)2
]
, r 6 δ

−1

2
ρ

(
Γ∞
2πδ

)2
[(

δ

r

)2

− 1

]
, r > δ.

(2.3)

In (2.3), pδ is the core edge pressure, p(δ, z, t).
Note that the assumptions utilized limit the applicability of this description to

long-wavelength variations, in other words, situations in which axial variations occur
over distances of several core radii.

3. Model equations for continuous vortex flows
Before considering specific features of confined and unconfined flows, we derive

the equations that any smoothly varying (i.e. continuous) vortex core must satisfy.
Consider a vortex core between axial locations z0 and z1 as depicted in figure 1, with
differences in quantities between axial locations denoted by double brackets, i.e.

[[f(z)]] = f(z1)− f(z0).

Conservation of mass in the vortex core gives

d

dt

∫ z1

z0

A dz + [[Aw]] = 0, (3.1)

where the core area is A = πδ2. Conservation of axial momentum in the vortex core
is

d

dt

∫ z1

z0

Aw dz + [[Aw2]] = −1

ρ

∫ z1

zo

A
∂pδ

∂z
dz. (3.2)

Equations (3.1) and (3.2) can also be written in differential form,

∂

∂t
(A) +

∂

∂z
(Aw) = 0, (3.3)

∂

∂t
(Aw) +

∂

∂z
(Aw2) = −A

ρ

∂pδ

∂z
. (3.4)

Equations (3.3) and (3.4) (or (3.1) and (3.2)) are two equations for three unknowns,
A, w and pδ . To close the problem, the variation in edge pressure must be specified
either through imposition of the far-field pressure (in the case of an unconfined flow)
or the confining geometry.
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For the former we use the relation between core edge and far-field pressure from
(2.3),

pδ(z, t) = p∞(z, t)− ρ Γ
2∞

8πA
. (3.5)

Introducing (3.5), equation (3.4) becomes

∂

∂t
(Aw) +

∂

∂z

(
Aw2 +

Γ 2∞
8π

log A

)
= −A

ρ

∂p∞
∂z

. (3.6)

These equations have been previously derived by Marshall (1991).
For flows in confined geometries (ducts), we define the duct in terms of a specified

radius, RD(z), as depicted in figure 1, with a core flow from 0 < r < δ(z, t) and
an outer flow from δ(z, t) < r < RD(z). Descriptions of conservation of mass and
momentum in the outer region close the problem.

For the outer flow, conservation of mass in differential form is

∂

∂t
(AD − A) +

∂

∂z
[(AD − A)W ] = 0, (3.7)

where AD = πR2
D is the duct area and W is the axial velocity in the outer flow. In

terms of the core edge pressure, pδ , conservation of momentum in the outer region is
written

∂

∂t
[(AD − A)W ] +

∂

∂z
[(AD − A)W 2] = −AD − A

ρ

∂pδ

∂z
+

Γ 2∞
8πA

(
AD

A
− 1

)
∂A

∂z
. (3.8)

Equations (3.3), (3.4), (3.7) and (3.8) describe the evolution of A, w, W and pδ for
smoothly varying confined vortex cores.

4. Waves on vortex cores and flow regime definition
To illustrate the role of wave propagation speeds as a means of differentiating

behaviour regimes, and to demonstrate the stabilizing effect of swirl, we examine
wave propagation along a vortex core. We linearize (3.3), (3.4), (3.7) and (3.8) by
taking all quantities to be composed of a mean state, uniform in z, plus a small
perturbation. The resulting equations for confined flow are

∂A′

∂t
+ w

∂A′

∂z
= −A∂w

′

∂z
, (4.1)

∂w′

∂t
+ w

∂w′

∂z
= −1

ρ

∂p′δ
∂z

, (4.2)

∂A′

∂t
+W

∂A′

∂z
= (AD − A)

∂W ′

∂z
, (4.3)

∂W ′

∂t
+W

∂W ′

∂z
= −1

ρ

∂p′δ
∂z

+
Γ 2∞

8πA2

∂A′

∂z
, (4.4)

where primed variables denote the small perturbations and unprimed here refer to the
mean flow. Equations (4.1)–(4.4) are a long-wavelength description of wave propaga-
tion on the vortex core. Decomposing the perturbations into individual Fourier modes
such that A′(z, t) = Â exp i(kz−ωt), where k and ω are the disturbance wavenumber
and frequency, respectively, and substituting into the linear equations, (4.1)–(4.4) lead
to an eigenvalue problem for the wave speed λ = ω/k.
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4.1. Unconfined flows

For the unconfined case (the limit of infinite duct radius), the eigenvalues are

λ1,2 = w ± c, (4.5)

where the quantity, c, is defined

c2 ≡ Γ 2∞
8πA

=
v2

max

2
. (4.6)

Flow disturbances travel at characteristic speeds, w ± c, and two regimes can thus be
defined (Benjamin 1962). For |w| − c > 0, referred to as supercritical, all disturbances
move downstream. For |w| − c < 0, referred to as subcritical, disturbances can
propagate both up- and downstream. Analogous to the Mach number, we define a
dimensionless number, R, using the axial velocity and the small disturbance speed to
characterize the vortex state. When |R| > 1 the flow is supercritical and when |R| < 1
the flow is subcritical. Specifically,

R =
w

c
=

√
2

Ω
,

where Ω is the swirl number vmax/w. R can be regarded as a Rossby number based
on core angular velocity and radius. The condition R = 1 has been previously used as
a criterion for classifying vortices and impending vortex breakdown by Spall, Gatski
& Grosch (1987). At this condition the swirl ratio is Ωcrit =

√
2, and a vortex is

supercritical when the swirl ratio, Ω < Ωcrit.
Some indication of the effect of the model approximations can be seen by comparing

the critical swirl ratio (Ωcrit =
√

2) given above with that resulting from eigensolutions
of the inviscid small disturbance equations (Benjamin 1962; Marshall 1993) for a
Rankine vortex, which yield a critical swirl ratio of approximately 1.2. As will be seen
for other aspects, the quasi-one-dimensional model not only provides a useful estimate
of this and other ‘exact’ numerical values, but is in good accord with qualitative trends
seen in more complex descriptions and experiments.

4.2. Confined flows

For confined vortex flow, the eigenvalues are

λ1,2 =
(AD − A)w + AW

AD
±
√(

1− A

AD

)[
c2 − A

AD
(W − w)2

]
. (4.7)

In (4.7), c is the vortex core wave speed defined in (4.6). If we define effective
convective and wave speeds as

weff = w

[
1 +

A

AD

(
W

w
− 1

)]
,

c2
eff =

(
1− A

AD

)[
c2 − A

AD
(W − w)2

]
,

the eigenvalues can be written as λ1,2 = weff ± ceff .
For the confined case the eigenvalues can be complex, corresponding to the long-

wavelength Kelvin–Helmholtz instability of the cylindrical vortex sheet separating
core and outer flow. For purely real eigenvalues c2

eff must be equal to or greater than
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zero, or

Γ 2∞
8πA

>
A

AD
(W − w)2. (4.8)

Equation (4.8) shows the stabilizing effect of swirl: the larger the difference in axial
velocity between core and outer region, the greater the swirl needed for stability.
The analogy between the stability of axisymmetric rotating fluids and stratified fluid
motion in a gravitational field (e.g. Howard 1963; Drazin & Reid 1981) can be
seen directly by comparison of (4.7) with the corresponding equation for long waves
in two-layer stratified flow (e.g. Lamb 1932). In that case, the stabilization arises
from the difference in density of the fluids. We note that (4.8) offers no information
about, and indeed cannot be applied to, stability of the unbounded vortex core. The
long-wavelength approximation is based on the disturbance wavelength being much
larger than any characteristic geometric length scale in the problem (for example the
duct radius, RD). The one-dimensional description of Kelvin–Helmholtz instability
which results from this approximation, and which implies that the perturbations are
independent of radial position, cannot be used for an unbounded flow. To analyse
stability, the long-wavelength description can be used in the core, but it would need to
be coupled with a two-dimensional (z, r) description of the motion in the unbounded
irrotational flow outside the core which allows pressure and velocity perturbations in
the external flow to decay appropriately with distance away from the core.

For the confined case, an effective criticality parameter can be defined as

Reff =
weff

ceff

,

with values of Reff > 1 indicating supercritical flow. For given A/AD and w/W , the
critical swirl ratio for which Reff = 1 is

Ωcrit =

√
2

[
1 +

(W/w)2

AD/A− 1

]
. (4.9)

These critical values mark the boundary between subcritical and supercritical flows.
They will be seen to indicate the condition under which core area growth becomes
locally unbounded and hence to mark parameter regimes with rapid core expansion.

5. Vortex core growth in steady continuous flow
Two issues are addressed in this section. The first is development of criteria

for conditions under which large growth in vortex core area is expected. From a
technological perspective, this is perhaps the most important problem associated
with vortex core flows. In this, the (non-dimensional) flux-averaged core stagnation
pressure will be shown to have a central role. The second is to assess, through
comparison with experiments and with axisymmetric time-accurate Navier–Stokes
simulations, the degree to which the present model provides a useful description for
the flows of interest.

To examine the flux-averaged core stagnation pressure, (3.3) and (3.4) can be
combined to give

∂

∂z
(pδ + 1

2
ρw2) = 0. (5.1)

The quantity pδ + 1
2
ρw2 is the core flux-averaged stagnation pressure which will be
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Figure 2. Vortex core expansion A/A0 versus edge pressure rise ∆pδ/
1
2
ρw2

0 for inlet swirl Ω0 = 0.19,
0.43 and 0.57. Data by Cho (1995). The upstream core-to-duct area ratio A0/AD0

≈ 0.04 and the
pressure rise occurred over an axial distance of approximately 40 core radii.

denoted by, H̄core; it is defined as

H̄core ≡ 2π

Aw

∫ δ

0

[p+ 1
2
ρ(v2 + w2)]wrdr = pδ + 1

2
ρw2, (5.2)

where (2.1) and (2.3) have been used. Equations (5.1) and (5.2) show that under the
assumptions made here H̄core is constant for a steady continuous vortex.

Equation (5.1) can be regarded as a quasi-Bernoulli relation between core edge
pressure and core velocity. Invoking continuity this can be written in a form that
connects changes in core area and core edge static pressure,

∆pδ
1
2
ρw2

0

= 1−
(
A0

A

)2

, (5.3)

where A0 and w0 are the initial core area and axial velocity, and ∆pδ is the pressure
rise from the initial to current location. Equation (5.3) has been derived without con-
siderations of the outer flow and applies to both confined and unconfined geometries
and all values of swirl.

The validity of (5.1) and thus of the overall core model has been examined
experimentally by Cho (1995). The experiments consisted of a constant-area duct,
with the pressure rise created by flow extraction at the outer wall. In the experiments,
the upstream core-to-duct area ratio A0/AD0

≈ 0.04 and the pressure rise occurred
over an axial distance of approximately 40 core radii. Additional information about
the experiment can be found in Cho (1995).

Figure 2 shows core area variation as a function of core edge pressure rise,
∆pδ = pδ − pδ0 where pδ0 is the upstream edge pressure. For lower pressure rises, the
experimental and quasi-one-dimensional results compare well. At the higher pressure
rises, the core area increases are several times greater than those encountered in
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Figure 3. Variation with R of the relationship of stagnation pressure, H̄core,
and far-field pressure, p∞, for a steady flow.

numerical simulations at the onset of vortex breakdown. These latter conditions
are perhaps outside the ability of the theory to describe because the large radial
expansions and associated large radial velocities are not modelled. Figure 2 however,
does show the applicability of the description summarized by (5.3) and also indicates
that the theory provides a quantitative estimate of the conditions (i.e. value of ∆pδ)
when rapid growth will occur.

5.1. Unconfined flows

For an unconfined vortex, the effect of external conditions is expressed by the far-
field pressure distribution, p∞(z). The far-field pressure can be related to the core
stagnation pressure and the criticality parameter, R, by

H̄core − p∞
1
2
ρu2∗

= R2
(R2 − 2

)
, (5.4)

where u∗ is a reference velocity given by

u∗ =
Γ 2∞

8πAw
.

For a steady flow, u∗ and H̄core are invariants. Equation (5.4) provides a relation
between the far-field pressure and the criticality parameter R which is illustrated in
figure 3. Increases in far-field pressure always drive R towards unity regardless of the
value of R. The difference between the flux-averaged core stagnation pressure and
the far-field pressure reaches a minimum when R = 1, given by

min
all R(H̄core − p∞) ≡ H̄core − p∗∞ =

(
H̄core − p∞)∣∣R=1

= − 1
2
ρu2∗.

If the far-field pressure is greater than p∗∞, the core cannot remain smoothly varying
and a dissipative discontinuity (analogous to a shock in compressible flow) develops
and propagates upstream. For these situations the stagnation pressure drops across
the discontinuity (see § 6), decreasing H̄core−p∗∞ further, leading to the conclusion that
steady flows with static pressure above p∗∞ do not exist whether or not the flow is
continuous.
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Another feature associated with critical conditions (R = 1 or equivalently Ω =
√

2
for unconfined flows) is that the local rate of change of core area, as a function of p∞,
becomes unbounded. This can be seen by combining the steady form of (3.3), (3.4)
and (3.5) to yield

dA

A
=

1

1− Ω2/2

dp∞
ρw2

=
R2

R2 − 1

dp∞
ρw2

. (5.5)

Equation (5.5) provides an argument for the connection between critical conditions
and the onset of rapid core growth, which we amplify in the following sections.

5.1.1. Model comparison with numerical and experimental results

To investigate the existence of a maximum pressure rise for smoothly varying flows,
numerical simulations of the incompressible, axisymmetric Navier–Stokes equations
have been performed utilizing the time-accurate, streamfunction–vorticity algorithm
developed by Darmofal (1993, 1996). This algorithm has been validated by com-
parisons with experimental data for a variety of swirling flows including vortex
breakdown by Darmofal (1996). The results below show that the maximum pressure
rise given by the core model corresponds closely with the pressure rise at the onset
of vortex breakdown in the numerical simulations. This connection between vortex
breakdown and the existence of a maximum pressure rise at critical conditions also
relates to the numerical results of Darmofal & Murman (1994) for axisymmetric vis-
cous flows where it was found that vortex breakdown would occur when an upstream
supercritical vortex became locally critical.

In the computations a far-field pressure distribution was imposed of the form

Cp∞ = Cp∞max
exp

[
−
(z − zmax

∆z

)2
]
, (5.6)

where

Cp∞ ≡
p∞ − p∞a

1
2
ρu2∗

, (5.7)

and p∞a is the upstream far-field pressure. In (5.6), Cp∞max
, zmax, and ∆z are input

parameters representing the maximum pressure coefficient, the location of maximum
pressure, and the spatial extent of the pressure rise, respectively. The important feature
is the existence of a local maximum in static pressure rather than the precise shape;
other distributions have been examined with similar results.

The computational procedure was to obtain a steady solution without vortex
breakdown by marching time accurately to steady state for low Cp∞max

. Then, using
this steady solution as an initial condition, Cp∞max

was raised and the flow evolved in
time until either it became steady or vortex breakdown, identified by the occurrence
of reversed flow, appeared in the transient Navier–Stokes simulations. In the case of
a steady flow, Cp∞max

was raised and the flow evolved again. The value of Cp∞max
at

which vortex breakdown first occurred was then compared to the maximum pressure
rise given by the model, C∗p∞,

C∗p∞ = 1 +R2
a(R2

a − 2),

where Ra is the upstream Rossby number of the vortex core. The maximum pressure
rise can also be written in terms of the upstream stagnation pressure in the core.
Specifically,

C∗p∞ = 1 + CHa,
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Figure 4. Comparison of maximum pressure rise for smoothly varying flows from model, C∗p∞,
with Navier–Stokes (N–S) prediction of pressure rise at breakdown onset. �, N–S solutions
with breakdown; ×, N–S solutions without breakdown; solid line, model prediction for C∗p∞.
(a) Rankine vortex inlet condition. (b) q-vortex inlet condition.

where CHa is the upstream value of the stagnation pressure coefficient defined by

CH ≡ H̄core − p∞a
1
2
ρu2∗

. (5.8)

Computations were carried out based on two different inlet conditions: a Rankine
vortex, which corresponded to the approximation in the model, and a more realistic,
‘q-vortex’ profile, which matches a number of experimentally measured profiles (Faler
& Leibovich 1977). Comparisons with the latter thus give an estimate of the ability
of the quasi-one-dimensional model to describe actual vortex flows. The form of the
q-vortex(Batchelor 1964; Leibovich 1983) is

u0(r) = 0,

Γ0(r) = Ω
[
1− exp(−r2)

]
,

w0(r) = 1 + ∆w exp(−r2).

Here, r is the radial coordinate (made non-dimensional by dividing by the core radius)
and ∆w is the difference between the axial velocity at the axis and in the far-field,
made non-dimensional by dividing by far-field velocity. For a q-vortex the radial
location for maximum swirl is approximately rmax = 1.1. All computations were run
at Reynolds number of 1000 based on upstream core radius and far-field velocity
because previous numerical results showed the influence of viscous effects is minimal
for Re > 500 (Darmofal 1993).

Figure 4 compares the maximum pressure rise from the model with breakdown
onset from the Navier–Stokes computations for Rankine and q-vortex profiles. The
length of the numerical domain was 40 core radii and the far-field pressure ∆z
and zmax are 40 and 20 respectively. Numerical solutions without breakdown are
indicated by × symbols with the open square indicating the value of Cp

∗
∞ for which

breakdown occurred. Agreement between the one-dimensional model and the Navier–
Stokes solutions for Rankine inlet profiles is very good. For the q-inlet profile, the
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Figure 5. All inlet conditions. Correlation with CHa. Comparison of model prediction versus
Navier–Stokes prediction of breakdown onset. �, N–S solutions with breakdown; ×, N–S solutions
without breakdown; solid line, model prediction for C∗p∞.

qualitative trends are captured, although there is a quantitative difference in onset
points.

Plotting the results in the form of C∗p∞ versus the inlet flux-averaged stagnation
pressure coefficient, CHa, allows all the computational results to be collapsed to essen-
tially a single bounding curve, as shown in figure 5. The one-dimensional approach
based on the value of flux-averaged stagnation pressure gives a useful quantitative
estimate of the conditions at which vortex breakdown occurs. Although we have
found the flux-averaged stagnation pressure coefficient to effectively correlate results
for Rankine (i.e. plug flow) and non-Rankine vortices, Krishnamoorthy & Marshall
have also successfully employed a different approach defining an effective core radius
by matching the axial velocity profile to a Gaussian distribution (Krishnamoorthy
& Marshall 1994; Marshall & Krishnamoorthy 1997). We have not pursued this
possibility.

Experiments reported by Pagan (1989) can also be used to assess the utility of the
maximum pressure rise given by the model. The experiments used a vortex generator
made of two airfoils set at opposite angles of incidence, with the resulting vortex
subjected to varying pressure gradients. A flow regime map of swirl ratio versus
pressure rise was obtained on which a limiting curve defined a region above which
breakdown, i.e. rapid core expansion, occurred. The experimental results are plotted
in figure 6, along with the curve showing the locus of critical behaviour given by
the analysis. The quasi-one-dimensional analysis has trends similar to the data with
the maximum pressure rise increasing as the swirl decreases, although breakdown
occurs in the experiments at a swirl ratio approximately 25% lower than the model.
We can connect this to the comments made in § 4.1 comparing the present model
with the exact analysis. If breakdown can be associated with local criticality, the
comparison in § 4.1 would imply that the simple theory, which predicts a higher
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value of swirl for critical conditions, would be above the experiments by roughly
17%.

5.1.2. Parametric trends for core area behaviour

A useful attribute of the model is analysis of parametric trends. To describe these,
it is helpful to expand the quasi-Bernoulli equation, (5.1), into an expression that
explicitly displays parameters such as initial swirl level and far-field pressure rise,
which could be specified in a given experiment. Using (5.4) with the constancy of core
mass flow and H̄core, the desired relationship is

Ω2
0

A/A0

−
(

1

A/A0

)2

− ∆p∞
1
2
ρw2

0

= Ω2
0 − 1, (5.9)

where ∆p∞ = p∞ − p∞0 and Ω0 is the swirl ratio at upstream conditions.
Variation of A/A0 with far-field pressure change is plotted in figure 7 for upstream

swirl ratios in the range 0 6 Ω0 6 2.5 in increments of 0.5. Several features can be
seen. First, the variation of core area with respect to far-field pressure changes sign
when the flow switches from subcritical to supercritical conditions. For supercritical
vortices, increases in far-field pressure create decreases in the core axial velocity
and increases in core area. Thus, dA/dp∞ > 0, qualitatively similar to behaviour in
non-swirling flows. Conversely, decreases in far-field pressure produce decreases in
core area. For subcritical vortices (strong swirl), the situation is reversed: increases
in far-field pressure are associated with accelerations of the core and decreases in
core area, with dA/dp∞ < 0. The trend between changes in pδ and area, however,
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Figure 7. Dependence of A/A0 on the far-field pressure for flows with Ω0 = 0, 0.5, 1.0, 1.5, 2.0 and
2.5. The solid lines are supercritical flows and the dashed lines are subcritical flows.

is independent of flow regime, so the relationship between changes in pδ and p∞
switches sign at critical conditions.

Another aspect seen in figure 7 is the existence of a maximum pressure rise for
each value of inlet swirl, Ω0 which, as described previously, coincides with the vortex
becoming locally critical (local swirl ratio of

√
2). At this condition, the local rate of

increase of area as a function of far-field pressure is unbounded and the core area
A/A0 is 2/Ω2

0 . The maximum pressure rise is therefore a function of the inlet swirl
only, given by

∆p∗∞
1
2
ρw2

0

= 1− Ω2
0 +

Ω4
0

4
.

5.2. Confined flows

For steady, smoothly varying, confined vortex flows, the outer flow is irrotational
with uniform stagnation pressure. In examining the behaviour of a confined flow, the
quantities specified are typically the duct area schedule and three non-dimensional
parameters characterizing the inlet state. One choice of the three parameters is inlet
axial velocity ratio α0 = W0/w0, inlet area ratio σ0 = A0/AD0

and inlet swirl ratio
Ω0 = vmax0/w0. In terms of these parameters application of the constancy of mass
flow and H̄ in both core and outer flows leads to an equation for core area,

Ω2
0

A/A0

−
(

1

A/A0

)2

+

[
α0(1− σ0)

AD/AD0
− σ0A/A0

]2

= Ω2
0 − 1 + α2

0. (5.10)

The change in core area due to changes in duct area is found by differentiating (5.10),

dA

A
= 2

(W/w)2

(Ω2
crit − Ω2)(1− A/AD)

dAD
AD

, (5.11)

where Ωcrit is the critical swirl ratio for confined flows defined in (4.9). Equation
(5.11) shows that core area variations with respect to duct area variations become
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Figure 8. Core area variation for confined vortex flow in a converging–diverging pipe for α0 = 0.92
(wake) and σ0 = 0.3025. Quasi-one-dimensional A/A0: solid line; Navier–Stokes with q-vortex inlet
condition A/A0: dashed line. (a) Ω0 = 0.56, (b) 0.67, (c) 0.78.

unbounded when the local swirl ratio is critical, analogous to the behaviour of
unconfined vortex cores. The critical swirl condition thus plays a dominant role in
the growth of vortex cores for both unconfined and confined flows.

5.2.1. Model comparison with numerical simulation

To assess the quasi-one-dimensional flow field description in a more detailed fashion,
we again utilize the axisymmetric Navier–Stokes algorithm of Darmofal (1993). The
main goal is to determine how well the evolution of integral core properties is captured
by the model. For the Navier–Stokes results, the core radius at a given axial location
is defined by the stream surface that encloses the inlet core mass flux, with the inlet
core radius taken at the location of maximum swirl.

A converging–diverging duct geometry is used similar to that of Beran & Culick
(1992). The solver models the wall flow as an inviscid slip boundary so that the focus
can be on vortex core behaviour rather than wall boundary layer effects. The specific
duct geometry used is given by

R(z) =


Ri + 1

2
(Rt − Ri){1− cos[π(z/zt)]}, 0 6 z 6 zt

Rt + 1
2
(Ro − Rt){1− cos[π(z − zt)/(zo − zt)]}, zt 6 z 6 zo

Ro, zo 6 z 6 zmax.
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Figure 9. Contour plots of streamsurfaces from the Navier–Stokes solver for confined vortex flow
in a converging–diverging pipe with α0 = 1.09 (wake) and σ0 = 0.3025. (a) Ω0 = 0.56, (b) 0.67,
(c) 0.78.

In the simulations, inlet velocity and area ratios were held constant at α0 = 1.09
(i.e. a slight wake) and σ0 = 0.3025, respectively. The duct geometry parameters were
zt = 5, zo = 20, zmax = 40, Ri = 2, Rt = 1.8, and Ro = 2.5, all non-dimensionalized
by inlet core radius. Comparisons of the quasi-one-dimensional model and Navier–
Stokes simulations are shown in figure 8 for three values of Ω0 covering situations
without breakdown and with breakdown and recirculation. Agreement between the
two is good, although at higher swirl ratios, radial velocities (neglected in the one-
dimensional model) become more important and larger differences arise.

Figure 9 shows streamline plots, corresponding to the conditions of figure 8,
included to show the formation, shape and magnitude of the recirculation bubble.
For the lowest swirl, Ω0 = 0.56, the flow is nearly columnar with no reversed flow.
At Ω0 = 0.67, a recirculation bubble has formed. As the swirl is further increased to
Ω0 = 0.78, the front stagnation point moves upstream while the recirculation bubble
grows in size. Comparison with the core area computations in figure 8 shows, as
expected, that the largest differences occur in the recirculation region (which violates
the assumptions in the one-dimensional model).

5.2.2. Parametric trends for core area behaviour

Although the axial velocity ratio is often used to characterize vortex cores, the
parametric investigations we have conducted imply it is more useful to characterize
the core in terms of the stagnation pressure defect relative to the free stream, i.e. in
terms of the parameter, CH core defined as

CH core ≡ H̄core − H̄outer

1
2
ρ(v2

max0 +W 2
0 )

=
1

Ω2
0 + α2

0

− 1.

For CH core < 0, the core has a stagnation pressure deficit relative to the free stream. The
stagnation pressure is not only a quantity of primary interest in systems such as those
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Figure 10. Dependence of core area, A/A0, on duct area, AD/AD0 for CH core = 0, σ0 = 0.01 and
Ω0 = 0, 0.3, 0.6 and 0.9. For each Ω0, α0 = 1.00, 0.95, 0.80 and 0.44 respectively (α0 becomes
imaginary for Ω0 > 1.0).

related to propulsion, but, as described below, allows one to categorize the overall
parametric dependence more effectively than the inlet velocity ratio, α0 = W0/w0.
(Note that the claim is not that the number of parameters needed to describe the
phenomenon is reduced, it is rather a question of whether one can use this reduction
as a useful approximation to the overall behaviour and, if so, what set of non-
dimensional parameters is most appropriate to achieve this.) For a given inlet area
ratio, σ0 = A0/AD0, it will be seen that this characterization allows a representation
of core area versus duct area which approximately collapses to a limiting envelope
of A/A0 versus AD/AD0, irrespective of swirl velocity from zero to above critical.
The duct area ratio at which the area increases rapidly does depend on the value of
swirl at intermediate values of CH core, but the spread for values of Ω0 from 0 to 1.5
is less than 25% (CH core typically varies between 0 and −1.0 for practical devices;
CH core = −0.6 is shown below to represent moderate stagnation pressure losses). In
summary, casting the description in terms of flux-averaged stagnation pressure defect
allows one to view some aspects of vortex core growth as roughly a function of a
single parameter.

The behaviour of the core area ratio, A/A0, is now examined as different parameters,
CH core, σ0, and Ω0, are varied. The trends illustrated are: (i) the small increase in core
area that occurs with vortex cores having low stagnation pressure defect irrespective
of swirl, at least up to the critical value (figure 10), (ii) the large increase in area
that occurs with vortex cores having an appreciable stagnation pressure defect, again
essentially irrespective of swirl (figure 11).

For moderate values of stagnation pressure defect (figure 11), the curves for
higher initial swirl levels show double-valued behaviour with a maximum value of
AD/AD0. Since a given curve can be thought of as the solution trajectory for a
vortex core (because the flux-averaged stagnation pressure is invariant), this implies
that continuous behaviour is not possible for duct area ratios larger than these
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Figure 11. Dependence of core area, A/A0, on duct area, AD/AD0 for CH core = −0.6 and Ω0 = 0,
0.3, 0.6, 0.9, 1.2 and 1.5. Two inlet core-to-duct area ratios are shown, σ0 = 0.01 and 0.25. For each
Ω0, α0 = 1.58, 1.55, 1.46, 1.30, 1.02 and 0.50 respectively.

maximum values. Presumably the area would jump discontinuously to a large value
at a lower stagnation pressure. In the next section, we discuss the construction of such
discontinuous solutions and develop an analogy with one-dimensional compressible
flow and normal shock theory.

Figure 11 also depicts the strong interaction between the core and the outer flow
shown by the effect of the inlet area ratio, σ0 (core area/duct area). For the same
variation in duct area ratio, cores with the higher inlet area ratio (σ0 = 0.25) have
smaller expansion, because of the decrease in outer flow area, increase in outer flow
axial velocity, and thus decrease in static pressure.

6. Behaviour of steady, discontinuous vortex flows
For a stationary discontinuity there are two relations that must be satisfied by

the initial and final states. We denote the left and right state by the subscripts l
and r, respectively, and re-define the jump brackets as [[f]] = fr − fl . In this paper,
we examine discontinuous solutions for unconfined flows only. Jump conditions and
steady, discontinuous solutions can also be constructed for confined flows (Khan
1995), but the studies carried out show that, at least for the conditions investigated,
the discontinuities are weak and the continuous solution appears to be a useful
approximation for confined flow geometries.

In the vortex core, conservation of mass across the jump is written

[[Aw]] = 0. (6.1)

Conservation of momentum is written[[
Aw2 +

1

ρ
pδA+

Γ 2∞
8π

logA

]]
−
(

1

ρ
pδl +

Γ 2∞
8πAl

)
[[A]] = 0. (6.2)
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We can substitute (3.5) into (6.2) and obtain an implicit relationship for the right
(downstream) value of R in terms of the left (upstream) value of R (Barcilon 1967;
Landahl & Widnall 1971; Lundgren & Ashurt 1989; Marshall 1991):

R2
l =

2 log(Rr/Rl)

(Rr/Rl)2 − 1
. (6.3)

Although (6.3) admits ‘shocks’ which increase as well as decrease the local R, only
the latter are admissible; as shown by Marshall (1991), energy dissipation occurs
across an admissible vortex shock such that the second law is satisfied. Equivalently,
the flux of stagnation pressure in the core must decrease through a jump. From (5.4)
and (6.3), the jump in H̄core across a steady shock can be expressed in terms of the
ratio, Rr/Rl , as

∆H̄core

1
2
ρw2

l

≡ [[H̄core]]
1
2
ρw2

l

=
2

R2
l

{
log
Rr

Rl

[(Rr

Rl

)2

+ 1

]
−
(Rr

Rl

)2

+ 1

}
. (6.4)

For small-amplitude jumps, the change in H̄core can be written as,

∆H̄core

1
2
ρw2

l

≈ −32

3
(Rl − 1)3, (6.5)

where |Rl − 1| << 1. The loss across a discontinuous vortex jump is third order in
(Rl − 1), analogous to the dependence of entropy rise across a shock with upstream
Mach number in a compressible flow.

Figure 12 shows four quantities,Rr , wr/wl (= Al/Ar), edge pressure jump (∆pδ/
1
2
ρw2

l ),

and flux-averaged stagnation pressure change across the jump (∆H̄core/
1
2
ρw2

l ), as func-
tions of Rl . The core edge pressure rise across a jump has a maximum at roughly
Rl = 1.3 which can be motivated by the following physical considerations. From
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(5.2), the pressure jump is given by

∆pδ = ∆H̄core − ∆( 1
2
ρw2).

For weak discontinuities in which the change in core stagnation pressure can be
neglected (for Rl < 1.3, ∆H̄core/

1
2
ρw2

l < 0.1), the pressure rise can be approximated as

∆pδ
1
2
ρw2

l

≈ 1−
(
wr

wl

)2

. (6.6)

For strong discontinuities, the right state is near stagnation, so that wr ≈ 0 and the
static pressure rise can be approximated as

∆pδ
1
2
ρw2

l

≈ ∆H̄core

1
2
ρw2

l

+ 1. (6.7)

The validity of the latter approximation can be inferred from figure 12 in which
the curves of ∆pδ and ∆H̄core virtually coincide for Rl greater than 1.7 (taking into
account the different y-axis scales). The maximum core edge pressure rise is thus seen
as marking the transition between nearly lossless discontinuities in which the core
edge pressure rise increases with upstream R and highly dissipative discontinuities in
which the pressure rise decreases with upstream R. Figure 13 shows the weak and
strong discontinuity approximations for the edge pressure rise, which cross at roughly
R = 1.3, compared to the exact from figure 12.

The jump conditions may also be superimposed on figure 3 as connections between
supercritical and subcritical states. This is done in figure 14 which shows the admissible
jump states as the end points of the dashed lines. The arrows indicate that jumps can
only occur from supercritical to subcritical states. Figure 14 is the key to construction
of continuous and discontinuous steady vortex flow solutions. If the flow behaves
smoothly, R varies along the solid line in accordance with changes in the far-field
pressure. At a discontinuous transition, the vortex transitions from a supercritical
state to a subcritical state, which are the end points of the dashed lines in figure 14.
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Figure 14. Variation with R of the relationship of stagnation pressure, H̄core, and far-field pressure,
p∞, for a steady flow. Admissible jump states connected by dashed line with arrows indicating that
jumps can only occur from R > 1 to R < 1. The points a–d correspond to the solution shown in
figure 15, specifically, a is the upstream state, b is the state on the upstream side of the jump, dN is
the non-dissipative downstream state, c is the state on the downstream side of the jump, and d is
the downstream state.

The stagnation pressure loss across the jump is the difference in the value of the
ordinate between the two states.

We can illustrate the application of figure 14 to the construction of a family of
steady vortex flow solutions. In addition to the far-field pressure coefficient Cp∞ and
the stagnation pressure coefficient CH defined in (5.7) and (5.8), it is helpful to make
use of the non-dimensional edge pressure coefficient,

Cp ≡ pδ − p∞a
1
2
ρu2∗

.

The non-dimensional forms of (3.5) and (5.4) are

Cp = Cp∞ − 2R2, (6.8)

CH = Cp∞ +R2(R2 − 2). (6.9)

Consider a vortex which is initially supercritical far upstream. Because the up-
stream condition is supercritical, we may completely specify the upstream state,
which amounts to setting the upstream R as Ra. In the example, Ra = 1.414 (i.e.
vmax/w = 1) giving CHa = 0.0 and Cpa = −4.0 corresponding to point a in figure 14.
This upstream level of swirl is high but not uncommon for vortices (Sarpkaya 1971).

The vortex is subjected to a far-field pressure, Cp∞(z), and at a downstream location
we set the edge pressure, Cpd. This is analogous to a supersonic channel flow with the
back pressure specified. For illustration we use a far-field pressure distribution given
by

Cp∞ = Cp∞d
1 + tanh z

2
,
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Figure 15. Steady vortex flow solutions. Cp∞d = −4.0, Ra = 1.414. Dashed line, Cp∞(z). Dotted line,
non-dissipative (smoothly varying) solution. Downstream pressures are Cpd = −4.0, −4.1 and −4.2.

with upstream location at z → −∞ and downstream location at z → +∞; this
distribution has been previously used in numerical studies of vortical flows (Délery,
Pagan & Solignac 1987) and is similar to pressure distributions measured in the delta
wing experiments of Pagan & Solignac (1986). In the example, we set Cp∞d = −4.0
giving the favourable pressure gradient indicated by the dashed line in figure 15.

One possible steady solution is CH = CHa throughout the entire domain. In this
case, we can solve for R(z) using (6.9) and the given far-field pressure. In figure 14,
the location of the downstream state for constant CH is marked by dN , and a non-
dissipative evolution of the vortex core occurs along the solid line from a to dN . The
variation of Cp and R versus axial location for this situation is shown in figure 15 as
the dotted line with end points a and dN .

If the downstream edge pressure is greater than the downstream edge pressure for
the non-dissipative solution, vortex ‘shocks’ are needed to match the downstream edge
pressure conditions. In the case shown, the initially supercritical flow varies smoothly
along the solid line from the upstream condition at point a to point b. At point b,
the vortex core undergoes a discontinuous jump to the subcritical state at point c.
From point c, the flow again varies smoothly to the exit at point d.

For the conditions given, vortex shocks exist in the domain −4.3 < Cpd < −4.0.
Figure 15 shows the Cp, R, and CH values for three downstream edge pressures
between these limits, Cpd = −4.0, −4.1, and −4.2 (the Cpd = −4.3 case is not shown
since the jump occurs exactly at the exit). The flow states on the upstream and
downstream side of the jumps are at points b and c, respectively which are also
labelled in figure 14. For the conditions chosen, the upstream jump state, b, and the
non-dissipative discharge state, dN , are nearly identical.

Although the existence of vortex shocks as models for vortex breakdown and the
analogy of vortex breakdown to compressible flows are appealing, care must be taken
in the interpretation. In particular, vortex breakdown typically occurs over several
core radii rather than over very short distances as in compressible flow shocks. In
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accord with comments made previously, the analysis is then strictly valid only for
vortex breakdowns that occur over distances short relative to other length scales (i.e.
the length of the axial pressure variation for unconfined flows or the duct length for
confined flows). While the quasi-one-dimensional model has been shown to provide
good qualitative and, in many cases, quantitative predictions of vortex development
prior to the occurrence of breakdown (including the onset of breakdown), a need
exists to better understand the appropriate interpretation of the vortex shock solutions
(i.e. core size jump, stagnation pressure loss, location of steady shocks, etc). However,
currently available experimental data do not readily facilitate this investigation.

7. Conclusions
A quasi-one-dimensional description of swirling vortex core flows has been devel-

oped to characterize the overall behaviour of such fluid motions, in confined and
unconfined geometries and over a range of flow regimes. The analysis, which has
direct analogues with one-dimensional compressible flow and shallow-water wave
phenomena, allows one to illustrate, in a simple manner (i) wave propagation on
vortex cores including Kelvin–Helmholtz instability resulting from the difference of
the core and outer flow axial velocity and the stabilizing effect of swirl, (ii) the
classification of flow regimes depending on the ability of such waves to travel only
downstream (supercritical) or both upstream and downstream (subcritical), and (iii)
evolution of the vortex core area in response to external conditions including iden-
tification of those situations in which large expansions of the core area are to be
expected. These last occur at the location at which the core is locally critical with
respect to wave propagation. For unconfined flows, the analysis leads to the simple
result that the core criticality occurs when the swirl ratio is less

√
2, with a similar,

but algebraically somewhat more complicated expansion for confined flows.
For unconfined vortices, the analysis shows that a maximum far-field pressure rise

exists above which no steady, continuous solutions are possible and that the vortex
is locally critical at this maximum pressure rise. Discontinuous solutions, analogous
to shocks in quasi-one-dimensional compressible flow, are therefore constructed. For
one specific downstream core pressure, the flow varies smoothly; any higher back
pressures result in the formation of a discontinuous jump in core properties. For
a confined flow the analysis shows, in a similar fashion, that there is a maximum
duct area ratio above which no steady continuous solutions are possible. This again
occurs when the vortex is locally critical. For both unconfined and confined flows, the
analysis also gives information concerning ways to parameterize the conditions for
which a rapid increase in the core size (such as would be seen in vortex breakdown)
will occur. It is found that the flux-averaged stagnation pressure, which is an invariant
for a given flow, is a useful approximate indicator for correlating the onset of vortex
breakdown, with the inlet swirl ratio playing a weaker role.

To assess the applicability of the one-dimensional results comparisons have been
carried out with numerical simulations of the axisymmetric Navier–Stokes equations
and with experimental data. The model is found to be in good quantitative agreement
with both for cases in which rapid expansion does not occur. Even for cases in which
the numerical results show vortex breakdown, however, the quasi-one-dimensional
approach is found to capture trends such as the local conditions at which onset of
rapid core expansion occur and the overall variation in core area with initial swirl,
axial velocity ratio, core/duct area ratio, and duct geometry.



84 D. L. Darmofal, R. Khan, E. M. Greitzer and C. S. Tan

The authors would like to acknowledge the H. N. Slater Professorship for facili-
tating the collaboration between individuals originally at three different institutions.
We would also like to thank Dr J. Délery for providing information concerning ex-
periments on vortex breakdown. D. L. Darmofal would like to acknowledge the kind
support of the Departments of Aerospace Engineering at the University of Michigan
and Texas A&M University where a portion of this work was performed.

REFERENCES

Barcilon, A. 1967 Vortex decay above a stationary boundary. J. Fluid Mech. 27, 155–175.

Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645–658.

Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593–629.

Beran, P. S. & Culick, F. E. C. 1992 The role of nonuniqueness in the development of vortex
breakdown in tubes. J. Fluid Mech. 242, 491–528.

Cho, D. 1995 Effect of vortex core stagnation pressure on tip clearance flow blockage in turboma-
chines. Master’s thesis, MIT.

Darmofal, D. L. 1993 A study of the mechanisms of axisymmetric vortex breakdown. PhD thesis,
MIT.

Darmofal, D. L. 1996 Comparisons of experimental and numerical results for axisymmetric vortex
breakdown in pipes. Computers Fluids 25, 353–371.

Darmofal, D. L. & Murman, E. M. 1994 On the trapped wave nature of axisymmetric vortex
breakdown. AIAA Paper 94-2318.

Délery, J., Pagan, D. & Solignac, J. 1987 On the breakdown of a vortex induced by a delta wing.
In Vortex Control and Breakdown Behavior Conference. Baden.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

Faler, J. H. & Leibovich, S. 1977 Disrupted states of vortex flow and vortex breakdown. Phys.
Fluids 20, 1385–1400.

Howard, L. N. 1963 Fundamentals of the theory of rotating fluids. J. Appl. Maths 30, 481–485.

Khan, R. 1995 A quasi one-dimensional analysis for confined vortex cores. Master’s thesis, MIT.

Krishnamoorthy, S. & Marshall, J. S. 1994 An experimental investigation of “vortex shocks”.
Phys. Fluids 6, 3737–3741.

Lamb, H. 1932 Hydrodynamics. Cambridge University Press.

Landahl, M. T. & Widnall, S. E. 1971 Vortex control. In Aircraft Wake Turbulence and its
Detection (ed. A. Goldburg, J. H. Olsen & M. Rogers). Plenum.

Leibovich, S. 1983 Vortex stability and breakdown: Survey and extension. AIAA J. 22, 1192–1206.

Leonard, A. 1994 Nonlocal theory of area-varying waves on axisymmetric vortex tubes. Phys.
Fluids 6, 765–777.

Lundgren, T. S. & Ashurst, W. T. 1989 Area-varying waves on curved vortex tubes with application
to vortex breakdown. J. Fluid Mech. 200, 283–307.

Mahesh, K. 1996 A model for the onset of breakdown in an axisymmetric compressible vortex.
Phys. Fluids 8, 3338–3345.

Marshall, J. S. 1991 A general theory of curved vortices with circular cross-section and variable
core area. J. Fluid Mech. 229, 311–338.

Marshall, J. S. 1993 The effect of axial pressure gradient on axisymmetrical and helical vortex
waves. Phys. Fluids A 5, 588–599.

Marshall, J. S. & Krishnamoorthy, S. 1997 On the instantaneous cutting of a columnar vortex
with non-zero axial flow. J. Fluid Mech. 351, 41–74.
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