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Abstract

Many unsteady problems equilibrate to periodic behavior. For these problems the
sensitivity of periodic outputs to system parameters are often desired, and must be
estimated from a finite time or frequency domain calculation. Sensitivities computed
in the time domain over a finite time span can take excessive time to converge, or fail
altogether to converge to the periodic value. We derive a theoretical basis for this error
and demonstrate it using two examples: a van der Pol oscillator and vortex shedding from
a low Reynolds number airfoil. We show that output windowing enables the accurate
computation of periodic output sensitivities, and may allow for decreased simulation
time to compute both time-averaged outputs and sensitivities. We classify two distinct
window types: long-time, over a large, not necessarily integer number of periods; and
short-time, over a small, integer number of periods. Finally, from these two classes we
investigate several examples of window shape and demonstrate their convergence with
window size and error in the period approximation, respectively.
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1. Introduction

The sensitivity of an objective function to system parameters is an essential com-
ponent of simulation as a design tool. For problems that exhibit periodic behavior, or
reach a quasi-equilibrium through a limit cycle oscillation, a common objective function
to optimize is the time-average of some periodic output [1–3]. Let g(t, β) be a such a
periodic function of time with dependence on a parameter β. We define the objective
function, J , as the time-average of g over a period, T (β):

J (β) ≡
1

T (β)

� T (β)

0
g(t, β)dt. (1)
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We are interested in calculating J �(β), the derivative of J with respect to β. A reasonable
approach to compute J � is to approximate the periodic output over a finite time span,

Js(β,M) ≡
1
M

� M

0
g(t, β)dt, (2)

and compute the sensitivity of this approximate function. For problems where the period
of oscillation does not depend on the parameter of interest, especially for forced-period
problems, this approach can be effective for both time domain methods [4, 5] and fre-
quency domain methods [6–8]. However, for problems whose period of oscillation depends
on the parameter of interest, whereas limM→∞ Js = J in general limM→∞ J �

s �= J �, thus
additional consideration must be taken to ensure an accurate sensitivity.

Recently, Srinath and Mittal [9] performed adjoint-based shape optimization of a
free-periodic unsteady NACA 0012 airfoil at Re = 500 using time-averaged outputs.
They observed dependence of the robustness and accuracy of their method on the extent
of the integration span, M . Wilkins et al. [10] investigated the calculation of periodic
sensitivities from a finite time simulation of dynamical systems. They note the presence
of unbounded terms in the calculated value of the sensitivity, J �

s , as M goes to infinity,
a problem previously investigated by Tomovic [11], among others, as well as the error
induced by fixed boundary conditions of the unsteady problem (both initial and termi-
nal). Wilkins proposed a method to compute various parameter sensitivities by isolating
the sensitivities of the period, the phase, and amplitude, then applied it to a mammalian
circadian clock model with 73 states and 231 parameters.

To enable the calculation of accurate periodic sensitivities, we propose a method that
is a simple modification of an existing unsteady tangent or adjoint sensitivity implemen-
tation. Namely, in the computation of the time-average, we apply a time-dependent
weighting window to the instantaneous output:

Jw(β,M) ≡
1
M

� M

0
g(t, β) w(t/M) dt, (3)

where w(τ) is a time-dependent weighting function with w(τ) = 0∀τ /∈ (0, 1). Similar
approaches have been used in the past to improve the output behavior [12] by alleviating
phase dependence caused by the sharp endpoints of a straightforward time-average with
w = ws = 1, also known as a square or rectangular window. We believe our work is the
first use of output windowing to improve the behavior of output sensitivity calculations.

The remainder of the paper is as follows. First, the mathematical foundation for
the failure of square output windows is described. Second, drawing from the field of
signal processing, long-time windows are examined, and window properties that improve
output and sensitivity convergence are determined. Next, using the theoretical basis
for the error encountered in sensitivity calculation, short-time windows are developed
to explicitly remove the error terms for a small, integer number of periods, and their
convergence with error in approximation to the period is characterized. Finally, the
periodic sensitivity is then computed using these windows for two model problems: an
ODE van der Pol oscillator and the DG discretization of laminar vortex shedding over a
NACA 0012 airfoil.
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2. Mathematical formulation

To investigate the behavior of the time-average output and sensitivity, it is useful to
define a function h such that

h(τ,β) = g(τ T (β), β), g(t, β) = h(t/T (β), β), (4)

then h(τ,β) has a period of 1, independent of β, at the expense of β dependence in both
arguments when integrating over t. Because h is periodic with period 1,

� 1

0
hτ (τ,β) dτ = 0. (5)

With h, the objective function can be represented as

J (β) =
� 1

0
h(τ,β) dτ (6)

and its derivative as

J
�(β) =

� 1

0
hβ(τ,β) dτ (7)

2.1. Breakdown of square windowing
The square window time-average, Js(β,M), in (2) can be written as

Js(β,M) =
1
M

� NT

0
g(t, β) dt−

1
M

� NT

M
g(t, β) dt (8)

where hereafter N ≡ �M/T �. The error in Js is then

|Js(β,M)− J (β)| ≤
T

M
max |g| (9)

which converges at O(M−1) as M increases. If M is an integer multiple of the T , then
Js(β,M) = J (β) for any N . The sensitivity of Js is

J
�
s(β,M) =

1
M

� M

0
gβ(t, β)dt. (10)

Since

gβ(t, β) =
d

dβ
h(t/T (β), β) = −

t T �

T 2
hτ (t/T, β) + hβ(t/T, β), (11)

integration by parts on the first term yields

J
�
s(β,M) =

1
M

� M

0
hβ(t/T, β) dt +

T �

T
[Js(β,M)− h(M/T,β)] . (12)
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In the limit as M →∞, the error in J �
s is given by

lim
M→∞

(J �
s(β,M)− J

�(β)) =
T �

T
[J (β)− h(M/T,β)] . (13)

In general, the deviation of the instantaneous output from its time-average is nonzero
and for problems with nonzero dependence of the period on the parameter, T �(β) �= 0,
the error is nonzero. Otherwise, the approximation converges to the periodic value, and
is exact for M an integer multiple of T .

Transformed into the frequency domain, a periodic function can be expressed as a
combination of dirac delta functions at ω0 = 0 (the time average) and at harmonics of
the period at ωi = 2πi/T ∀i ∈ N (unsteady terms). An unweighted time average over a
fixed span is equivalent to convolving the output, g, with a square window and dividing
by the window span, M. To do this, the Fourier transform of the output is multiplied by
the Fourier transform of a square function, i.e., a sinc function:

�ws(t/M) =
M
√

2π
sinc

�
Mω

2π

�
=

�
1
ω

�
2
π sin

�
Mω
2

�
ω �= 0

M/
√

2π ω = 0
(14)

where the hat, �(·), signifies the Fourier transform. When the square window spans integer
periods, the delta functions of the periodic output signal correspond to zeros of the sinc
function and only the time-average contribution remains. However, when a parameter
of the dynamical system changes the period of oscillation, the location of the harmonics
”slide” outwards (inwards) as the period is decreased (increased), see Figure (1). The
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Figure 1: Magnitude of Fourier transform of square window and a periodic signal (T = 1)

output sensitivity, J �, is given by the inverse Fourier transform of the derivative of the
ω0 component of the periodic output with respect to β. Convolution of the output with
the square window, ws, includes contributions from the harmonics, ωi. At the harmonics
of the output, the value of ws is zero, but the derivative of the sinc function in (14)
with respect to ω is nonzero. This causes the derivative of the square-window convolved
output, d( �ws(ωi)�g(ωi))/dω, to also be nonzero. Through dT/dβ �= 0 → dωi/dβ �= 0 and
the chain rule, this results in a nonzero and nondiminishing erroneous contribution to
J �

s(β).
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2.2. Windowing
The nonconvergence of the time-average sensitivity can be addressed by applying a

time-varying weighting to the instantaneous objective function. This weighting is termed
a window or apodization function and is a commonly used tool in signal processing. The
windowing function satisfies

w(τ) = 0 for τ /∈ (0, 1),
� 1

0
w(τ) dτ = 1. (15)

The definition of the window function outside (0, 1) is necessary when M is a noninteger
multiple of T . By decomposing the integral in (3) into a summation over multiple periods,
the error in Jw can be expressed as

Jw(β,M)− J (β) =
1
T

� T

0
g(θ,β)A(θ,M)dθ (16)

where

A(θ,M) =
T

M

N−1�

i=0

w

�
θ + iT

M

�
− 1. (17)

with θ ∈ [0, 1]. Recall N ≡ �M/T � which allows t = θ+(N−1)T > M . Because w(τ) = 0
for τ /∈ (0, 1), the integral is unchanged. Slightly modifying (12), the sensitivity can be
approximated with

J
�
w(β,M) =

1
M

� M

0
gβ(t, β) w(t/M) dt

=
1
M

� M

0

�
−

t T �

T 2
hτ (t/T, β) w(t/M) + hβ(t/T, β) w(t/M)

�
dt. (18)

Introducing

B(θ,M) =
N−1�

i=0

θ + iT

M
w

�
θ + iT

M

�
− C(N) (19)

with C(N) ∈ R arbitrary due to (5), the error in the sensitivity can now be expressed as

J
�
w(β,M)− J

�(β) =
1
T

� T

0
hβ(θ/T, β)A(θ,M)dθ −

T �

T 2

� T

0
hτ (θ/T, β)B(θ,M)dθ. (20)

Theorem 1.

|Jw(β,M)− J (β)| ≤ max |h|max |A| (21)

|J
�
w(β,M)− J

�(β)| ≤
T �

T
max |hτ |max |B|+ max |hβ |max |A| (22)

Proof. The proof is trivial by bounding the integrals of (16) and (20) with the maxima
of their integrands.
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The benefit of non-square windows can be further clarified by examining their effect
in the frequency domain. Using windowing functions other than a square window allows
for two improvements:

1. increased rate at which the Fourier transform of the window converges to zero with
increasing frequency

2. increased smoothness near the harmonic frequencies of the output, specifically,
increasing the order of lowest order nonzero derivative at the harmonics.

The Fourier transform of the square window converges to zero with O(1/ω) as ω in-
creases and has nonzero derivatives at its zeros. Long-time windows specifically address
improvement (1) to speed convergence as the number of periods spanned increases, with
no attempt to match the period of the output. Short-time windows do attempt to match
the period for a small number of periods and are designed to address improvement (2)
when the period used to design the window is approximate.

2.3. Long-time windowing
We propose long-time windows where M is allowed to become large relative to T . A

benefit of taking a long-time window is that there is no need to accurately determine the
period.

The convergence of long-time windows with the span of the window is governed by the
convergence of A and B to the integrals they approximate, which in turn is driven by the
smoothness of the function w(τ) in the interior, τ ∈ (0, 1), and at the boundaries τ = 0
and τ = 1. The convergence analysis using Fourier transforms is more straightforward
over an integer, N , number of periods, so a periodic extension of w is defined to fill in
the remainder of the period outside of the span, i.e., for M < t ≤ NT .

Theorem 2. For a periodic function v of class C� on the interval [0, 1], the trapezoidal
rule with N intervals, IN (v), will converge at

IN (v) =
� 1

0
v(τ) dτ +O(N−p) (23)

where

p =






1 � = −1
� + 1 � ≥ 0, � even
� + 2 � > 0, � odd

(24)

Proof. The convergence rate of trapezoidal rule quadrature of a periodic function can
be determined using the convergence of the Fourier coefficents for a periodic function, see
Boyd [13], chapter 2. Note that the convergence rate for an infinitely smooth (analytic
or not) periodic function is exponential.

Theorem 3. For a window w(τ) of class C� and with N = �M/T �

|Jw(β,M)− J (β)| ≤ max |h|O(N−p) (25)

with p defined by (24)
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Proof. The sum in A(θ,M) is a trapezoidal rule quadrature of w(τ) for τ ∈ (0, 1). In
order to integrate over noninteger numbers of periods with M �= NT , recall from the
requirements of a generic window that w(τ) = 0 ∀τ /∈ (0, 1). If we treat the extended w(τ)
as periodic with period NT , the rate of convergence of the trapezoidal rule numerical
quadrature is given by Theorem (2) and depends on the smoothness of the extended
w(τ). In the asymptotic limit of large M with θ ∈ (0, T ):

A(θ,M) =
T

M

N−1�

i=0

w

�
θ + iT

M

�
− 1 =

� 1

0
w(τ) dτ +O(N−p)− 1 = O(N−p) (26)

Combining this result with (21), proves the theorem.

Theorem 4.

|J
�
w(β,M)− J

�(β)| ≤

����
T �

T

���� max |hτ | O(N−(p−1)) + max |hβ | O(N−p) (27)

Proof. As with A(θ,M), the sum in B(θ,M) is a periodic trapezoidal quadrature, this
time of τ w(τ) for τ ∈ (0, 1). For large M (and hence large N) with θ ∈ (0, T ):

B(θ,M) =
N−1�

i=0

θ + iT

M
w

�
θ + iT

M

�
− C(N) (28)

= N

�� 1

0
τ w(τ) dτ +O(N−p)

�
− C(N) (29)

The arbitrary C can be selected to cancel the integral, giving

B(θ,M) = O(N−(p−1)). (30)

Combining the result with (22) gives the first expression on the righthand side of (27).
Combining the derivative error (20) with theorem (3) gives the second term on the
righthand side of (28), and the theorem is proven.

Possible choices of w(τ) conforming to (15) for use with the windowed objective
function (3) include the Hann window (C1 → p = 3)

w(τ) = 1− cos 2πτ τ ∈ (0, 1) (31)

the Hann-squared window (C3 → p = 5)

w(τ) =
2
3

(1− cos 2πτ)2 τ ∈ (0, 1) (32)

and the bump window (C∞ → p = ∞)

w(τ) =
1
A

e−1/(τ−τ2) τ ∈ (0, 1) (33)

where A is the appropriate area under the window and infinite p gives exponential con-
vergence. These windows were selected as they demonstrate differing convergence rates,
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Figure 2: Long-time windows

all have compact support, and are zero at their endpoints. This facilitates the use of the
periodic extension for M �= NT , otherwise there is a C0 discontinuity at the endpoints as
part of the extension. Examination of long-time windows using the frequency domain in
Figure (2b) shows the magnitude of �w(ω) decreasing at the expected rates with increasing
ω. As the window span is increased, the frequencies that correspond to the harmonics of
the output are moved proportionally to the right, are attenuated more, and the errors in
the windowed time-average output and sensitivities are decreased accordingly.

The output window of Barth [12] is a modified square window, with one-period sized
C∞ caps on both ends. The span of the window is modified by increasing the span of
the enclosed square window. This window is C∞ smooth, but the convergence rates
previously derived are not applicable because the Barth window is not self-similar with
respect to τ . Thus, the limits employed in (26) and (28) behave differently and the
convergence rate reduces to that of the square window (the limit behavior most similar
to the Barth window), albeit with a lower constant factor than the square window.

2.4. Short-time windowing
The second type of output window we classify as a short-time window, that is applied

over a small, known number of periods. Short-time windows offer the possibility of
decreasing the span of integration, as the output weighting is nonzero for only a small
number of periods. These windows are designed such that A = B = 0. For M = T ,
A = 0 requires w = 1, the square window. However, w = 1 ⇒ B �= 0, and the error in
J �

w is nonzero. For M = {nT : n ∈ N}, we choose symmetric window functions from
period-wise polynomials of degree n − 1. Enforcing the conditions A = B = 0, Cn−2

continuity between polynomials, and symmetry about τ = 1/2, gives a linear system of
coefficients which can be solved for the corresponding window. The resulting short-time
windows up through 5 periods are shown in Figure (3a).

We note that the conditions to define the piecewise polynomials are equivalent to
repeated convolution with the single-period square window, which has the Fourier trans-
form given in (14) with M = T . For an n period window, the resultant Fourier transform
is

�wn(τ) =
1

A(n)
( �ws(τ))n =

1
A(n)

�
T
√

2π

�n

sinc

�
ωT

2π

�n

= sinc

�
ωT

2π

�n

(34)

8



where A(n) is the renormalization factor necessary to maintain unit area under the
window. Demonstrated in the frequency domain in Figure (3b), short-time windows
address improvement (2) by increasing the order of the lowest order nonzero derivative
of the window with respect to frequency at the harmonics of the periodic signal. In the
limit of n →∞, repeated convolution gives a Gaussian distribution, suggesting a possible
long-time window. Because the Gaussian distribution is not compactly supported, we
have chosen the similarly exponential ’bump’ function for testing as a long-time window.
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Figure 3: Short-time windows

2.4.1. Triangular window (M = 2T )
For n = 2, the resulting piecewise linear function is a triangle window. The objective

can be expressed as

J2(β, 2T ) =
1
M

� M

0
g(t, β) w2(t/M) dt (35)

where the triangular windowing function is

w2(τ) =

�
4τ τ ∈ (0, 1/2)
4(1− τ) τ ∈ (1/2, 1)

(36)

Consistent with the conditions of short-time windows, substituting the triangle window
into (19), along with C = 1, gives A = B = 0 and J2 − J = J �

2 − J � = 0.

2.4.2. Piecewise quadratic window (M = 3T )
For n = 3, the window is piecewise quadratic, with the windowing function given by

w3(τ) =
9
2






3τ2 τ ∈ (0, 1/3)
6τ(1− τ)− 1 τ ∈ (1/3, 2/3)
3(1− τ)2 τ ∈ (2/3, 1)

(37)

It can be shown that the piecewise quadratic window meets the condition for zero error,
A = B = 0. Note that to minimize |B| in (19) let C = 3/2.
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2.4.3. Cubic polynomial windows and higher
In addition to the first two short-time windows presented, larger span windows can

be devised in similar fashion. The increased time span allows for increased smoothness
of the window, and decreases dependence on an accurate calculation of the period. To
examine this further, demonstrations and comparisons of piecewise cubic (n = 4) and
quartic (n = 5) windows are included.

2.4.4. Convergence with error in period estimate
The period may not be exactly known for short-time windows and an approximate

period Test = T + δT may be used to set the window span.

Theorem 5. For an approximate period Test with period error δT = Test − T and
integration over n periods, the errors in the objective function and sensitivity satisfy:

|Jn(β, n(T ± δT ))− J (β)| ≤ O(δTn) (38)
|J

�
n(β, n(T ± δT ))− J

�(β)| ≤ O(δTn−1), (39)

respectively.

Proof. At the estimated harmonics of the output, computed from Test, the multiply-
convolved window (34) has zero derivatives with respect to the frequency, up to and
including the (n−1)th derivative, with nonzero nth and higher derivatives. To determine
the error in the window weight near a harmonic frequency, ωi, take a Taylor series
expansion about the estimated harmonic frequency, ωi,est ≡ 2πi/Test, with ωi = ωi,est +
δωi, which reduces to:

�wn(ωi)− �wn(ωi,est) =
�w(n)

n (ωi,est)
n!

(δωi)
n +O((δωi)n+1) + . . .

= O((δωi)n) (40)

In the limit δT → 0, δT ∝ δω. From (40), each harmonic’s component is O((δT )n), and
the total contribution to the output error over all harmonics is of the same order, directly
giving (38). As previously described, the error in the output sensitivity is proportional
to the error introduced into the derivative of the convolved output with respect to the
frequency over all ω > 0 harmonics. A Taylor series for the derivative of d �w(ωi)/dω
about ωi,est results in:

d �wn(ωi)
dω

−
d �wn(ωi,est)

dω
=

�w(n)
n (ωi,est)
(n− 1)!

(δωi)
n−1 +O((δωi)n) + . . .

= O((δωi)n−1) (41)

which, similar to the output, translates directly to (39).

3. Periodic sensitivity calculation

The periodic sensitivity may be computed using a tangent or adjoint differentiation
of the primal problem. The primal problem is given by:

ut + f(u;β) = 0 (42)
u(0) = u0
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where u0 is a given initial state. The forward-time simulation of the primal problem must
initially be run long enough to equilibrate within some tolerance to periodic oscillation.
Once (quasi-)equilibrium has been reached, select a state, ueq, on the oscillator at time
teq.

The tangent problem corresponding to integrating the windowed output over a span
of length M is:

vt + fβ(u;β) + fu(u;β)v = 0 ∀t ∈ [teq, tr + M ] (43)
v(teq) = 0

where v ≡ uβ is the tangent variable. The primal state is required in (43), and is typically
solved for simultaneously with the tangent, using ueq as a fixed initial condition for the
primal problem. tr is a relaxation time defined such that t ∈ (teq, tr) is sufficient time
that (quasi-)periodicity can be recovered given a perturbation to the equilibrium solution
at time teq. The relaxation time allows the tangent variable to equilibrate, and is required
to remove the effects of the fixed initial condition, v(teq) = 0. Rather than beginning
calculation of the tangent state at time teq, the primal and tangent states may also be
equilibrated simultaneously: the strict requirement is that both the primal state, u, and
the tangent state, v, have reached (quasi-)equilibrium at time tr. Once the tangent state
is computed, the output sensitivity to a parameter is then:

dJw

dβ
=

� tr+M

tr

w((t− tr)/M) {gβ + guv} dt (44)

where g(u;β) is the instantaneous objective function with the time dependence coming
through u ≡ u(t, β). If the unwindowed integrands of (44) are stored for each timestep,
the window weighting may be applied as a postprocessing step, allowing computation
with several different windows using the same primal and tangent solutions.

In summary, the process to apply a window to a tangent solution is:

1. Solve primal problem forward in time to quasi-equilibrium (periodic oscillation) for
ueq;

2. Solve primal and tangent problems forward in time to tr to equilibrate the tangent
solution;

3. Continue primal and tangent problems forward in time the span of the window to
tr + M ;

• Simultaneously integrate the sensitivity, or
• Store the unweighted sensitivity integrand of (44) for later sensitivity calcu-

lations.

The adjoint problem to solve in backward time is:

ψ(tr + M) = 0 (45)
−ψt + fuu = w((t− tr)/M)gu ∀t ∈ [tr, tr + M ] (46)
−ψt + fuu = 0 ∀t ∈ [teq, tr] (47)

Equation (47) is solved backward in time from tr to allow the adjoint state to equilibrate
after the forcing applied by the windowed output in (46). This is analogous to the

11



equilibration of the tangent state before the nonzero window can be applied. The output
sensitivity to a parameter is:

dJw

dβ
=

� tr+M

tr

w((t− tr)/M)gβ dt−

� tr+M

t0

ψfβ dt

Unlike the tangent state, the calculation of the adjoint state is not separable from a
particular window weighting. For t < teq, the equilibrated adjoint no longer contributes
to the sensitivity calculation and need not be solved. The process to apply a window to
an adjoint solution is:

1. Solve primal problem forward in time to quasi-equilibrium (periodic oscillation) for
ueq;

2. Continue primal problem forward in time to tr + M ;
3. Solve adjoint backward in time from tr + M to tr with nonzero forcing term from

the windowed output, integrating the sensitivity as you go;
4. Continue adjoint backwards solve with no forcing term to allow it to equilibrate at

teq, continuing to calculate the sensitivity.

The choice between a tangent and adjoint sensitivity is problem dependent, typically
determined by the number of inputs relative to the number of outputs. The tangent
sensitivity was used for the test cases in this paper, as it allowed the evaluation of
multiple windows for a single primal and tangent forward time solution. To maintain
accuracy, the time integration of the output sensitivity in (44) is carried out using the
same timestepping scheme as the primal and tangent solves.

4. van der Pol oscillator

4.1. Model problem
The van der Pol oscillator is a nonlinear modification of the linear oscillator:

utt + β(u2
− 1)ut + u = 0 (48)

which reduced to a first order system becomes:
�

u1

u2

�

t

+
�

−u2

β(u2
1 − 1)u2 + u1

�
= 0 (49)

with two states, u1 ≡ u and u2 ≡ ut. For a positive nonlinear parameter, β > 0,
the oscillator exhibits a limit cycle oscillation. Moreover, the period of the limit cycle
depends on the nonlinear parameter, leading to failure of square windowing calculations.
The instantaneous output is given by the square of the first state, g(t) = u(t)2, for
which the time-average output and sensitivity with respect to β are of interested. The
resulting problem is solved using a fourth order ESDIRK timestepping scheme. The
sensitivity is computed with the tangent derivative method, using the tangent of the
discrete primal system. The primal solution for the first 10 periods is shown in Figure (4).
For simulations presented here, the initial condition is u = (1, 0), with tr = 50T to
equilibrate the tangent derivative.
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Figure 4: van der Pol oscillator primal solution (β = 0.5)

4.2. Results
For a finite-span square window, the resulting time-average slowly converges, as seen

by the output error in Figure (5a). The rate of convergence of the output is shown in Fig-
ure (5b) for several long-time windows to demonstrate the improved rate of convergence
of the output versus window span as the smoothness of the output window is increased.
All the computed time-averaged outputs are plotted as disconnected points in the figure.
Because the error in the output is highly dependent on the phase of the window, i.e.
where the window overlaps with the oscillation, there can be large variations in the error
with small changes in the window span. In order to show error bounds, each point used
to define the solid curves in Figure (5b) is the maximum over a one period range of win-
dow sizes. Because the exact output is not known, the error is computed relative to the
output with the bump window at M = 800T . Consistent with theory, the output error is
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(b) Output error vs. window size

Figure 5: Output behavior vs. M for β = 0.5

convergent with increasing window span for all windows. The square window converges
at O(M−1), and the Hann and Hann-squared at O(M−3) and O(M−5), respectively.
Finally, the bump appears to exhibit the expected exponential convergence.

To gain insight into the behavior of the output sensitivity, we first look at the variation
of J and Js for 0 < β ≤ 2 in Figure (6a). the time-average smoothly increases, but the
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square window with M = 100Tβ=0.5 oscillates with approximately 1% error. Plotting the
output error for three different window spans in Figure (6b) shows not only a decrease
in the error magnitude, but a coincident increase in the frequency of the output error
oscillation. This is caused by the sensitivity of the period to changes in β. A change
in β then causes the phase of the oscillation to shift at the window span boundaries.
As the window span increases, the span contains a larger number of periods of output
oscillation and changes in β cause larger shifts in phase at the window endpoints. As
previously demonstrated, increasing M causes the square windowed output to converge
at O(M−1), but the phase shift with changing β simultaneously increases at O(M),
resulting in a nondiminishing output sensitivity error.
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Figure 6: Output behavior vs. nonlinear parameter β

The output sensitivity with respect to β was investigated in Figure (7) with the
same long-time windows as for the output. For shorter span windows, the convergence
of the square and Hann windows match the convergence rate of the output, i.e., the
error in the sensitivity is dominated by the A term. For larger span (smaller error)
square and Hann windows, the convergence rate decreases by one order as predicted
by Theorem (4). The Hann-squared window matches the output convergence rate, but
levels off due to numerical precision with the expectation that it would have otherwise
had similar behavior. The convergence of the bump window for the sensitivity integration
retains the same exponential shape as for the output before leveling off due to precision.

Short-time windows were investigated with the square (1 period), triangle, piecewise
quadratic, cubic, and quartic windows for both positive and negative period error. Fig-
ure (8a) confirms that for an approximate period Test with period error δT = Test − T ,
the error in the output converges at the expected rate. Figure (8b) shows that the output
sensitivity follows the same convergence rate as the output for δT/T > 2e−3, indicating
that in this range the error is bounded by the error associated with A. For smaller errors,
the error is dominated by the B term and converges at the expected slower rate.

These convergence rates are highly dependent on the overlap of the timesteps with the
window. In the case where the timestep does not line up with the window discontinuities,
an error (dependent on the smoothness of the window) can be introduced which decreases
the convergence rate. This is demonstrated in Figure (9) for timesteps corresponding to
10, 100, 1000, and 10000 steps per period and the error defined relative to the piecewise
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Figure 7: Output sensitivity error vs. window size
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Figure 8: Short-time window time-average error vs. |δT |/T for β = 0.5 (dash line at 1%
error)

quartic window at the best calculated period for that timestep. Whereas the convergence
rates with respect to window span for long time windows are relatively insensitive to the
timestep, short time windows have proven to be extremely sensitive.

For many engineering applications, 1% error is an acceptable error threshold. To
achieve this error level in the output requires ≈ 10 periods with square window and
2 or fewer for any of the smoother windows. For the sensitivity the square window
levels off before achieving this level accuracy. The Hann window requires almost 15
periods; the Hann-squared, 5 periods; and the bump, 7. It is only for lower error that
the bump window requires a shorter window span than the Hann-squared window. Any
of the non-square short-time windows, achieve 1% error in the output with error in the
period as high as 10%, and the quartic window achieves 1% error in the sensitivity with
period approximation 9%. Compared to long-time windows, short-time windows offer a
modest decrease in the number of periods that must be simulated to compute the output
sensitivity, even using relatively inaccurate period approximations. Relative to the size of
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Figure 9: Timestep study of short-time window time-average error vs. |δT |/T for β = 0.5
[log10(T/∆t): solid = 4; dash = 3; dot = 2; dash-dot = 1]

the lead-in, this savings may not justify the need to approximate the period and modify
the output window accordingly.

5. Airfoil at high angle of attack

5.1. Model problem
Subsonic, laminar flow about an airfoil is used to demonstrate the impact of output

windowing on sensitivity analysis of an aerodynamics application. We use a discontinuous
Galerkin (DG) finite element discretization to solve the Navier-Stokes equations [14–17]
Specifically, we consider the Ma = 0.5, Re = 1500 flow about a two-dimensional NACA
0012 airfoil at 9◦ angles of attack. This problem was chosen because the flowfield exhibits
an unstable stationary point leading to cyclic unsteady behavior. In the computational
mesh, the airfoil leading edge is located at (0, 0) with a unit chord. The domain is square
and extends [−10, 10]× [−10, 10].

The mesh refinement was determined using adjoint-based adaptation, driving the
error in lift coefficient, CL, to less than 0.0005 for a p = 3 stationary point solution at
integer angles of attack from α = 0◦ to α = 13◦. For the problems in this work, a mesh
was generated with 2158 elements, seen in Figure (10a). The resulting airfoil surface
is defined by 101 nodes, connected by cubic polynomial edges (q = 3), with both the
endpoint and edge nodes projected to the analytic geometry.

In this work, the flow and adjoint states are represented in each element by a poly-
nomial of degree 3 (p = 3). For time-accurate unsteady problems, a timestep of 0.1 with
units based on the chord and freestream velocity is used with the ESDIRK4 temporal
discretization [18]. A grid and timestep dependence study was done for this problem and
is discussed in the appendix of Krakos and Darmofal [19].

5.2. Results
The NACA 0012 problem at α = 9◦ was examined using several windows, with the

goal of recreating the results of the van der Pol oscillator for the more complex system of
equations, in particular Figure (7) and Figure (8). Shown in Figure (11a), the problem
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(a) Computational domain (b) Airfoil grid

Figure 10: NACA 0012 mesh

is initialized to a small perturbation of the stationary point solution and allowed to run
to time t = 200, such that the initial transient has for the most part died out leaving an
equilibrium oscillation. The windowed time-average lift, Jw, was computed for a range
of window spans from one period up to 1000 periods using a lead-in to equilibrate the
tangent state of 175 periods. The period is approximated by interrogating the trough-
to-trough time over approximately 90 periods. At α = 9◦, the period is approximately
T = 1.016123. The NACA 0012 at these conditions has a non-negligible dependence
of the oscillation period and the time-average lift coefficient, computed using a bump
window with M = 1000T , on the angle of attack, see Figure (11b).
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Figure 11: NACA 0012 - unsteady solution

Shown in Figure (12a), the output error of the square window is bounded by O(M−1).
As with the van der Pol oscillator, the output weighted by the Hann window converges
at O(M−3). The Hann-squared window converges at approximately O(M−5), but the
convergence rate is not as uniform as the Hann window due to numerical precision. The
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bump window error appears to follow an exponential trajectory through 30 periods, but
levels off to converge at approximately the same rate as the Hann-squared windowed
output. When the timestep is decreased to ∆t = 0.002, the error for the Hann-squared
and bump windows exhibit less noise and adhere more closely to the expected rates.
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Figure 12: NACA 0012 - Output error vs. M/T (smaller max M for ∆t = 0.002 due to
cost)

The output sensitivity was computed using the tangent equations, and is investigated
in Figure (13a). The output sensitivity error is computed relative to the sensitivity using
the bump window with M/T = 102.5. For smaller window spans (from 1 to 10 periods),
the square and Hann windows converge the output sensitivity at the same rate as for
the output, but as the window spans continue to increase through 100, they both begin
level off. This leveling off results in the nonconvergence of the square window and the
error of the Hann window converges at O(M−2). The bump and Hann-squared windows
exhibit lower error than the Hann window, but at approximately the same rate for
this case. Again, when the timestep is decreased to ∆t = 0.002, the error curves have
smoother convergence rates with decreased noise and exhibit improved convergence rates
for increased span windows compared to the larger timestep. For this problem, for both
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Figure 13: NACA 0012 - Output sensitivity error vs. M/T (smaller max M for ∆t =
0.002 due to cost)

the output and the sensitivity to achieve a 1% relative error, any of the suggested non-
18



square windows will suffice with a small number of periods (M < 10T ). The smoother
windows are only necessary for tighter accuracy requirements, as the effect of increased
convergence is not found until larger M .

For short-time windows, the output and output sensitivity of the NACA 0012 were
calculated using the square, triangle, and piecewise quadratic, piecewise cubic, and piece-
wise quartic windows. For timesteps comparable to that used to compute the long-time
windows (∆t = 0.1), error due to the misalignment of the timestep with the window end-
points is dominant and does not diminish with an improved period estimate. A smaller
timestep is required to decrease the influence of this misalignment, and so ∆t = 0.002 is
used. The smaller timestep gives a more accurate solution than the large timestep used
for the long-time windows, and so the ∆t = 0.1 results are incompatible for determining
convergence with regards to the period approximation. To correct this, the error is calcu-
lated relative to the bump window using ∆t = 0.002 at ∼ 60 periods, and the results are
shown in Figure (14a) and Figure (14b). In the output, all five windows converge with
O(δTn) before leveling off, verifying the improved convergence rate of smoother windows.
Testing with various timesteps suggests that for the square, triangle, and quadratic win-
dows the leveling off is caused by the timestep misalignment. As with the outputs, the
windowed sensitivities converge at O(δTn) or better before leveling off, indicating that
for larger period error and ∆t = 0.002, the error is dominated by the A term. For smaller
error, only the square and triangle window show the decreased convergence rate related
to the B term. For both the output and sensitivity, the smoother windows level off at
approximately the same error, but with a distinct decrease in error with increased win-
dow smoothness. Examination of the root mean square with the phase of the windows of
both the output and output sensitivity show that the sensitivity to the phase levels off
as well, revealing the limit of the accuracy of the simulation on the limit cycle: for the
output, the flow solution; and for the sensitivity, the tangent state solution. Regardless
of this limitation, all n > 1 short-time windows outperform the square window.

At 1% error in the period approximation, the triangle is 2 orders of magnitude more
accurate than the square window, the quadratic another 2, and the cubic and quartic
windows more than 6 orders of magnitude more accurate. To achieve 1% error rela-
tive error in the output, any of the n > 1 short-time windows will suffice with even a
10% error in period approximation. To achieve the same relative error in the output
sensitivity, any of the n > 1 windows will suffice with 1% error in the period approxi-
mation. The quartic window gives less than 1% sensitivity relative error for 10% error
in the period approximation, demonstrating the insensitivity to inaccuracy in the period
approximation for the smoother, larger n windows. For this calculation, the lead-in to
equilibrate the derivative variable (tangent or adjoint) is much larger than the window
span (tr = 175 � 5), thus the marginal increase in total calculation is small between a
triangle or quadratic window and the longer cubic or quartic windows.

To achieve a 1% error in the time-average lift, the choice of long-time windows make
little difference: all, including the square window, require less than 2 periods. For
dCL/dα, however, the square window asymptotes to error greater than 1%. The non-
square windows require between 4 and 6 periods, with the Hann-squared requiring the
shortest window. Short-time windows, as with the van der Pol oscillator, require only a
crude approximation of the period to reach the 1% error tolerance. Again, as with the
van der Pol oscillator, the lead-in time combined with the need to compute the period of
the oscillation, however approximate, may make long-time windows the desirable option.
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Figure 14: Effect of period estimate error on periodic time-average error

6. Conclusion

In this work, we investigated the convergence of the outputs and output parameter
sensitivities of quasi-periodic problems using finite time simulation. We showed that
outputs and sensitivities computed in this manner can take excessive time to converge,
and that parameter sensitivities can fail altogether to converge to the periodic value.
We developed a theoretical basis for this lack of convergence, showing that it results
from the dependency of the period on the parameter of interest, and demonstrated it
using ODE and PDE examples. To mitigate this lack of convergence, we investigated
long-time and short-time windows applied to the instantaneous output: testing examples
from both classes, demonstrating their respective convergence rates, and identifying their
advantages and disadvantages. These windows enabled the accurate computation of
periodic output sensitivities and decreased simulation time to compute time-averaged
outputs.

Simulations using both long- and short-time windows require a relaxation time to
equilibrate the solution and adjoint or tangent variables. For engineering problems, this
lead-in time may be much longer than the required window span. Short-time windows
demonstrate that the output of interest can be windowed over a very small number of
periods, but additionally require knowledge of the period of oscillation. Additionally,
with short-time windows the temporal discretization must accurately capture the shape
of the window at any discontinuities, and failure to do so can introduce error into the
output or sensitivity. Long-time windows still require a relaxation time to equilibrate
adjoint or tangent states, but can significantly decrease the required simulation time
without the need to compute the period of oscillation. In our experiments, long-time
windows have been less sensitive to interactions between the temporal discretization and
the window shape with only a small increase in the span of the window to achieve a given
error tolerance.

The benefit of output windows is limited to deterministic problems. Preliminary test-
ing with a chaotic Lorenz oscillator confirms this, with non-square windows performing
no better than the square window for either output or parameter sensitivity calculations.
This is due to the exponential growth of perturbations exhibited by chaotic systems.
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Future work will investigate alternate methods to compute parameter sensitivities of
time-average outputs for chaotic problems.
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