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This paper investigates the impact of small-scale unsteadiness on adjoint-based output sensitivity analysis. In
particular, when iterative methods for nonlinear flows fail to converge to a steady state, it is demonstrated that the
resulting sensitivity analysis can be highly inaccurate, evenwhen the unsteadiness in the outputs is small. The specific
example considered is the viscous subsonic flow around an airfoil over a range of angles of attack. If a strengthened
solver is used to solve the adjoint equation (even though the flow equations did not fully converge), it is demonstrated
that the sensitivity of the lift with respect to angle of attack can vary significantly, due to linearizing about different
solution iterates of the steady flow solver. Further, the unsteady iterates from the time-inaccurate steady-state solver
to the time-accurate solution are compared. The unsteadiness of the time-accurate solution is markedly different
from the iterate solutions of the steady-state solver. If a strengthened solver is applied to the nonlinearflow equations,
steady solutions can be achieved whose lift is significantly different from the time-averaged lift of the time-accurate
simulations. Time-accurate unsteady adjoint analysis is then shown to provide accurate sensitivities for the time-
averaged lift.

Nomenclature
A, B = dummy matrices
CL = lift coefficient
f = nonlinear system of equations
~f e = semidiscrete unsteady nonlinear system of equations
g = output function
i = time-step index
J , J = continuous/discrete output functional of interest
L, L = continuous/discrete system Lagrangian
M = finite element mass matrix
MP = preconditioning matrix approximation to system

Jacobian inverse
Ma = Mach number
m = number of equations in system of equations
N = number of time steps across time span of interest
p = polynomial order of solution
R = partial differential equation weak residual
R = the set of real numbers
Re = Reynolds number
t = time
tf = final time
U = partial differential equation primal solution vector
u = primal solution state
v, w = dummy variable for primal/dual state
! = angle of attack
" = control parameter
!t = time step
# = variation of a function or variable
$ = right eigenvalue of a matrix

! = partial differential equation dual (adjoint) solution
vector

 = dual (adjoint) solution vector

Subscripts

e = unsteady (time-dependent) variable or functional
H = discontinuous Galerkin discrete vector/functional on

grid with characteristic length H
i = variable at time step/iteration i
ss = steady-state variable

Superscript

0 = initial condition

I. Introduction

W ITH its roots in the calculus of variations, adjoint analysis has
long been used in optimal control theory (as a reference, see

Bryson andHo [1]) and in weather model tuning [2–4]. Its usewithin
the context of aerodynamics design is more recent and has been
applied to design optimization [5–7] and to error estimation [8–13].
In aerodynamic design optimization, the sensitivity of an output with
respect to design inputs is a key component in improving toward an
optimal solution. In the case in which the number of inputs is large
compared to the number of outputs, the adjoint can be computa-
tionally superior to other methods, providing a rigorous and efficient
means of computing the required output parameter sensitivities.
Furthermore, adjoint-based error estimation addresses the difficulty
of determining, either by a priori or a posteriorimeans, regions of grid
sensitivity for a given output and allows for automated and rigorous
mesh refinement algorithms.

Because of the overall cost of unsteady analysis of both the primal
and the adjoint, adjoint analysis in aerodynamics has been predomi-
nantly for steady problems. As the use of adjoint methods continues
to increasewithin aerodynamics design, however,more problems are
encountered for which a steady solution may not be appropriate or
may not even exist: e.g., problems with regions of separation. For
complex geometries and equation sets, the necessity of a steady-state
solution placeswhatmay be an unrealistic robustness requirement on
the primal flow solver [14].

Campobasso and Giles [15] investigated the effects of flow
instabilities in the linear analysis of turbomachinery aeroelasticity.
The authors found that the fixed-point iteration they used to solve the
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linearized Navier–Stokes equations was not stable for cases in which
the nonlinear background flow calculation did not converge to a
steady solution but instead reached a small-amplitude limit cycle.
While this unsteadiness in the primal nonlinear problem was small,
the authors showed that the linearized system about a typical iterate
of the unsteady solution had unstable eigenvalues. As a result, the
iterative algorithm diverged when applied to the primal problem
linearized about this state. These unstable modes are salient to the
adjoint, because the eigenvalues of the adjoint problem are the same
as those of the linearized primal problem for the same iterative solver
[16]. Nemec et al. [17] note a similar difficulty in an adjoint-based
adaptive inviscid simulation of theflow about a complex launch abort
vehicle. In their case, unsteadiness is encountered as the grid is
adapted and wakes are refined. In the event of this small-scale
unsteadiness, Campobasso and Giles [15] proposed stabilizing the
iterative scheme for the linearized equations using GMRES [18] or
the recursive projection method [19,20]. With this approach, the
linearized equations can be solved and the sensitivity analysis can be
performed about an unconverged iterate from the steady nonlinear
primal solver.

Parameter sensitivities and error estimates based on the adjoint
require that the primal problem be satisfied, and applying steady
adjoint methods to unconverged solution iterates introduces an error
contribution from that nonconvergence, even when the output is
relatively unaffected. As a result, the parameter sensitivity or error
estimate computed from the adjoint at an arbitrary state in an
unconverged iterative solution method will be dependent on the
particular state at which the adjoint is computed. The variability in
the sensitivity due to linearization about unconverged iterates is
demonstrated for the viscous subsonic flow about a NACA 0012
airfoil at a moderate angle of attack in Sec. IV.

Even if the nonlinear primal solver can be strengthened such that
steady solutions can be achieved, a steady solution may be quite
different from, say, the time average of an unsteady solution. As a
result, although a steady sensitivity analysis may be possible, the
resulting sensitivity may not be physically relevant (assuming that
the unsteady solution is more likely to occur in practice). This
difference between the steady and unsteady behavior is demonstrated
for the airfoil example in Sec. V.

Rather than calculate a steady primal and adjoint solution, a time-
dependent flow and adjoint analysis can be preformed. The unsteady
adjoint has the benefit that the result is applicable for both small- and
large-scale unsteady behavior. However, a straightforward imple-
mentation of the unsteady adjoint requires the storage of the entire
primal solution for the time period of interest. This storage require-
ment has led to check-pointing methods [21], trading some of the
solution storage overhead for additional recomputation but without
fundamentally changing the underlying algorithm. Despite its cost,
the unsteady adjoint has received increased interest by the com-
putational fluid dynamics community in the last decade. Nadarajah
and Jameson [22] focus on aerodynamics shape optimization in the
context of finite volume formulations. Mani and Mavriplis [23] and
Mavriplis [24] investigated an unsteady discrete adjoint formulation
for output matching and minimization applied to two- and three-
dimensional flow problems. Additionally, Rumpfkeil and Zingg [25]
applied the discrete adjoint to aeroacoustic shape design.

The remainder of this paper is organized as follows. Adjoint
methods are reviewed for stationary and time-dependent primal
solutions in Sec. II. Then a model problem that exhibits small-scale
output unsteadiness when attempting to solve a single-point flow
solution will be introduced in Sec. III. In Sec. IV, the use of steady
adjoint analysis is investigated for the stationary-point solution of the
model problem and solutions from (unconverged) arbitrary itera-
tions. Finally, in Sec. V, we apply unsteady adjoint analysis to the
time-accurate flow simulations.

II. Adjoint Formulation
In this section, adjoint analysis for output parameter sensitivities is

reviewed for steady and time-dependent problems. Iterative tech-
niquesused to solve the resulting adjoint equations are alsodescribed.

A. Steady Adjoint

To develop the adjoint formulation, first introduce the steady
nonlinear system for the primal problem:

f !uss;"" # 0 (1)

where f!uss;"": Rm $ R ! Rm is a nonlinear residual statement,
uss 2 Rm is the primal state vector withm components, and " 2 R is
an input parameter. Let J !"" # g!uss;"": Rm $ R ! R be a
general nonlinear functional output of interest. The Lagrangian is
then defined as L!v;w;"": Rm $ Rm $ R ! R:

L!v;w;"" % g!v;"" & wTf!v;""
8 v;w 2 Rm and " 2 R (2)

that is, the nonlinear system is adjoined to the output functional via an
adjoint, or dual, state. Taking the first variation ofLwith respect to v,
w, and ",

#L!v;w;"; #v; #w; #"" # #vT 'gT
v !v;"" &wTfv!v;""(

& #wT 'f!v;""( ) #"'gT
"!v;"" &wTf"!v;""( (3)

where the # implies the variation of a variable. Requiring check-
pointing Eq. (2) to be stationarywith respect tow recovers the primal
problem from the second boxed term of check-pointing Eq. (3) with
solution v# uss. Simultaneously requiring stationarity with respect
to v, the equation for the steady adjoint is obtained from the first
boxed term of Eq. (3) with w# ss:

f u!uss;""T ss & gu!uss;""T # 0 (4)

where  ss is the steady adjoint variable. In the limit of small
parameter variation, along with v# uss andw# ss, the parameter
sensitivity of the output to " is given by

dJ
d"

# lim
#"!0

#L
#"

# g"!uss;"" & T
ssf"!uss;"" (5)

The steady flow is commonly solved using an iterative solver of
the form

u n)1 # un &MP!un;""&1f!un;"" (6)

where un is the approximation to uss at iteration n andMP!un;"" is a
preconditioning matrix that approximates the Jacobian, fu,
evaluated at un. Once Eq. (6) is acceptably converged, Eq. (4) can
be solved via the fixed-point iteration:

 m)1 # m )MP!uss;""&T 'gu!uss;""T & fu!uss;""T m( (7)

The convergence rate of this fixed-point iteration for the adjoint is
controlled by the eigenvalues of thematrixMP!uss;""&Tfu!uss;""T .
Note that as un ! uss, the convergence rate of Eq. (6) will be
controlled by eigenvalues of MP!uss;""&1fu!uss;"". Since
$!A&TBT" # $!A&1B", unstable eigenvalues present in the primal
iterative method will also be present in the adjoint iterative method.

B. Unsteady Adjoint

Building on the steady adjoint method of sensitivity calculation, it
is straightforward to derive an unsteady parameter sensitivity. First,
the unsteady primal equations are

f e!u; t;"" # ut!t" ) f!u!t";"" # 0 8 t 2 !0; tf (
u!0" # u0 (8)

where u!t": '0; tf( ! Rm is again the primal state vector. While in
principle a more general output could be used, here we use the time
average of the instantaneous output:

J e!"" #
1

tf

Z
tf

0

g!u!t";"" dt (9)
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The Lagrangian for the unsteady problem can then be defined as

L e!v;w;"" %
1

tf

Z
tf

0

fg!v!t";"" &w!t"T!vt!t" ) f!v!t";"""g dt

(10)

where v, w: '0; tf( ! Rm. As in the steady case, take the first vari-
ation with respect to the three arguments, and integrate appropriately
by parts to get

#Le!v;w;";#v;#w;#""#
1

tf

Z
tf

0

f#v!t"T 'gT
v!t"!v!t";""

)wt!t" &w!t"Tfv!t"!v!t";""( & #w!t"T 'vt!t") f!v!t";""(

) #"T 'gT
"!v!t";"" &w!t"Tf"!v!t";""(gdt)

1

tf
'w!t"T#v!t"(tf0 (11)

Requiring stationarity with respect to w and v gives the primal and
adjoint equations for v# u and w# , respectively. Specifically,
the unsteady adjoint equation is

& t!t" ) fu!u!t";""T !t" & gu!u!t";""T # 0 8 t 2 '0; tf(
(12)

For a fixed initial flow state and thus a zero initial variation,
#v!0" # 0, the final term gives the adjoint terminal condition:

 !tf" # 0 (13)

The adjoint equation must be solved in reverse time, which is clear
from the terminal equation (13) and the sign of the t term compared
to the second term of Eq. (12). The dependence of the second and
third terms in the primal solution then requires the full storage or
recalculation via check-pointing of the primal through the time span
of interest.

As in the steady case, the parameter sensitivity for unsteady
problems, dJ e=d", is determined from the variation of Lagrangian
in the limit of small parameter variation:

dJ e

d"
# lim

#"!0

#Le

#"
# 1

tf

Z
tf

0

fg"!u!t";"" & !t"Tf"!u!t";""g dt

(14)

C. Discrete Unsteady Adjoint

In this work, we use a fourth-order-accurate explicit singly
diagonal implicit Runge–Kutta (ESDIRK) time-stepping scheme for
the computational examples, but in order to simplify the analysis we
will use the first-order backward difference for comparison against
the steady adjoint iteration:

~f e!u; n;"" #
un)1 & un

!t
) f!un)1;"" # 0 8 n 2 '0; N & 1(

u0 # u0 (15)

where N is the number of time steps spanning the time span of
interest, with a constant time step !t# tf=N. Deriving the time
integration of the output from the time-stepping scheme of the primal
problem gives

Je #
!t

tf

XN

n#1

g!un;"" (16)

The discrete Lagrangian can then be defined by

Le!v;w;"" #
!t

tf

XN

n#1

!
g!vn;"" &wT

n

"
vn & vn&1

!t
) f!vn;""

#$

(17)

Enforcing stationarity of the discrete Lagrangian with respect to wn

8 n 2 '1; N ) 1( and vn 8 n 2 '0; N( gives the discrete adjoint
equation for wn # n:

 n & n)1

!t
) fu!un;""T n & gT

u!un;"" # 0 8 n 2 '1; N(

 N)1 # 0 (18)

In contrast to Eq. (7), the linearization and output derivative in the
unsteady adjoint equation are taken about the primal state at
successive time instants, rather than at a fixed point. This stabilizes
the calculation, and stability no longer depends on the eigenvalues of
!tfu!un;""T being within the unit circle at a particular time step.
Equation (18) can now be used to compute the adjoint even about
unstable stationary points.

The parameter sensitivity for the first-order backward difference is
derived as in the continuous case:

dJe
d"

#!t

tf

XN

n#1

fg"!un;"" & T
nf"!un;""g (19)

III. Model Problem and Discretization
A. Equations and Discretization

The time-dependent compressible Navier–Stokes equations are
given by

@u

@t
) r * F i!u" & r * F v!u;ru" # 0 (20)

In two dimensions, the state vector is given by u# '%; %u; %v; %e(T.
F i!u" and F v!u;ru" are the inviscid and viscous flux vectors,
respectively. The discontinuous Galerkin (DG) discretization of the
Navier–Stokes equations is obtained by choosing a triangulation T H

of the computational domain " composed of triangular elements &,
and obtaining a solution uH that satisfies the weak form of the
equation in the space Vp

H:

Vp
H # fv# 'v1; . . . ; vm(T jvi 2 L2!""; vij& 2 Pp!&"
8 & 2 T H; i# 1; . . . ; mg

where Pp!&" the space of polynomials of order p on element &. The
discrete solution vector can be expressed as a linear combination of
basis functions, vHi

2 Vp
H:

u H!x; t" #
X

i

UHi
!t"vHi

!x" (21)

where UH is the vector of basis coefficients for the finite element
basis. The weak form is obtained by taking the inner product of
Eq. (20) and a test function vH 2 Vp

H and integrating over all
elements in the triangulation of the domain:

X

&2T H

Z

&
vTH

@uH
@t

)RH!uH; vH;"" # 0 8 vH 2 Vp
H (22)

where RH is a semilinear form composed of the spatial
discretizations of inviscid and viscous terms. Specifically, the
inviscid flux between elements is resolved using the Roe flux [26]
and the viscous terms are discretized using the second method of
Bassi andRebay [27]. The spatially discrete unsteady primalNavier–
Stokes equations are given by

M
dUH

dt
)RH!UH;"" # 0 (23)

where RH is the discrete spatial nonlinear residual such that
RHi

!UH" #RH!uH; vHi
", and M is the mass matrix given by

M ij #
Z

&
vHi
vHj

d"& (24)

The adjoint equation is

&M
d!H

dt
)
"
@RH!UH;""

@UH

#
T

!H & @J!UH;""T
@UH

# 0 (25)

and parameter sensitivity is given by
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dJe
d"

# 1

tf

Z
tf

0

!
@J!UH;""

@"
&!T

H

@RH!UH;""
@"

$
dt (26)

The only unsteady addition for the DG form is the inclusion of the
mass matrix M in the temporal terms, the result being that the
individual components that come from the unsteady terms are now
premultiplied by the mass matrix.

B. Nonlinear and Linear Solvers

For steady, i.e., time-inaccurate, simulations, Newton’s method is
used with backward Euler pseudo time stepping to increase
robustness during transients. The pseudo time step in each element is
governed by the Courant–Friedrichs–Lewy (CFL) number. For
uniform flow initial conditions the simulation is started with CFL#
1 and allowed to increase (by factors of 2) as long as the flow solu-
tion maintains positive density and pressure, up to a maximum
CFLmax # 1030. All time-inaccurate results are reported after the
CFL has reached CFLmax.

For time-accurate simulations, the temporal derivative term is
discretized with a fourth-order ESDIRK scheme [28]. At each time
step (and stage of the ESDIRK scheme) the same Newton’s method
as for time-inaccurate problems is used to converge the unsteady
primal equation (23). The discrete adjoint was derived using the
methods of Sec. II.C, but with the additional complexity of the
multistage ESDIRK scheme.

The linear systems arising in both the time-inaccurate and
time-accurate simulations were solved with stationary iterative
methods (block-Jacobi and line-Jacobi) either as the solver or as a
preconditioner for GMRES [29]. At each iteration, the block-Jacobi
method solves for the degrees of freedom within each element as a
block. The line-Jacobi stationary iterativemethod expands the size of

the block, solvingwithin a line of elements. As a result, the stationary
iterative methods are most effective at reducing errors within blocks
(i.e., local errors). The GMRES solver uses a Krylov subspace that is
computed over the entire flow domain, incorporating more than

a) Computational domain b) Airfoil grid

Fig. 1 NACA 0012 mesh.

a) X-momentum b) Entropy
Fig. 2 NACA 0012, GMRES stationary-point solution (Ma! 0:5, Re! 1500, and !! 9").
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Fig. 3 Eigenvalues of line-preconditioned iterative system (I#
M#1RU) at stationary point (Ma! 0:5, Re! 1500, !! 9", and four
processors).
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nearest-neighbor dependence, and making it more effective at
reducing global errors. Unlike the stationary iterative methods,
GMRES is guaranteed to converge monotonically, regardless of the
presence of outlier (unstable) modes, for any nonsingular matrix.
Because the GMRES linear solver does not have the same suscep-
tibility as the stationary iterative methods to unstable modes, it is
capable of computing a stationary-point solution if one exists,
whether or not the stationary-point solution is stable.

For time-inaccurate problems, a simulation is considered con-
verged if the L2 norm of spatial residual is decreased by 10 orders of
magnitude from its initial value. For time-accurate problems, the
same criterion is used for the unsteady residual, with the additional
temporal terms, of each time step and time-step stage.

C. Model Problem
Subsonic laminar flow about an airfoil is used to demonstrate the

impact of small-scale output unsteadiness on sensitivity analysis.
Specifically, we consider theMa# 0:5 and Re# 1500 flow about a
two-dimensional NACA0012 airfoil over a range of angles of attack.
This problem was chosen because the flowfield exhibits a stable
stationary point at lower angles of attack, but for higher angles of
attack, it has an unstable stationary point, leading to unsteady

behavior. In the computational mesh, the airfoil leading edge is
located at (0, 0) with a unit chord. The domain is square and extends
'&10; 10( $ '&10; 10(. The mesh refinement was determined using
adjoint-based adaptation, driving the error in lift coefficientCL to less
than 0.0005 for a p# 3 stationary-point solution at integer angles of
attack from !# 0 to 13+. For the problems in this work, a mesh was
generated with 2158 elements, shown in Fig. 1. The resulting airfoil
surface is defined by 101 nodes, connected by cubic polynomial
edges (q# 3), with the endpoint and edge nodes projected to the
analytic geometry. In this work, the flow and adjoint states are
represented in each element by a polynomial of degree 3 (p# 3). For
time-accurate unsteady problems, a time step of 0.1 with units based
on the freestream velocity is used with the ESDIRK4 temporal
discretization. A grid and time-step dependence study was done and
is discussed in Appendix A.

IV. Time-Inaccurate Simulations
A. Nine-Degree Angle of Attack

For freestream conditionsMa# 0:5 andRe# 1500, a stationary-
point solution of a NACA 0012 airfoil at a 9+ angle of attack can be
found using a line-Jacobi preconditioned GMRES linear solver. This
stationary-point solution exhibits a large laminar separation region,
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a) Residual history b) Lift coefficient history

Fig. 4 Convergence history for line Jacobi (Ma! 0:5, Re! 1500, !! 9", and four processors).

a) X-momentum snapshot b)  Entropy snapshot

c) X-momentum mean d) X-momentum standard deviation
Fig. 5 NACA 0012, line-Jacobi iterative solver (Ma! 0:5, Re! 1500, and !! 9").
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shown in Fig. 2. For weaker linear solvers, such as line-Jacobi
without GMRES, the eigenvalues of the linear system lie outside the
stability region, which is a unit circle centered at the origin. Spe-
cifically, the eigenvalues for the linear system at the stationary point
of the line-Jacobi preconditioned system (I &M&1RU) are shown in
Fig. 3. These eigenvalues were calculated using aKrylov subspace of
1000 vectors, giving 1000 eigenvalues. Since there are eigenvalues
outside the unit circle (denoted by the squares), the line-Jacobi
iterative method will be unstable for the linearized primal as well as
the adjoint problem. Further, this instability will also prevent the
nonlinear primal iteration from converging to the stationary point. As
shown in Fig. 4, when the line-Jacobi iterative solver is started from
the prolongated p# 2 stationary-point solution, the nonlinear
residual is initially ,10&3, but immediately begins rising until it
reaches an equilibrium at,0:06. Likewise, the lift does not converge
to a single value but has a small-amplitude time-inaccurate unstead-
iness with a mean near the value of the stationary point. After the
transients have diminished, the standard deviation of CL from the
mean is approximately 1.5% of the stationary-point value.

To examine the time-inaccurate unsteadiness in the line-Jacobi
solution further, the transient was allowed to die out, and the mean
and the standard deviation of the time-inaccurate solution were
calculated over 50,000 iterations. The standard deviation of each

component of the state was computed by using a Lagrange basis and
calculating the value at each Lagrange point. At a Lagrange point i,
the mean is computed as

ui # 1

N

XN

n#1

uin

and the standard deviation is computed as

'i!u" #
"
1

N

XN

n#1

!uin & ui"2
#
1=2

The mean and standard deviation of the x momentum are plotted in
Fig. 5. The standard deviation in the xmomentum is representative of
the variation of all of the states, with a maximum magnitude of
approximately 6%of themean flow on the laminar separation bubble
boundary.

The time-inaccurate unsteady behavior in this case is highly
dependent on the strength of the iterative solver. For stationary
iterative solvers, time-inaccurate unsteadiness begins to appear in the
wake region, one–two chords downstream, as shown in Fig. 5d.
Regardless, the mean flow near the airfoil appears almost identical to
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Fig. 6 Convergence history for block Jacobi (Ma! 0:5, Re! 1500, and !! 9").

a) X-momentum snapshot b) Entropy snapshot

c) X-momentum mean d) X-momentum standard deviation
Fig. 7 NACA 0012, block-Jacobi iterative solver (Ma! 0:5, Re! 1500, and !! 9").
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the stationary point, as in a comparison of Figs. 2a and 5c. Replacing
the line-Jacobi iterative solver with a block-Jacobi solver decreases
the strength of the preconditioning. The convergence history for the
same conditions, but with the weaker solver, is shown in Fig. 6,
exhibiting larger time-inaccurate unsteadiness in the output aswell as
a different mean value. The mean and standard deviation of the x
momentum are plotted in Fig. 7, showing an increase in the
magnitude of the standard deviation in the wake. The x momentum
and entropy snapshots show large unsteadiness in the wake, with an
indication of vortex shedding into the wake (though we emphasize
that this is not a time-accurate simulation).

Returning to the line-Jacobi iterative results, one could reasonably
presume from the low variation in the lift coefficient that linearizing
about an iterate of the unconverged primal is sufficient to provide
accurate lift sensitivity estimates. However, the derivation of
the adjoint-based sensitivity depends on the stationarity of the

Lagrangian with respect to variation of the adjoint. When the spatial
residual is not zero for the primal state about which the adjoint
analysis is performed, the output sensitivity has an additional term.
Examination of Eq. (3) shows that the output sensitivity then
becomes dependent on the inner product of the residual and the
derivative of the adjoint with respect to the parameter. To demon-
strate the impact that using an unconverged solution can have on the
sensitivity analysis, we use a stronger linear solver [GMRES
preconditioned with incomplete LU (ILU) factorization with zero
introduced fill] to perform adjoint analysis by linearizing about
iterates un for a series of iterationsn. As shown in Fig. 8, this estimate
of dCL=d! (i.e.,g# CL and"# !) varies over a range from0.519 to
0:639 rad&1. Depending on the iterate used in the linearization, the
sensitivity from an unconverged state could be significantly different
from the sensitivity computed about the stationary point
(0:558 rad&1). Taking the average of these iterate sensitivities gives
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0:571 rad&1, which is within ,2:3% of the stationary-point
sensitivity. When the GMRES linear solver is used to calculate the
output sensitivity of the iteration average of the line-Jacobi solutions,
the sensitivity is 0:571 rad&1, matching the average of the iterate
sensitivities. The usefulness of these sensitivities is limited, as they
all required the stronger GMRES solver to compute the adjoint,
which could then have been available to solve for the stationary flow
solution. Finally, perturbing the angle of attack by -0:01+ and
calculating a central difference of the averages of the lift over the
range of iterations plotted in Fig. 8 gives a sensitivity of 0:648 rad&1,
which is approximately 16% greater than the stationary-point
sensitivity.

To determine the sources of error in the sensitivity when the
iterative solvers are used, the difference between the iterate and
stationary-point sensitivities is decomposed into four terms:

dJ !un"
d"

& dJ !uss"
d"

# 'g"!un;"" & g"!uss;""(

& ' T
ss!f"!un;"" & f"!uss;"""( & '! un & ss"Tf"!uss;""(

& '! un & ss"T!f"!un;"" & f"!uss;"""( (27)

Figure 9 shows the four contributing error terms for the same line-
Jacobi iterate snapshots shown in Fig. 8. Each term is normalized by
the stationary-point sensitivity. The adjoint error term, ! un&
 ss"Tf"!uss;"", causes almost the entire error, with contributions
from the other terms negligible in comparison. This suggests that a
correction method that depends on the contribution of the adjoint
variation being small will not provide an accurate correction and that
computing an accurate adjoint is paramount.

B. Ten-Degree Angle of Attack

For the same freestream conditions,Ma# 0:5 and Re# 1500, a
stationary-point solution of the NACA 0012 airfoil can be computed
at a 10+ angle of attack. This stationary-point solution is qualitatively
identical to the stationary point at !# 9+, shown in Fig. 2. The
eigenvalues for the line-preconditioned linear system computed at
the stationary point are shown in Fig. 10. In comparison with the
eigenvalues at !# 9+, the number of unstable eigenvalues (denoted
by the squares) has increased, indicating that the instability has
increased with angle of attack.

The increase in time-inaccurate unsteadiness is verified in Fig. 11;
the momentum and entropy snapshots show a visible disturbance in
the wake and the largest magnitude of the momentum standard
deviation is three times the !# 9+ value. When the weaker block-
Jacobi solver is used, the increase in time-inaccurate unsteadiness is
even more pronounced. Figure 12d shows a large area of unstead-
iness approximately one chord downstream. Even though this is not a
time-accurate simulation, the x momentum and entropy snapshots
now clearly indicate the shedding of vortices into the wake.

The residual and CL iteration histories in Fig. 13 also show the
increase in time-inaccurate unsteady behavior. The residual
equilibriates at a higher value for either the block- or line-Jacobi
iterative solver. For the line-Jacobi solver, the time-inaccurate
standard deviation of CL is approximately 3.0% of the stationary
point CL (twice the standard deviation with the same solver at
!# 9+).
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Fig. 10 Eigenvalues of line-preconditioned iterative system
(I #M#1RU) at stationary point (Ma! 0:5, Re! 1500, !! 10", and
four processors).

a) X-momentum snapshot b) Entropy snapshot
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Fig. 11 NACA 0012, line-Jacobi iterative solver (Ma! 0:5, Re! 1500, and !! 10").
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At a 9+ angle of attack, the sensitivities computed at individual
iterate solutions vary by as much as 15% from the stationary-point
sensitivity, but the averaging methods provide sensitivities within
2.3%. One might expect that at !# 10+ by doubling the variation in
CL that the unsteadiness in the sensitivities would increase by a
similar amount. This assumption is investigated in Fig. 14. At
!# 10+ the dCL!un"=d! varies from 0.175 to 1:318 rad&1, which is
significantly larger range than computed at !# 9+. The average of
these iterate sensitivities gives 0:760 rad&1, which is again signifi-
cantly different than the stationary-point sensitivity of 0:499 rad&1.
When the GMRES linear solver is used to calculate the output
sensitivity of the iteration average of the line-Jacobi solutions, the
sensitivity is 0:707 rad&1. Finally, a central difference of CL!un"
with -0:01+ angle-of-attack perturbations gives a sensitivity of
1:015 rad&1, more than twice the stationary-point sensitivity.

V. Time-Accurate Simulations
The flowfield about the airfoil when calculated using a time-

accurate fourth-order ESDIRK scheme shows a character markedly
different from the stationary-point solution from the time-inaccurate
iterative approach. Figure 15 shows the unsteady behavior of the
output for a case started near the stationary-point solution, the same

initial condition as was used for the line-Jacobi iterative method in
the time-inaccurate analysis. A snapshot of that flow as well as the
mean X momentum and the standard deviation of the X momentum
state are shown in Fig. 16. The output suggests, and the snapshots
clearly show, that the time-accurate flow has a series of alternating
vortices shedding into thewake. This difference is reflected in the lift,
almost doubling it compared to the stationary point. Further
comparison of the time-accurate behavior against stationary-point
solutions over an angle-of-attack sweep shows that the time-accurate
unsteady behavior is not only dominant at !# 10+, but that
unsteadiness begins somewhere between !# 4 and 5+, shown in
Fig. 17. To compute the stationary-point solutions, the ILU
preconditioned GMRES solver was used to compute all angles of
attack in the sweep. Alternately, when the element block-Jacobi
iterative solver was employed it converged below !# 8+, while the
line-Jacobi solver across four processors converged below !# 9+.
This implies that the ability to achieve a stationary-point solution
does not guarantee that no physical unsteady behavior exists or, if it
does exist, that it is even small.

Given the significant difference between the stationary-point and
time-accurate solutions, reliable sensitivity analysis for flows that
could exhibit unsteadiness must clearly be based on a time-accurate
approach. To demonstrate this time-accurate adjoint analysis, the

a) X-momentum snapshot b) Entropy snapshot

c) X-momentum mean d) X-momentum standard deviation
Fig. 12 NACA 0012, block-Jacobi iterative solver (Ma! 0:5, Re! 1500, and !! 10").
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c) X-momentum mean (t=100. . . 200) d) X-momentum standard deviation (t=100. . . 200)
Fig. 16 NACA 0012, time-accurate solution (Ma! 0:5, Re! 1500, and !! 10").
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unsteady adjoint equations were solved at a 10+ angle of attack using
a fourth-order ESDIRK time integration scheme. As opposed to
using the initial condition near the stationary point, the solution at
t# 100 was chosen (eliminating the initial transient in the primal,
leaving an equilibrium oscillation). Then the flow was integrated
over approximately 94 cycles starting from this condition to t# 200.
Finally, the adjoint was integrated backward in time. The converg-
ence history of the time-accurate lift and sensitivity integrand are
shown in Fig. 18, along with the running sensitivity integral:

1

tf & t

Z
tf

t
S!t" dt

where S!t" is the integrand of Eq. (26) at time t, and the finite
difference results from the flow solution. The stationary-point results
are also shown for comparison. It was found that the adjoint-based
sensitivity is 3:3737 rad&1 and is plotted as the slope at 10+ in Fig. 17.
To verify the sensitivity results, a solution was started with the same
initial condition at a perturbed angle of attack,-0:01+, and the results

were finite differenced using central differencing to give an
approximate sensitivity of 3:3742 rad&1 (less than 0.02% different).
Note the transient unsteady behavior in the adjoint near t# 200 due
to the terminal condition (t# 200) of the adjoint variable due to the
fixed initial condition (t# 100) of the primal. Since the asymptotic
behavior of the primal problem is periodic, the sensitivity of the time-
average output could be estimated by integrating the sensitivity
integrand over a known number of periods. This approach would
save computational expense when a periodic behavior can be iden-
tified. For a case in which the solution behavior is less ordered, the
simulationwould have to be run long enough to remove the effects of
the primal initial and adjoint terminal conditions.

VI. Conclusions
The effects of small-scale unsteadiness on adjoint-based output

sensitivities were investigated through the use of a viscous subsonic
airfoil model problem. This investigation demonstrated the potential
for large variability in the estimated output sensitivity using a steady
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sensitivity analysis when the nonlinear flow fails to converge to a
steady state. Results also showed that iterative methods commonly
employed are strong enough to converge to a stationary-point
solution, even when there is strong unsteady behavior in the time-
accurate solution. An implication of this study is the need to consider
unsteady (time-accurate) flow and adjoint analysis even when
steady-state solutions can be achievedusing strong solvers. Finally, it
was shown that the unsteady adjoint provides accurate sensitivities
for the time-averaged lift. Future work will focus on applying
temporal and spatial adaptation based on an unsteady output error
estimate to the small-scale unsteadiness problem, allowing for a
smooth transition from solving steady problems to time-accurate
unsteady problems.

Appendix A: Grid and Time-Step Refinement Study
To verify the accuracy of the time-accurate calculations, the

impact of grid and time-step refinement was studied. The depend-
ence of the solution on the time stepwas considered at 5, 6, 9, and 10+

angles of attack using the baseline grid with!t# 0:01, 0.1, 0:#3, and
1.0. Figure A1a plots the difference between the mean lift coefficient

of the three coarser time steps and the mean lift coefficient at the
finest time step. The solutions with !t# 0:01 are sufficiently more
accurate than the other time steps, such that the difference is a good
approximation of the temporal error. For the four angles of attack, the
difference decreases by approximately four orders ofmagnitude for a
time-step change from1.0 to 0.1, implying that the time stepping is in
the asymptotic fourth-order-accurate range. The temporal error in the
mean lift coefficient with !t# 0:1 is less than 10&4 for all of the
angles of attack and less than 10&6 for the !# 10+ case. Figure A1b
shows the time-accurate evolution of the solution at 10+ for several
time steps. The coarse time step varies significantly from the fine
time-step solution, while the medium time step shows good
agreement. The medium time step (!t# 0:1) was used elsewhere in
this study.

A single uniform grid refinement is shown for !# 5, 6, 9, and 10+

in Fig. A2. For 5+, there is a difference in the unsteadiness between
the baseline and refined grids, but it remains relatively small. At 6+,
the degree of unsteadiness is similar, with an apparent shift in time.
At larger angles of attack, however, the differences diminish. While
further grid refinement studies could be conducted, we believe the
flow does become unstable somewhere below 6+.
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