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Abstract

Parallel, adaptive algorithms are presented that produce high aspect ratio tetrahedra utilizing local grid operations. In
the first algorithm, the properties of the mesh such as element size and shape are explicitly specified by a metric field.
Alternatively, a new method is proposed in which the local grid operators are used to directly control an error indicator
on the adapted grid and the properties of the mesh evolve implicitly through this error control. The methods are then
applied to control interpolation error of a function in one, two, and three dimensions. The direct error control method
is shown to be more efficient than the metric-based approach requiring a smaller number of elements to achieve the
same interpolation error.
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1. Introduction

Obtaining a suitable grid remains one of the most difficult parts of the entire Computational Fluid Dynamics (CFD)
simulation process. Grids must resolve flow features to provide adequate control of discretization error and remain
small enough to permit reasonable computation times. The AIAA Drag Prediction Workshops[1] are well-documented
examples of the difficulty of suitable grid generation even under the watchful eyes of experts. Mavriplis[2] shows that
discretization error still dominates other error sources (e.g., turbulence model distance function calculation, thin-
layer viscous approximation, level of artificial dissipation) even with extremely fine grids that are computable with
today’s supercomputers. Chaffin and Pirzadeh[3] detail the effort required to manually specify grid resolution for
accurate three dimensional (3D) high-lift computations. The high degree of manual intervention required in these
cases prohibits the use of automated design tools. The manual interaction required to create a suitable grid is reduced
with adaptive grid methods. Automated parameter studies[4] and design[5] are possible with an automated grid
generation and adaptation process. Accurate final adapted solutions can be produced that are independent of coarse
initial grids.[6, 7, 8]

Common flow features include discontinuities, shear layers, and boundary layers that require a strongly anisotropic
grid for efficient resolution. Mavriplis[9] and Baker[10] provide surveys of grid generation and adaptation tech-
niques. Methods that apply isotropic techniques in a metric mapped space have been successful in two dimensions
(2D).[11, 12, 13, 14, 15] The metric-based adaptation process has two principle components: determining an im-
proved resolution request and creating an improved grid that satisfies that request. The improved resolution request
is commonly based on local error estimates[11, 16, 10, 17] and can include the effect of local errors on an output
quantity.[18, 6]

The use of anisotropic grid metrics has become a standard way to specify a resolution request, but it does have limi-
tations. To date, metric-based adaptation has been applied to linear finite element methods, or equivalent second-order
accurate finite volume or finite difference methods. The common approach is to determine the metric by estimating
the unresolved second derivatives (Hessian) of a scalar (e.g. Mach number is often used in compressible flows), and
then specifying the metric to minimize the error in a linear interpolant of this scalar. Difficulties arise in the extension
of metric-based approaches to systems of equations, higher-order methods, and output-based error control:

• For systems of equations, such as the Euler or Navier-Stokes equations, the choice of a scalar such as Mach
number to determine the mesh metric is arbitrary. For example, the intersection of metrics from multiple
states[13] may be superior.
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• For higher-order discretizations, the metric should be based on the lowest-order unresolved derivative (e.g. for a
quadratic element, the third derivatives are unresolved). One approach to apply metric methods to higher-order
elements is to search for the direction of the largest unresolved derivative[8]. Additional problems arise in that
an a priori estimate of the regularity of the solution is also required to specify the desired mesh size (this is also
true for linear elements).

• For output-based error control, the error estimate does not contain directionality, but is rather a scalar quantity.
Venditti and Darmofal[6] developed an output-based anisotropic adaptive method by combining the output-
based error estimate to control the volume of the element with the Hessian of the Mach number to control the
anisotropy.

In this work, we propose an alternative to metric-based adaptation in which mesh adaptation is performed to directly
control an arbitrary measure of the solution error. This framework for direct error control adaptation is presented and
compared with metric-based adaptation on a series of test problems.

To facilitate the description of the parallel grid adaptation algorithm, the elemental grid operators and their paral-
lel implementation are detailed. An adaptive method that robustly produces high aspect ratio tetrahedra satisfying a
general 3D metric is presented. The method is intended for planar geometries, where more complex domains can be
simulated with a cut-cell approach.[19] Domain decomposition is employed to fully exploit the distributed memory
of a cluster of computers to increase simulation problem size. A secondary goal is to exploit parallelism to reduce
the execution time of the adaptation process. To alleviate the concessions of the metric-based approach, an adaptive
method is introduced that directly controls a generic expression for error without an intermediate element size request.
In particular, this proposed approach removes the limitations of previous metric-based methods because the output
error can be expressed in the form of this generic error expression.[19] This new method is introduced through appli-
cation to the control of interpolation error of a known analytic function in 1D, 2D, and 3D. Linear and higher-order
solution representations are employed to show the utility of the direct method.

2. Grid Operators

The grid adaptation scheme is constructed from a sequence of nearest-neighbor grid modifications: node move-
ment, tetrahedra swap, tetrahedra split, and tetrahedra collapse. The term tetrahedra is used to emphasize the 3D
algorithm, but a subset of these operators also form 2D and 1D operators. Each grid in this sequence is represented as
the current set of nodes xi ∈ Xn and tetrahedra κ j ∈ Tn,

(Xn,Tn), (1)

where xi is the position of node i and κ j are the nodes that element j connects. The edge segments, segments connecting
element nodes, are indexed by l. Each of the grid operators G modify the current grid to create a new grid,

(Xn+1,Tn+1) = G(Xn,Tn, i, j, l, c(), c̄,m), (2)

acting on the grid constitutes by index and improving an objective function c() to a tolerance c̄. Each specific grid
operator may use a subset of these arguments. The tetrahedra removed and added in an operation are the sets,

T̂n = Tn \ Tn+1, (3)

Ťn = Tn+1 \ Tn. (4)

2.1. Node Movement

Node movement changes the locations of the nodes while keeping the tetrahedra connectivity fixed,

(Xn+1,Tn) = Mo(Xn,Tn, i, c(),m), (5)
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Figure 1: 2D node movement grid operator.

see Fig. 1 for a 2D example with triangles. This is also a popular technique for structured grid methods[10] because
of the fixed connectivity. A single node location is adjusted with the neighboring node locations fixed. This method
allows explicit constraints on the positivity of tetrahedral volume, i.e.,

V(Xn+1,Tn) > Vtol, (6)

where Vtol prevents the ambiguity of small element validity in floating-point arithmetic. Global relaxation is not used
because explicit constraints cannot be enforced as readily. An objective function c(κ) is defined for each tetrahedron
incident to a node, κ 3 xi. An optimization procedure is invoked to minimize a norm of the incident tetrahedron
objective functions,

c(xi) =

∑
κ3xi

c(κ)m

1/m

, (7)

xi|n+1 = argmin c(xi). (8)

If the ∞-norm is selected, smart-Laplacian and quadratic programming optimization schemes[20] are employed. A
gradient-free simplex search is used for other norms. Nodes on boundaries are moved in their respective lower
dimensional parametrized spaces.

2.2. Tetrahedra Swapping

Figure 2: 2D element swap grid operator.

The 3D operations of face and edge swapping[20] are performed,

(Xn,Tn+1) = Sw(Xn,Tn, j, c(),m). (9)

A 2D example with triangles is shown in Fig. 2, where this is a simple replacement of two triangles for two triangles.
In 3D, this operator is much more complicated. The element κ j and its neighbors are examined, and the configuration
that reduces a norm of the involved tetrahedron objective functions to the greatest degree is chosen,

Ťn = argmin

∑
κ∈Ťn

c(κ)m


1/m

, (10)

if it has positive volume tetrahedra,
V(Xn,Tn+1) > Vtol. (11)
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If there is no swapped configuration with a lower norm, the current configuration is retained, which ensures∑
κ∈Ťn

c(κ)m


1/m

≤

∑
κ∈T̂n

c(κ)m


1/m

. (12)

The 3D configurations that are evaluated by the argmin in Eq. (10) are face swapping[20] and edge swapping.[20]
Face swapping is replacing two tetrahedra that share three nodes with three tetrahedra. Edge swapping is replacing
all of the tetrahedra that share two nodes with a new set of tetrahedra that fill the same volume. Edge swaps are
implemented for three to seven tetrahedra surrounding an edge. The number of possible configurations that can result
from an edge swap grows rapidly with the number of tetrahedra surrounding an edge. Fortunately, there is a smaller
set of canonical configurations for each of these swap operations. Freitag and Ollivier-Gooch[20] describe these
canonical configurations and how to reduce the cost of evaluating the norm of the new configurations. The boundary
triangles are also swapped as a result of tetrahedra swapping.

2.3. Tetrahedra Split and Collapse

(a) Triangle split. (b) Triangle collapse.

Figure 3: 2D split and collapse operators.

The split and collapse operations modify the density of the grid tetrahedra as well as contribute to obtaining the
desired anisotropy. There are many possible splitting stencils.[21, 22] In this work, the split operator inserts a single
new node at the center of the segment l connecting two nodes. All the tetrahedra that share l are split into two
tetrahedra to include this new node. Segments that are on a boundary also result in split boundary triangles. The
tetrahedra split operator is used in two forms,

(Xn+1,Tn+1) = Sp(Xn,Tn, l, L()), (13)

(Xn+1,Tn+1) = Sp(Xn,Tn, j, c(),m). (14)

Equation (13) splits an edge if its length function L(l) > 1. Equation (14) splits the edge l ∈ κ j of element j that
produces the largest decrease in c(),

l = argmin
l∈κ j

(∑
κ∈T̂n

c(κ)m
)1/m(∑

κ∈Ťn
c(κ)m

)1/m . (15)

In absolute precision arithmetic, these split tetrahedra have positive volume if the original tetrahedra have positive
volume and the new node is placed on the segment connecting two nodes. In floating-point arithmetic, this may not
be true due to floating-point errors. An additional check is placed on the computed volume after the split and the split
is not permitted unless,

V(Xn+1,Tn+1) > Vtol. (16)

For a collapse, all the tetrahedra that share l are removed. One of these two nodes is removed and the remaining
tetrahedra incident to the removed node are reconnected to the remaining node. The remaining node is placed at the
center of the removed segment. The collapse operator also has two forms,

(Xn+1,Tn+1) = Co(Xn,Tn, l, L()), (17)
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(Xn+1,Tn+1) = Co(Xn,Tn, j, c(), c̄,m). (18)

The collapse operation is only permitted if the new configuration results in positive volume tetrahedra,

V(Xn+1,Tn+1) > Vtol. (19)

Equation (17) collapses an edge if L(l) < 1.0 ∀ l ∈ Ťn. Equation (18) collapses an edge of a tetrahedra if c(κ j) <
c̄ ∀ κ j ∈ Ťn.

3. Parallelization

The grid operators are executed in parallel with a domain-decomposed scheme. The resulting partitions allow the
independent application of operators to the partition interiors. Most of the complexity of this parallel approach arises
when these operators are applied in the partition-border regions.

3.1. Domain Decomposition

To fit large problems on a cluster of distributed-memory machines, the domain or grid is decomposed into par-
titions. A node-based, domain-decomposition scheme is utilized, where each node is uniquely assigned to a single
partition. Tetrahedra that span the partitions are duplicated to complete the border regions of the partitions. This is the
Single Program Multiple Data (SPMD) paradigm; each partition data structure is processed by the same algorithm.
The domain decomposition scheme is identical to the method utilized by FUN3D[23].

Partition Boundary

(a) Global grid.

BorderLocal
Element

Ghost Node
Border Node
Purely Local Node

Element

(b) Partition 1. (c) Partition 2.

Figure 4: Two partition domain decomposition 2D example.

A two partition example is illustrated in Fig. 4 for 2D. A node is denoted local if it has been assigned to that
partition (denoted filled circles and open circles). The geometry edges, boundary triangles, and tetrahedra that contain
one or more local nodes are also added to the partition. These include tetrahedra that are entirely local to a partition
(solid lines) or border tetrahedra that span partition boundaries (dashed lines). Local nodes that are only used to
construct local tetrahedra are denoted as purely-local nodes (filled circles). Local nodes that are used to construct
border tetrahedra are denoted as border nodes (open circles).

The local nodes of other partitions are added as ghost nodes (dashed circles) to the current partition as required
to complete the border tetrahedra. The partition to which these ghost nodes are assigned is also stored to reduce
the parallel communication required to update partition-border regions. Purely-local nodes are only connected by
tetrahedra to other local nodes. A partition’s border nodes are local nodes that are connected to a ghost node by a
border tetrahedron. Therefore, nodes are either purely-local, border, or ghost. Tetrahedra are either local or border.
Nodes have a unique global index and a local index on each partition.
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3.2. Partition Coloring

To increase parallel efficiency, groups of unconnected partitions are allowed to simultaneously modify border
element connectivities and node positions. Only allowing execution on one partition at a time results in a sequential
algorithm, because the other partitions are idle until they have an opportunity to process their border region. The
amount of time that processors remain idle during adaptation can be reduced by allowing concurrent execution through
partition coloring.

The sets of unconnected partition groups are calculated with a greedy coloring scheme[24] where no two adjoining
partitions share a color. All the partitions in a single color can then modify border regions concurrently with current
ghost information. With coloring, parallel communication is only required between the processing of different colors,
which are less than or equal to the number of partitions.

3.3. Connectivity Changes

The connectivity of the tetrahedra change as a result of swapping Sw, splitting Sp, and collapsing Co. In other
parallel adaptation implementations,[22, 25, 26, 27] connectivity changes are performed in the interior of the partition
and migration is used to make border regions interior. In this work, the tetrahedron connectivity changes are performed
on purely-local and border tetrahedra in separate operations without migration. These connectivity changes may be
due to edge swapping, face swapping, or the insertion of new nodes. The collapse operator is currently only allowed in
purely-local partition regions, because the geometry topology information required to maintain a topologically valid
discrete surface triangulation is not stored with ghost nodes. This limitation may be removed with a small amount of
additional storage and an increase in code complexity.

Initially, connectivity changes are only performed on local tetrahedra (solid lines, Fig. 4(b) and (c)). This is an
efficient parallel operation because all partitions perform connectivity changes simultaneously. Updates of the border
tetrahedra region (dashed lines, Fig. 4(b) and (c)) are performed one partition color at a time. To correctly mirror
connectivity changes across partitions, transcripts are recorded of the nodes and tetrahedra that are added or removed
as a result of this border tetrahedra adaptation. These transcripts are serialized and broadcast to other partitions. The
receiving partitions apply the transcripts to maintain consistency between partitions.

The transcript is composed of all the data required to update connectivities (tetrahedra, geometry triangles, and
geometry edge segments) and create new ghost nodes (position, face parameters, and edge parameters). The size of
these transcripts is reduced by utilizing the stored ghost node partition assignments to restrict the transcript to the
minimum information required to maintain consistency. Minimizing the contents of the transcripts reduces parallel
communication costs and the time required to perform the specified transcript operations on the other partitions.
Parallel efficiency is maintained while applying the transcripts to other partitions, because transcripts are processed
concurrently. Ghost nodes that are no longer connected to a border tetrahedron after connectivity changes are removed.

3.4. Node Movement

The nearest-neighbor information must be current when smoothing nodes Mo to prevent the creation of invalid
tetrahedra. Freitag[28] and Löhner[29] address the issues for maintaining current nearest-neighbors while node
smoothing on a shared-memory architecture. In other distributed memory implementations,[25, 27, 26] border nodes
are frozen during adaptation. Then the domain is repartitioned and migration is used to change these frozen border
nodes into local nodes. A number of repartitioning steps ultimately allow the processing of all nodes as local nodes.

In this implementation, the nearest-neighbor node movement operators are applied separately to local and border
regions without repartitioning. An initial pass is made through all the purely-local nodes on all partitions. These
nodes do not require any information from other partitions. Therefore, the partitions can modify purely-local nodes
concurrently without parallel communication. After the purely-local regions of the partition have been smoothed, the
border nodes are smoothed one partition color at a time. The ghost nodes are updated after each color to ensure that
nearest-neighbor information is current.

Ghost node parameters (position, face parameters, and edge parameters) must be updated when the corresponding
border node on another partition is modified. This operation is complicated by tetrahedron connectivity changes
during adaptation. These connectivity changes in partition borders alter the inter-partition communication pattern. To
recompute the communication pattern, every partition sends a list of ghost node global indexes to the partition that
is assigned those nodes. On the assigned partitions, these requests for updated nodal information are translated into
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local node indexes. The translation is performed in O(log2 n) time with a binary search of the global indexes of local
nodes stored in a sorted list. The translated indexes allow access to the stored local values of the requested nodal
position, face parameters, and edge parameter. The requested information is sent back to the partitions to update their
ghost nodes.

3.5. Global Indexes

The global node indexes are required to reconstruct the parallel communication pattern after connectivity changes.
Global cell indexes are not required for parallel adaptation, but are maintained as a convenience to the application
requesting adaptation. Unique global cell indexes are maintained with exactly the same algorithm as the global node
indexes, so only the global node index scheme is described.

The algorithm to assign and maintain global node indexes is simple. A partition takes ownership of a global node
index during the initialization of its local nodes. Once a partition is assigned a global index, it never relinquishes it
until the completion of adaptation. If a local node is deleted during adaptation, the partition stores this unused global
index in a list. If the partition needs a unique global index to insert a node into the discretization, it will extract an
unused global index from the list if it is available.

When this list of unused global indexes is exhausted, the partition creates a new global index by independently
incrementing its copy of the total number of global indexes. This allows two or more partitions to obtain the same
global index. These duplicate global indexes are made unique by shifting them. After shifting the newly created
global node indexes, the true count of global indexes is shared amongst partitions.

Partition Total Indexes of New Nodes
Before Shift A 103 101 102 103

B 102 101 102
C 100 none
D 104 101 102 103 104

After Shift A 109 101 102 103
B 109 104 105
C 109
D 109 106 107 108 109

Figure 5: An example of creating new global indexes on four partitions with 100 original global indexes, before and after shift.

Figure 5 provides a four processor example that begins with 100 unique global nodes. Three of four partitions
need new global nodes to insert nodes while concurrently performing edge split operations. Partition C does not insert
any nodes. After the edge split operation, these newly created nodes are shifted to make them unique. The correct total
number of nodes is also computed by partition D and communicated to all partitions. The parallel communication
required to maintain unique global indexes is reduced by allowing the temporary creation of repeated global indexes
that are later corrected.

The unused global indexes are removed at the completion of the adaptation by a reverse, global-index shifting
procedure. This ensures that the calling application will be returned a grid with continuous and unique global indexes.

3.6. Load Balancing

Load balancing is employed to maintain parallel efficiency. The parallel, graph-partitioning tool ParMETIS[30] is
utilized to create well-balanced partitions with a minimum number of connections. During adaptation, the number of
nodes in each partition can change significantly due to the addition and removal of nodes. Also, the communication
cost can increase due to connectivity changes. At the completion of the adaptation process, ParMETIS is called and
portions of the grid are migrated to regain an optimal partitioning.
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4. Metric-Based Adaptation

A metric tensor M is commonly employed to define the desired multidimensional grid resolution because it is a
natural way to express local interpolation error estimates of linear functions.[16, 17, 13, 31] The symmetric positive
definite matrix M in 3D has the diagonal decomposition

M = X

 Λ1
Λ2

Λ3

 XT = XΛXT . (20)

The eigenvectors X define an orthonormal basis with length specifications hi in this basis,

Λ =


(

1
h1

)2 (
1
h2

)2 (
1
h3

)2

 . (21)

This metric can be interpreted as an ellipsoid with major and minor axes of direction Xi and length hi.[16] The linear
mapping J is employed to map a vector in physical space ~x =

[
x y z

]T to a vector in transformed space ~x′ =
[
x′ y′ z′

]T

where a triangle or tetrahedron becomes equilateral with unit length edges; that is,

~x′ = J~x. (22)

The metric tensor M is related to J by
M = JT J, (23)

J = Λ
1
2 XT . (24)

If ~x describes an edge in physical space, the length L in mapped space is

L =
√
~x′T~x′. (25)

Employing Eq. (22), this expression of length becomes

L =
√(

J~x
)T (

J~x
)
, (26)

L =
√
~xT M~x. (27)

Equation (27) is employed to directly compute edge lengths in the specified metric. Equation (22) is applied to the
physical coordinates of tetrahedron nodes to map them to the transformed space before evaluating a quality of the
tetrahedron’s shape.

The resolution request is stored as M during adaptation instead of storing J directly due to these benefits:

• It is compact; only 6 entries of the 3D symmetric M are stored.

• Multiple M can be readily interpolated and intersected.[13, 31]

• Lengths in the specified metric can be computed efficiently with Eq. (27).

A slight computational cost is incurred computing J from M when J is needed to obtain a metric transformed tetra-
hedron. This cost is a 3 × 3 symmetric positive definite matrix diagonalization and Eq. (24). This cost is minimized
by tridiagonalizing M with a single rotation and applying an iterative method to find the eigendecomposition of the
tridiagonal matrix.
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4.1. Shape Measure
In 3D, considering only edge length as a shape measure can result in degenerate tetrahedra, because a nearly-

zero-volume ‘sliver’ tetrahedra can be constructed without a short edge. Shape measures [32, 33] are employed to
penalize near-degeneracies and provide a smooth function to optimize. These measures are based on interpolation
error estimates, departure from a right or isotropic tetrahedron, or transformation matrix conditioning.[34] A norm of
the mesh conformity to a specified multidimensional grid resolution[35] can also be stated directly.

Shape measures are typically defined in the range [0, 1], with 0 denoting a degenerate tetrahedron and 1 denot-
ing an ideal tetrahedron. In this work, the inverse of a shape measure is used so that grid optimization becomes a
minimization problem. The inverse of the mean ratio[32] is

η(κ) =
L2

01 + L2
02 + L2

03 + L2
12 + L2

13 + L2
23

12(3V)2/3 , (28)

where V is the volume of the tetrahedron and L are the six lengths of vectors defined between nodes 0–3 of the tetra-
hedron. It is in the range of [1,∞], where an isotropic tetrahedra is 1 and a degenerate tetrahedra is∞. The mean ratio
is efficient to evaluate and a well-behaved continuously differentiable function,[34] which makes it very suitable for
gradient-based optimization. It also has a connection to metric conformity without size specification.[35] Minimizing
η in the specified metric produces tetrahedra that are isotropic in the metric space. This tends to produce tetrahe-
dra with large dihedral angles in physical space. Shape measures that penalize large angles can have discontinuous
derivatives, making them difficult to optimize with gradient-based methods, see Shewchuk[34] for examples.

4.2. Metric Adaptation Algorithm
The goal of the ad-hoc adaptive processes is to produce a grid with the following properties in decreasing priority:

• All edges have a length less than or equal to unity in the specified metric field.

• The number of nodes and tetrahedra in the mesh should be reduced by collapsing edges shorter than unity in
the metric field.

• The tetrahedra shape quality in the metric should be improved.

These are potentially contradictory goals that do not unify to a single minimization statement. However, grid validity
with elements equal or smaller than the metric is possible with tetrahedra splits alone for a domain with planar
boundaries, avoiding being trapped in the local minima of an objective function. The last two goals are for efficiency
(minimizing degrees of freedom) and regularity of the resulting grid.

The metric conformity multi-dimensional (MetricConformityMD) algorithm is:

• Sort the tetrahedra by decreasing η in the specified metric. Consider the elements one-by-one, swap them with
their neighbors to minimize the maximum η of the involved tetrahedra,

(Xn,Tn+1) = Sw(Xn,Tn, j, η(),m = ∞) ∀ κ j ∈ Tn from largest η(κ j) to smallest η(κ j). (29)

If an element is changed remove it from the queue.

• Perform the node movement operation on all nodes from largest η(xi) over incident tetrahedra to smallest,

(Xn+1,Tn) = Mo(Xn,Tn, i, η(),m = ∞) ∀ xi ∈ Tn from largest η(xi) to smallest η(xi). (30)

Smart-Laplacian and quadratic programming optimization schemes[20] are performed on the prioritized node
list to minimize η.

• The orbit of tetrahedra that surround segments connecting two nodes are examined for potential collapse if the
length of the edge in the metric is L(l) < 0.3.

(Xn+1,Tn+1) = Co(Xn,Tn, l, L()) ∀ l ∈ Tn : l < 0.3 from smallest L to largest L. (31)
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• Sort the grid edges from largest l to smallest. The edges with l > 1.0 are split,

(Xn+1,Tn+1) = Sp(Xn,Tn, l, L()) ∀ l ∈ Tn : l > 1.0 from largest L to smallest L. (32)

A element newly created from a Sp operation is not added into the split queue.

• Repeat these steps until L(l) < 1.0 ∀ l ∈ Tn.

4.3. Analytic Metric Adaptation

The volume grid of a unit cube domain [0, 1]×[0, 1]×[0, 1] is adapted to an analytic metric field. The original grid,
Fig. 6(a), is created by the FELISA grid generator[36] through the GridEx framework[37] with an isotropic spacing
of 0.1. An anisotropic metric

[0.1î, h + (0.1 − h)
|y − 0.5|

0.5
ĵ, 0.1k̂] (33)

is used for adaptation. To reach this high anisotropy, the metric in the ĵ-direction is reduced in a number of steps

h = 0.1s, (34)

where s is the step s = 1, . . . , 4. The grid is adapted to this intermediate metric at each step. The volume grid is
clustered near the y = 0.5 plane. This clustering due to the anisotropic metric is evident on the x = 0 and z = 0 visible
surfaces of the cube, Fig. 6(b). The adaptation history of edge length is shown as a series of histograms for the step
when h = 0.001 is reduced to h = 0.0001, Fig. 7. The x-axis of each histogram is log10(L). At the completion of each
adaptation step, all edges are shorter than one in the metric and very few are shorter than log10(0.3) ≈ −0.52.

(a) FELISA grid. (b) All edges smaller than Eq. (33) metric, h =
0.0001.

Figure 6: Isometric views of a cube.

Anisotropic scaling of the figures aids illustration of the final grid corresponding to this simple metric field. The
z = 0 face of the Fig. 6(b) cubic grid is shown in Fig. 8. The y-axis is progressively scaled in the series of subfigures,
but the grid itself remains fixed. Figure 8(a) shows the anisotropically adapted grid with 1–1 scaling. The y-axis scales
by a factor of ten in each subsequent subfigure while the x axis is held constant. Figure 8(d) shows the anisotropically
adapted grid with 1–1000 scaling, which results in a figure width of 1 and a figure height of 0.001 in physical space.
The center of the strongly anisotropic grid appears isotropic in this anisotropically scaled view as a result of this
mapped isotropic method.
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(a) Initial edge lengths.
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(b) After first pass of MetricConformityMD.
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(c) After second pass of MetricConformityMD.
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(d) After third pass of MetricConformityMD.

Figure 7: Histogram of the log of edge length in metric log10(L) for a step of the adapted cube when h = 0.001 is reduced to h = 0.0001.

(a) 1–1 view. (b) 1–10 view. (c) 1–100 view. (d) 1–1000 view.

Figure 8: Face of a cube (z = 0) adapted to Eq. (33) metric, h = 0.0001.
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5. Direct Adaptive Control of Error

The total error in the domain Ω is defined as the norm,

e(Ω) =
(∫
Ω

|ε |m dΩ
)1/m

, (35)

where ε is an expression for error to be controlled. Output error can be cast in this form[19] as well as interpolation
error, which is used as an illustrative example. The error for each element κ, which completely discretizes Ω is

e(κ) =
(∫
κ

|ε |m dκ
)1/m

. (36)

The total interpolation error for the domain is the norm of the elemental errors,

e(Ω) =

∑
κ∈Ω

e(κ)m

1/m

. (37)

Following Zienkiewicz and Zhu,[38] the goal is to equidistribute this error estimate. An equal amount of error for
each element is

tolκ =
(

(tolΩ)m

N

)1/m

, (38)

where tolΩ is the requested total interpolation error and N is the number of elements. The grid operators are applied
in sequence to redistribute the error to bring the elemental errors as close as possible to this tolκ.

5.1. 1D Interpolation Error
The interpolation error is defined as,

ε = (ū − u), (39)

where the exact analytical function u and interpolant ū are defined in the domain Ω. The ū is defined as a p-order
polynomial in each element κ, which completely discretizes Ω. The u is sampled at each node of ū to form ū in each
element. The elemental interpolation error is

e(κ) =
(∫
κ

|(ū − u)|2 dκ
)1/2

, (40)

for m = 2. he direct error control in 1D (ErrorControl1D(e)) algorithm is defined as:

• Repeat until e(κ) ≤ tolκ ∀ κ ∈ Ω:

– Evaluate Eq. (40) for all elements in the grid; split the element in half with the largest value of e(κ) if
e(κ) > tolκ,

Sp(Xn,Tn, j, e(),m = 2) ∀ j ∈ Tn : e(κ j) > tolκ from largest e(κ j) to smallest e(κ j). (41)

– Evaluate Eq. (40) for all elements in the grid; merge the element with the smallest value of eκ with a
neighbor,

Co(Xn,Tn, j, e(), tolκ,m = 2) ∀ l ∈ Tn : e(κ j) < tolκ from smallest e(κ j) to largest e(κ j). (42)

• Perform two sweeps of node position optimization; each sweep progresses from the node of the element with
the largest e(xi) to the nodes of element with the smallest e(xi),

Mo(Xn,Tn, i, e(),m = 2) ∀ i ∈ Xn from largest e(xi) to smallest e(xi). (43)
12



• Repeat these steps until e(Ω) ≤ tolΩ.

An exact function u is defined in the 1D region [0, 1],

u = tanh(50(x − 0.4)). (44)

For a metric-based approach, a requested mesh size is established from a scaled interpolation estimate[11] commonly
used for anisotropic adaptation,

h = min
(
0.5,

1
√

100|uxx|

)
. (45)

The min function is used to set a maximum element size of 0.5 when uxx approaches zero. The scaling factor 100 is
chosen arbitrarily to produce a reasonably-sized mesh of 32 elements. A metric-based grid is generated that satisfies
this h-request with a curve discretization method.[16] This metric-based grid is shown in Fig. 9(a). Element boundaries
are marked with a +-symbol. The metric-based grid has a total interpolation error of e(Ω) = 1.12×10−3 with 32 p = 1
elements.

The direct adaptive method is invoked with a error tolerance equal to the computed interpolation error of the
metric-based grid. The final directly adapted grid is shown in Fig. 9(b). It has 27 p = 1 elements and a total error
of e(Ω) = 1.06 × 10−3, which is slightly lower than the metric-based grid, 1.12 × 10−3, which has more elements.
The metric-based, Fig. 9(a), and direct error control, Fig. 9(b), grids are very similar for this 1D example with p = 1
elements. The error estimate[11] is sharp for this simple 1D case. The clustering of elements in the high-curvature
regions of the tanh function is evident for both methods. The direct adaption method produced a grid with slightly
lower interpolation error and a reduction of the number of elements.

The metric-based approach is repeated for a sequence of α with the specified

h = min
(
0.5,

1
√
α|uxx|

)
. (46)

The 2-norm of domain interpolation error for this sequence grids is shown as the squares in Fig. 10 as a function of
effective h = 1/N. The direct interpolation adaption method is invoked multiple times with a tolΩ equal to the e(Ω)
of the metric-based approach. The e(Ω) for these directly adapted grids is shown as circles in Fig. 10. Both methods
show second-order convergence of the interpolation norm. The direct approach is more efficient in terms of error for
an effective h over the entire sequence of grids. The direct method has 0.7 the error of the metric approach for the
same number of elements. The algorithm was also studied without the Mo operator[19] to determine its contribution
to the overall efficiency of the method.

An advantage of the direct adaption method is that the order of the polynomial representation can be increased
without modifying the adaptation algorithm. The h specification based on interpolation estimates has been formulated
for p = 1 elements. In 1D, an h can be specified for higher degree polynomials, but this task becomes more compli-
cated for multiple dimensions.[8] The 2-norm of domain interpolation error for a sequence grids is shown in Fig. 11
as a function of effective h = 1/N for various p. Triangles are provided with slopes listed on the left of each triangle.
These indicate that the error is converging at an optimal rate of p + 1.

In the previous results, knowledge of the exact solution u was utilized to calculate the error. In practice, the
exact solution is not known and the error must be estimated. To simulate this situation, an approximate solution ũ is
constructed of p-order polynomials on a set of discrete elements κ0. This approximate solution on each element is
constructed by minimizing (∫

κ0

|ũ − u|2 dκ0

)1/2

(47)

independently in each element. The left column of Fig. 12 shows this discontinuous fit for a series of adapted 1D
grids.

To estimate the leading order terms of the exact interpolation error, a p + 1-order solution û is reconstructed from
ũ on κ0. A C0 p + 1-order function û is formed from the discontinuous ũ by minimizing(∫

Ω

|û − ũ|2 dΩ
)1/2

(48)
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(a) Metric-based, 32 p = 1 elements, e(Ω) = 1.12 × 10−3. (b) Direct error control, 27 p = 1 elements, tolΩ = 1.12 × 10−3,
e(Ω) = 1.06 × 10−3.

Figure 9: Grids to control the interpolation error of tanh with p = 1 basis.
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Figure 10: Convergence of the interpolation error in the 2-norm for the metric and direct adaptation method on the tanh function with p = 1
elements.
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Figure 11: Convergence of the interpolation error in the 2-norm for the direct adaptation method on the tanh function with p = 1, 2, 3, 4, 5 elements.

over the entire domain. The formation of û is not local; an inexpensive mass matrix inversion is computed. A C0 û
is required to prevent the adaptation process from introducing zero width elements at discontinuous function jumps.
This û is shown in the right column of Fig. 12. Over- and under-shoots are present in û. The domain discretization is
adapted into elements κ. An elemental interpolation error of the form,

e′(κ) =
(∫
κ

|(ū − û)|2 dκ
)1/2

, (49)

is utilized, where ū is a p-th order polynomial representation of the function û in each element. The function ū is
directly interpolated from û. A step of the adaptive procedure follows;

• Given the current grid, construct a discontinuous p basis ũ with Eq. (47) to simulate the solution to a PDE.

• Reconstruct a continuous p + 1 basis û with a 2-norm fit of ũ over the domain, Eq. (48).

• Exit adaptive procedure if e′(Ω) ≤ tolΩ.

• Apply ErrorControl1D(e′)

These steps are repeated to form the adaptive procedure.
Each step of the adaptive procedure is shown as a row in Fig. 12. The upper left subfigure shows ũ on the initial

two element grid. Element boundaries are marked with a + symbol. The inter-element jump is evident for this
discontinuous p = 5 basis on the initial grid. The upper right subfigure shows the first adapted grid interpolating the
p = 6 continuous basis û on κ0. The second row of subfigures exhibits the Gibbs phenomenon near the rise in the
tanh function. This phenomenon is damped in the third and fourth rows as adaptation progresses. The final grid is
coarsened away from x = 0.4 after the Gibbs phenomenon is reduced.

5.2. 2D Interpolation Error

In this section, the direct error control approach is extended to 2D by considering adaptation to minimize the
2-norm of interpolation error of a known function. The direct adaptation consists of four modes. These are ele-
ment swapping, node movement, element collapse, and element split. The direct error control multi-dimensional
(ErrorControlMD) algorithm is:

15



ũ on initial grid û sampled by adapted grid

Figure 12: Four 1D adaptation cycles to the interpolation error of tanh with p = 5 basis (one cycle per row, approximate solution in left column,
reconstructed solution in right column)
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• Sort the elements from largest eκ to smallest. Perform the swap operation on all element with e(κ) > tolκ,

Sw(Xn,Tn, j, e(),m = 2) ∀ j ∈ Tn : e(κ j) > tolκ from largest e(κ j) to smallest e(κ j). (50)

• Perform the node movement operation on all nodes from largest,

eV (xi) =

∑
κ3xi

e(κ)m

V(κ)

1/m

, (51)

over incident elements to smallest,

Mo(Xn,Tn, i, eV ,m = 2) ∀ i ∈ Xn from largest eV (xi) to smallest eV (xi). (52)

The volume (area in 2D) of the elements V(κ) is included in the denominator to penalize nearly degenerate
elements. A simplex search is performed on the prioritized node list to optimize the inverse volume weighted
norm.

• The elements with low error are examined for potential collapse,

Co(Xn,Tn, j, e(), tolκ,m = 2) ∀ j ∈ Tn : e(κ j) < tolκ from smallest e(κ j) to largest e(κ j). (53)

• Sort the elements from largest e(κ) to smallest,

Sp(Xn,Tn, j, e(),m = 2) ∀ j ∈ Tn : e(κ j) > tolκ from largest e(κ j) to smallest e(κ j). (54)

• Repeat these steps until e(Ω) < tolΩ.

An analytic function is defined,

u = (2.0 + sin(10.0x)) exp(−10.0(y − 0.5)2), (55)

and shown in Fig. 13 for a domain sized [−1.5, 1.5] × [0, 1]. Direct interpolation error control and metric-based
algorithms are employed with an initial grid shown in Fig. 14. The target metric M is set to 10|H| for the entire

Figure 13: Analytic function, Eq. (55).

adaptation process, where the Hessian,

H =
[

uxx uxy

uxy uyy

]
, (56)

is computed analytically. The metric-based approach employs the MetricConformityMD algorithm. The metric M
is interpolated from a grid with quadratic elements that is frozen at the start of each adaptation cycle. The direct

17



Figure 14: Initial grid of the domain [−1.5, 1.5] × [0, 1].

Figure 15: Metric-adapted grid and element interpolation error in 2-norm (color scale is logarithmic).
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Figure 16: Direct interpolation error adapted grid and element interpolation error in 2-norm (color scale is logarithmic).

approach is terminated when it reached the error level of the metric-adapted grid. The direct approach utilizes the
reconstructed solution û described in Section 5.1 to define the interpolation error e(κ).

The final metric-adapted grid is shown in Fig. 15 with the 2-norm interpolation error for each element. The direct-
adapted grid is shown in Fig. 16 with the 2-norm interpolation error for each element. The direct-adapted element
error is scattered with the largest values on the border of the domain and radially around each peak in the function.
The metric-adapted element error is clustered in the saddle-shaped troughs of the function. The metric-adapted grid
is much more regular than the direct-adapted grid. Both methods produce similar grids at the peaks of the functions,
where the grid is isotropic. The direct-adapted grid has greater anisotropy radiating from the peaks and along the
troughs of the function. The direct approach uses approximately 70% the triangles of the metric-based approach for
the same error norm.

The metric-based approach is intended to equidistribute an a priori estimate of the interpolation error in the 2-
norm.[16] The direct approach may be more efficient in terms of number of elements because it is employing an
actual calculation of the error. The direct-adapted grids may be less regular because computed error is a more difficult
function to optimize than metric conformity.

The metric-based approach is repeated for a sequence of α with the specified

M = α|H|. (57)

The 2-norm of domain interpolation error for this sequence grids is shown as the squares in Fig. 17 as a function of
the effective h = 1/

√
N. The e(Ω) for the directly adapted grids is shown as circles in Fig. 17, which are produced

by halving the initial computed error to set tolΩ for each step. Both methods show second-order convergence of the
interpolation norm in terms of an effective h. The direct approach is more efficient in terms of error for a given number
of elements for the entire sequence of grids. The improvement in efficiency is approximately a constant factor for this
entire sequence.
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Figure 17: Convergence of the interpolation error in the 2-norm for the 2D metric and direct adaptation method.

Figure 18: Exact x2 + 1000y2 + 10z3 function in a cube.
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5.3. 3D Interpolation Error
A cubic domain is employed in an 3D adaptation example to directly control interpolation error. The exact function

for this example is
u = x2 + 1000y2 + 10z3, (58)

Fig. 18, used to define the interpolation error e(κ). Approximate and reconstructed solutions are not used for this
3D case; the exact function is evaluated. The function is dominated by the 1000y2 term, as seen in the nearly planar
contours. The direct adaptation algorithm ErrorControlMD is utilized. The initial grid is shown in Fig. 6(a). The
grid adapted to tolΩ = 5.0 × 10−1 for p = 1 tetrahedra is shown in Fig. 19(a). The grid adapted to tolΩ = 5.0 × 10−5

for p = 2 tetrahedra is shown in Fig. 19(b). For both cases the final interpolation error norm is approximately half the
requested error norm. The anisotropy seen in Fig. 19 is a result of efficiently resolving the anisotropic function. The
p = 1 basis adapts to anisotropically resolve the 1000y2 term. The p = 2 basis resolves the quadratic term, 1000y2,
exactly, so it anisotropically resolves the 10z3 term. The shift in the primary anisotropic direction is clearly evident as
the interpolation error is directly controlled.

(a) Adapted p = 1 to tolΩ = 5.0 × 10−1, actual eΩ = 2.5 × 10−1. (b) Adapted p = 2 to tolΩ = 5.0 × 10−5, actual eΩ = 2.0 × 10−5.

Figure 19: Isometric views of an interpolation error adapted cube.

6. Conclusions

Elemental grid operators are described with a corresponding parallel execution scheme. These elemental operators
are combined into a higher-level algorithm to produce strongly anisotropic tetrahedral grids. This metric-based ap-
proach produces tetrahedral elements that satisfy an anisotropic metric field with aspect ratio of 1000 to 1. Although a
simple cubic domain was illistrated in this work, the method is applicable to complex domains whe combined with a
tetrahedral cut-cell appraoch.[19, 39] A novel direct adaptation approach is developed that evaluates a general expres-
sion for error. This avoids the assumptions and approximations required to form a metric to specify adaptation. To
illustrate this new approach, the grid adaptation is performed in 1D, 2D, and 3D to directly reduce and equidistribute
interpolation error. This new method is uniformly applied to linear and higher-order elements. An example is also
provided for a case when the exact interpolant is not available and a surrogate approximation is employed. The direct
method is shown to be more efficient than the established metric based approach by having a smaller number of ele-
ments for a given total interpolation error. The direct method was also applied to scalar convection-diffusion[19] and
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found to more efficient than existing metric-based approaches. The direct method produced grids that are less regular
then the metric-based method, which may indicate that there is the potential for additional improvement.
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