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Acut-cell approach to computational fluid dynamics that uses themedian dual of a tetrahedral background grid is
described. The discrete adjoint is also calculated for an adaptive method to control error in a specified output. The
adaptive method is applied to sonic boom prediction by specifying an integral of offbody pressure signature as the
output. These predicted signatures are compared to wind-tunnel measurements to validate the method for sonic
boom prediction. Accurate midfield sonic boom pressure signatures are calculated with the Euler equations without
the use of hybrid grid or signature propagation methods. Highly refined, shock-aligned anisotropic grids are
produced by thismethod from coarse isotropic grids created without prior knowledge of shock locations. A heuristic
reconstruction limiter provides stable flow and adjoint solution schemes while producing similar signatures to
Barth–Jespersen and Venkatakrishnan limiters. The use of cut cells with an output-based adaptive scheme
automates the volume grid generation task after a triangular mesh is generated for the cut surface.

Nomenclature
A = area
a = speed of sound
Cl = coefficient of lift
Cp = coefficient of pressure
E = total energy per unit volume
F = flux
f = output function
H = van Leer approximate Riemann solver
h = isotropic element size
I = estimated error
l = body length
M = Mach number
N = number of control volumes
n = outward-pointing normal
p = pressure
Q = conserved state
q = primitive state
R = residual
r = radius
s = integration surface
t = time
tol = error tolerance
u, v, w = components of velocity
V = control volume
! = control volume boundary
! = specific heat ratio
" = estimated error ratio
# = element
$ = adjoint state

% = density
", & = limiting function
 = reconstruction weights
# = domain
! = spatial error convergence

I. Introduction

T HE acceptance of an aircraft’s sonic boom to the general
population is a requirement for supersonic flights over land and

therefore the commercial viability of a supersonic transport. Pre-
dicting how sonic boom signatures are perceived is a challenging task
that requires the prediction of the signature on the ground. This is a
task complicated by the long propagation distances, atmosphere
variations, and the Earth’s turbulent boundary layer. A detailed
review of the history and state of the art of sonic boom modeling is
provided by Plotkin [1].

The propagation of a sonic boom is often separated into three
logical stages or regions, depicted in Fig. 1, to facilitate analysis [2].
The near field is a region near the aircraft, where shocks are formed
and strongly influenced by nonlinear phenomena such as shock–
shock interaction, shock curvature, and crossflow. Higher-pressure
portions of the signature travel faster than lower pressure portions of
the signature because of variations in the local speed of sound. This
slight speed difference causes the shocks to deform by elongating
and coalescing in the midfield. The signature is also refracted by
variations in the atmospheric speed of sound. In the far field, the
signature will typically form an N-wave. The boundaries of these
regions are case-specific.

The propagation of the relatively weak pressure signatures of a
sonic boom beyond the near field is difficult using common
discretization and gridding techniques. This problem is more acute
for unstructured-grid methods that are often employed to capture the
geometrical complexity of the model, especially if the grids are not
aligned with the shocks. To improve alignment, isotropic unstruc-
tured grids are stretched to align the tetrahedra with the freestream
Mach angle to improve signal propagation for initial grids [3]. This
alignment issue has also given rise to hybridmethods [4–6], in which
near-body unstructured-grid solutions are interpolated to shock-
aligned structured-grid methods to increase accuracy.

Adaptive methods have also been applied to sonic boom using
adaptation indicators based on Mach number and density distrib-
utions [7,8]. Adaptive approaches based on these types of flow
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features and local error estimates [9–11] can be ineffective as they do
not account for propagation of errors. An alternative method is to
estimate the error in the calculation of a specified engineering output
functional [12–15]. Output error indicators use the dual or adjoint
solution of an output functional to account for the impact of local
error as well as the transport of these local errors throughout the
problem domain to improve the calculation of that output functional.
This output-adaptive approach has been applied to sonic boom
prediction with discontinuous Galerkin [16], Cartesian finite volume
[17], and body-fitted unstructured-grid finite volume [18,19]. In this
work, anisotropic output-based adaptation is combined with a
tetrahedral cut-cell discretization and applied to 3-D sonic boom
prediction. The combination provides an automated, robust method
for the prediction of nontrivial 3-D sonic boom problems.

Cut-cell methods with Cartesian background grids [20–23] have
been very successful for Euler simulations including output-based
adaptation [24]. The regular structure of the Cartesian background
grid permits extremely efficient solution schemes. Cartesian back-
ground grids have the capability to only provide anisotropic
resolution in the Cartesian directions [23], but can be effective if a
Cartesian direction is aligned with the bow shock [17]. Simplex
meshes have the ability to stretch the triangular and tetrahedral
elements in arbitrary directions. This permits the efficient repre-

sentation of anisotropic features (i.e., shocks). The cut-cell method is
also applicable to simplex meshes [25–28]. When the constraint of
providing a body-fitted grid is removed, the grid adaptation task
becomes much simpler. The complexities of adaptation on curved
domain boundaries [29] is eliminated and robustness is dramatically
increased. This increase in robustness may enable automated,
efficient, high Reynolds number simulations [26,27].

The 3-D simplex cut-cell method is introduced with particular
attention to the robust determination of the intersection of the
geometry with the underlying tetrahedral mesh in Sec. II. The flow
and adjoint solvers are described and a heuristic limiter is introduced
that significantly improves convergence in Sec. III. The output-based
adaptive method is then reviewed in Sec. IV. Finally, the output-
based simplex cut-cell method is validated for sonic boom
applications by comparison to wind-tunnel data for representative
configurations in Sec. V.

II. Cut-Cell Determination
To introduce the 3-D cut-cell method a simple 2-D example is

presented. The primal triangular grid is shown in Fig. 2a. The control
volumes used by the flow solver are the median duals of this grid,
shown in Fig. 2b. These median duals are constructed by gathering
the three dual faces that are inside each primal triangle, which each
connect the triangle center to one of the triangle side midpoints. The
geometry is a diamond airfoil, shown with the uncut median-dual
background grid in Fig. 2c. The airfoil geometry is Boolean-
subtracted from this background grid, removing the portion of the
background grid that is external to the flow domain (Fig. 2d). The
resulting cut and uncut duals are the control volumes of the finite
volume method.

In the 3-D case, the domain of the simulation is constructed by
Boolean subtraction of a manifold triangular boundary representa-
tion from a background grid. This triangulation can come frommany
sources. Two examples are CAD geometry [30–32] and component-
based geometry [22]. Figure 3a is a triangular surface grid of a
cylinder constructed on a CAD solid [32].

The background grid contains closed simplicial polytope control
volumes. In 3-D, these polyhedra are the median duals of a
tetrahedral grid. The 3-D median dual about a single primal node is
shown in Fig. 3b. Just as in the 2-D case, this dual control volume
maynot be convex.Each dual polyhedra of a tetrahedral grid contains
O!100" triangles. Figure 4 illustrates the two dual triangles
associated with an edge of a primal tetrahedron. There are six edges
in a tetrahedron, which contains a total of 12 triangular dual faces
shared by the duals at each of its four nodes. For robustness and a
decrease in execution time and memory usage, a triangular dual face
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Fig. 1 Sonic boom signature propagation zones.
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Fig. 2 Cut-cell illustration of an diamond airfoil in 2-D.
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is only represented once in the intersection procedure and shared by
the two adjacent control volumes.

The major steps of the Boolean-subtraction procedure are as
follows:

1) The set of background grid duals that intersect the cutting
surface are gathered with conservative approximate intersection
tests.

2) All pierce points and cuts of the dual and cutting surface
triangle–triangle intersections are calculated (Fig. 5).

3) The pierce points are inserted and the cuts are recovered by
Delaunay subtriangulating the intersected triangles.

4) The inside/outside status of all subtriangles adjacent to cuts is
determined.

5) The inside/outside status of subtriangles is relaxed to
neighboring subtriangles and triangles to segregate distinct regions
and remove the portion of the dual outside of the computational
domain. These steps are described in detail in the remainder of this
section.

The Boolean subtraction of two manifold triangular polyhedra
(surface grid and each of the background grid control volumes)
reduces to a series of triangle–triangle intersections [22]. For com-
putational efficiency, a near tree [33,34] is employed to only perform
the intersection test for triangle pairs that have a possibility of
intersecting. Only the duals that have a potential of intersecting the
cut surface are created for the intersection test. This potential is
determined by an approximate, but conservative, intersection of the
primal tetrahedra and the cut-surface triangulation. When a
tetrahedra is intersected by the cut surface the dual surrounding each
of the four nodes is marked for creation. These steps reduce the
complexity of the intersection problem that can be on the order of the
number of surface triangles times by number of volume triangles for
a naive implementation.

The intersection test of two triangles is evaluated with only
floating-point arithmetic. To ensure that each intersection test is only
performed in a single orientation, a hierarchical data structure is
employed [28]. The triangle–triangle intersection determination
decomposes into triangle-segment intersection determination via
volume computations, in which the segments are the three sides of
the triangle. The intersection produces two segment-triangle pierce
points and a cut connecting the two pierce points (see Fig. 5). The
triangles and their segments have a unique orientation, because they
are only represented once in the data structure. When they are
compared in this unique configuration, they always return the same
intersection determination. This consistency is pivotal to the
robustness of the cutting scheme and permits the use offloating-point
arithmetic, which is faster and much simpler than using adaptive
precision arithmetic. Performing the same intersection test in
different orientations would make an inconsistency extremely likely
because of differing floating-point round-off errors.

In the rare case when floating-point arithmetic results in an exact
degeneracy (zero volume), the cut surface is perturbed slightly (by a
factor of machine epsilon) and the entire cutting procedure is
restarted to maintain consistency. These exact degeneracies have
only been observed on initial grids when the user exactly aligns the
background grid and surface triangulation. The actual perturbation
can be replacedwith a virtual perturbation [22,35], in which a unique
tie-break to the degenerate volume computing determinate is applied.
This process has not been adopted in the current work, because the
degeneracies are detected early in the cutting procedure (within
seconds) and a single perturbationvector applied to the entire surface
triangulation has been sufficient to eliminate the degeneracies. The
virtual perturbation technique may be implemented as a topic for
future work if it becomes necessary.

Fig. 3 Cylindrical cutting surface and median dual.

Face  Center

Face  Center Cell Center

Edge Midpoint
Fig. 4 Two dual triangles associated with a single tetrahedral edge.

Cut
Pierce Point
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Fig. 5 Cut and two pierce points resulting from a triangle pair.
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Each of the intersected triangles is constrained Delaunay
triangulated into a set of subtriangles to include the pierce points and
cuts [22]. Local barycentric coordinates are employed in a reference
triangle (Fig. 6). The goal is to produce a Delaunay triangulation in
the reference triangle, not the physical triangle. In this example, two
cuts (thick lines) and three pierce points (circles) are introduced into
this reference triangle. The triangle–triangle pierce points are
inserted, one at a time, into the triangleswith an iterativemethod [36].
A point insertion involves splitting the subtriangle that surrounds the
new point into two or three (Fig. 6b). The target subtriangle that will
be split is selected by examining the subtriangles that result after
splitting. This target subtriangle is selected so that the smallest of the
resultant subtriangles has the greatest signed area in floating-point
arithmetic. This area calculation is always performed in a unique
configuration so the resulting triangulation will have a nonnegative
area in finite precision arithmetic. The subtriangles are provided to
the flow solver in this same orientation preventing the introduction of
negative area triangles in the flow solver. Shewchuk [37] describes a
Delaunay triangulation scheme that uses exact arithmetic for area
calculations, but can provide negative area triangles in floating-point
arithmetic. After insertion, the subtriangle sides are swapped to
regain a Delaunay grid (Figs. 6d and 6f). Cuts that are not present are
recovered [38] producing a constrained Delaunay grid of the
reference triangle.

Once the triangles have been subtriangulated to include all of the
pierce points and cuts, subtriangles are categorized inside or outside
of the domain. Each cut has four adjacent subtriangles (see Fig. 7).
The subtriangle pair, S1 and S2, lie on a triangle from the boundary
surface triangulation, and the subtriangle pair, V1 and V2, lie on a
triangle from the face of a background dual volume. Thus, each
subtriangle in a pair are in the same plane since they have the same
parent triangle. The normals of the cut-surface triangles (S1 and S2)
point into the domain. The signed volume of a tetrahedron formed
from the nodes of an S subtriangle and the third node of a V
subtriangle are positive if the V subtriangle is inside the domain. The
V subtriangle that creates a positive volume tetrahedra is given an

inside status. The V subtriangle that creates a negative volume
tetrahedra is given an outside status. The inside/outside status of the S
subtriangles is determined in the same fashion, each dual knows the
orientation of its V subtriangle normals by construction.

The inside/outside determination procedure uses only local
subtriangles. It does not use a global search over all triangles, which
is required by ray-casting [22]. The localization of the inside/outside
determination allows the current implementation to use computer
memory cache more efficiently than ray tracing. The inside sub-
triangle status is propagated to adjacent subtriangle and uncut
triangle neighbors with a flood-fill scheme, which propagates status
until a cut is reached. The validity of the cut-cell topology is verified
during the flood-fill operation. If a subtriangle pair is set to the same
status (i.e., V1 and V2 in Fig. 7 are both inside) the flood-fill is
terminated and the user is alerted to the location, because this
indicates that the cutting surface is not manifold.

An example is provided to illustrate the inside/outside deter-
mination of a multiple region cut cell in 2-D. Figure 8a contains a
nonconvex background grid control volume and a wing trailing edge
(thicker line). The cutting and inside/outside determination is applied
and lines adjacent to intersections are given an integer (Fig. 8b). This
integer is 0 for lines outside of the domain and positive for lines inside
of a domain. The positive integers used to mark inside lines are
unique. A relaxation is performed so that adjoining lines not
separated by an intersection are both set to the larger of their two
integers. This provides inside/outside determination for lines that are
not directly intersected and categorizes the lines into distinct regions
(Fig. 8c), in which each region has a distinct integer. These distinct
regions are each represented as a separate control volume in the flow
solver.

The 3-D cut-surface and dual-volume surface grids from Fig. 3 are
shown in Fig. 9a. The cut surface intersecting the median dual is
shown as a wire frame so that the median dual is visible. Figure 9b
shows the result of the Boolean subtraction. The surface resulting
from the subtraction contains the inside triangles from both surfaces
and the inside subtriangles of the cut triangles.

a) Reference triangle, pierce points, 
and cuts

b) Insert first pierce point c) Insert second pierce point

d) Swap for Delaunay e) Insert third pierce point f) Swap for Delaunay
Fig. 6 Subtriangle construction by Delaunay point insertion into reference triangle.
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III. Flow and Adjoint Solvers
Fully unstructured Navier–Stokes three-dimensional (FUN3D) is

a suite of codes for finite volume computational fluid dynamics
(CFD) [39,40]. The FUN3D website‡ contains the user manual and
an extensive list of references. FUN3D is able to solve incom-
pressible, Euler, and Reynolds-averaged Navier–Stokes flow
equations, either tightly or loosely coupled to a turbulence model.
The Euler equations are used in this study. Domain decomposition is
employed to fully exploit the distributed memory of a cluster of
computers to increase problem size and reduce the execution time of
the simulation process.

A. Governing Equations
The Euler equations are
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where % is density; u, v, andw are velocity; E is total energy per unit
volume; and p is pressure. These quantities are related by the ideal-
gas relation:
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with the specific heat ratio ! % 1:4 for air.
The divergence theorem is applied over a set of control volumes to

produce a finite volume scheme:
Z
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where !i are the boundaries of the control volumes with volume Vi
and n is an outward-pointing normal. The average of Q in each
control volume is Qi. The flux integration is approximated as
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whereRi is the steady-state discrete residual for control volume i, the
summation is over the faces of the control volume [39]. The van Leer

[41] approximate Riemann solverH is used to compute the flux from
the primitive states,
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at the borders of the neighboring control volumes,qrf and qlf. These
face values are reconstructed from cell averages (the reconstruction
method is described below). The discrete equations are established
simultaneously for each control volume,

V
dQ
dt

#R!Q" % 0 (8)

which makes the discrete solution vectorQ 2 R5N, discrete residual
vector R 2 R5N, and V % diag!Vi", where N is the number of
control volumes. The flux integration scheme (including face state
reconstruction from cell averages) is detailed in the following
sections.

A backward Euler solution update scheme is employed with a
variable pseudo time step [39]. An approximate nearest neighbor
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Fig. 7 Inside/outside determination of subtriangles at cuts.
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a) Background grid control volume and wing trailing edge

b) Inside/outside determination at intersections

c) Completion of flood-fill resulting in 3 regions
Fig. 8 Inside/outside and multiple region determination in 2-D.

‡Data available online at http://fun3d.larc.nasa.gov [retrieved1 June 2010].
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linearization is used to reduce the memory required for the implicit
point-iterative method. The solution update is limited to 15% of the
current % and p to increase robustness during initial transients when
starting from freestream.

B. Adjoint Equations
After the flow solution is known, the discrete adjoint equations

[42,43] are solved to enable output-based adaptation. Given an
output function f, the discrete adjoint equations are

!
@R
@Q
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T

$%&
!
@f

@Q

"
T

(9)

The linear adjoint equations in Eq. (9) are solved with a dual-
consistent time-marching method [44,45]. The dual-consistent
solution method guarantees that the adjoint equations will have the
same eigenvalues and therefore the same asymptotic convergence
rate as the iterative method for the flow equations.

C. Inviscid Flux Integration
The existing FUN3D body-fitted approach lumps themedian-dual

pieces to a single effective area and normal direction for each edge
they surround [46]. After lumping, all of the inviscid terms are
calculatedwith a loop over edges, which is computationally efficient.
Conserved states Q, used in the time advancement scheme, are
converted to primitive states q for face state reconstruction. The
primitive state is extrapolated from the nodes to establish the
primitive state at these lumped faces qf using the gradients rq%
(qx;qy;qz) reconstructed from the cell-averaged state q0 (see
Sec. III.D), face center xf, and node x0,

q f % q0 # rq!xf & x0" (10)

for the unlimited scheme. For the case of supersonic flow, a limiting
function is used to reduce the gradient contribution to the
reconstruction (see Sec. III.E).

At the completion of cut-cell preprocessing, the dual polyhedra
can be classified into three groups: uncut active duals interior to the
computational domain, cut duals, and inactive uncut duals exterior to
the computational domain. The state is stored at each node in the
primal grid (Fig. 10a, filled circle). All nodes that correspond to dual
polyhedra that have been cut or are inactive are removed. A new
degree of freedom is inserted at each cut dual polyhedra centroid

(Fig. 10b, filled circle). Multiple degrees of freedom are added when
a polyhedra is split into multiple distinct regions by the cut surface.

Once a dual control volume is cut, the approximation that the state
is centered at the primal node is removed and the state becomes
centered at the control volume centroid. This results in a discontin-
uous change in location once the control volume is infinitesimally
cut. This discontinuous behavior may cause difficulties for shape
sensitivities and design. Removing this issue remains a topic for
future work, but may be addressed by computing the uncut-cell
centroids.

The median-dual triangles that surround any edges that involve a
cut cell are explicitly represented and employed in flux integration.
Edges that involve uncut active duals use the lumped effective areas
and normals of the body-fitted scheme. Cut-cell flux integration
requires more work than the body-fitted scheme, because there are
multiple triangles separating the two control volumes that would be
approximated as a single flux evaluation in the body-fitted scheme. It
also requires more memory to store the extra triangles that would be
approximated as a single effective area. The cut cells are aminority of
the control volumes for a typical case, so the additional expense of
using cut cells does not dominate the execution time or storage.

The body-fitted node-based scheme stores the state on the
boundary of the domain. The state is interpolated between adjacent
boundary nodes to integrate the boundary flux. For cut-cell boundary
flux integration, the state is extrapolated with the reconstructed
gradients from the cell centroids to the boundary face:

q bf % q0 # rq!xbf & x0" (11)

Fig. 9 Median dual, cylindrical cutting surface, and resulting polyhedra.

a) Uncut control volume b) Cut-cell control volume
Fig. 10 Dual control volumes in 2-D.
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D. Gradient Reconstruction

Finite volume schemes store cell-averaged data as solution
unknowns. Gradients are reconstructed from neighboring cell-
averaged data to create a more accurate scheme. Barth [47] intro-
duced a fitting procedure to reconstruct gradients,
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for each primitive state ' 2 q% (%; u; v; w; p)T . For uncut cells, the
cell neighbors 1; . . . ; n that surround the central cell 0 are often more
numerous than the three unknowns, so the overdetermined system is
solved with the method of least squares. For cut cells, however, the
number of neighbors can be low, resulting in poor conditioning. To
improve conditioning for cut cells, the gradient reconstruction
system is extended to include the neighbors of cut-cell neighbors. To
reduce numerical instabilities, a Gram–Schmidt QR factorization
[39] is used to invert Eq. (12) by precomputing and storing R, which
is only a function of the problem geometry. Mavriplis [48] discusses
the properties of unweighted and various weighted reconstruction
schemes.

The discrete adjoint solution exhibits extreme values in small cells
that are adjacent to much larger control volumes when these small
cells are included in the unweighted reconstruction scheme of the
larger cells. This behavior is problematic for error estimation because
of the use of a high-order recovery [28]. For the unweighted
reconstruction, the reconstructed gradient is highly sensitive to the
solution in small cells, causing large contributions to the adjoint
residual in these small cells.

To relieve this problem, the gradient reconstruction system
includes a square root of volume weighting  i %

#############
Vi=V0

p
. The

reconstructed gradients are still exact for linear functions with this
weight. This weighting has the added benefit that a cell is smoothly
included or removed from the reconstruction stencil when a control
volume is infinitesimally cut. This smooth transition should aid the
computation of design sensitivities.

E. Reconstruction Limiting
Barth and Jespersen [46] introduced limits on an unstructured-grid

reconstruction scheme to maintain monotonicity. Face reconstruc-
tion using a limiter of this form is

q f % q0 #"rq!xf & x0" (13)

where the diagonal matrix limiting function " is computed in each
control volume. The same " is employed in all face reconstructions
for a given control volume. This type of limiter can compromise the
convergence of theflowand therefore a dual-consistent adjoint solver
[49,50]. Venkatakrishnan [51] studied this limiter in its original form
as well as with the limiter function held constant after iterative
convergence stalls. He proposed a new limiter to improve converg-
ence, but both the frozen scheme and new limiter can result in stalled
convergence. The Venkatakrishnan limiter is not monotone, it
permits under and overshoots. Frozen limiters are derivative approxi-
mations that impede error estimation, output-based adaptation,
adjoint iterative convergence, and design sensitivities [18,24,52].

Balasubramanian and Newman [52] propose applying the Barth–
Jespersen and Venkatakrishnan limiters on an edge-by-edge basis
instead of having a single value of " for each control volume. They
reported an improvement in the iterative convergence of themodified
limiters for both the flow and adjoint systems of a wing in transonic
inviscid flow. Berger et al. [53] examine edge-based limiting in an

appendix. They show that edge-based limiting can introduce new
extrema into the solution.

In this study, the limiter will be used in the context of an output
adaptive scheme that requires the adjoint solution. An exact
linearization and steady iterative convergence of the flow and adjoint
solvers is paramount to the robustness of the adaptive scheme. This
iterative convergence is so critical that the accuracy of the limited
scheme will be sacrificed; accuracy will be regained with adaptive
grid refinement. A heuristic edge-based limiter§ is used to improve
the convergence of the flow solver while providing the exact
linearization required for adjoint convergence. Concessions are
made to improve iterative convergence; it is not total-variation-
diminishing or linearity-preserving.

The heuristic limiter was developed by examining its effect on
shock capturing for regular and irregular grids and empirically
adjusting its formulation to increase thewidth of shocks. It is a scalar
limiting function & that considers only the cell-averaged values of
pressure and their reconstructed gradients in the cells adjacent to the
face being reconstructed. Face reconstruction using a limiter of this
form is

q f % q# &rq!xf & x0" (14)

where the scalar limiting function & is computed for each face f. The
same & is used for the left qlf and right qrf face reconstructions.

The basic concept employed in this heuristic limiter is to reduce
the reconstruction gradient in locations in which the pressure
gradients are large relative to pressure. This clearly could result in
limiting in regions for which the solution varies linearly (thoughwith
large magnitude), however, in combination with adaptation the
proposed limiter has been found robust and accurate [28]. The
specific formof the limiter relies on (p, ameasure of the change in the
pressure between the control volumes. To form (p, the reconstructed
gradient of pressure for the control volumes on the right and left of the
face (Fig. 11), rp1 and rp2, are used with the right and left
extrapolation vectors to the face, (x1 and (x2,

(p%

$$$$$$

(x1xrp1x
& (x2xrp2x

(x1yrp1y
& (x2yrp2y

(x1zrp1z
& (x2zrp2z

$$$$$$
(15)

This sensor is active for linear functions and does not specifically
penalize extrema. The gradient reconstruction is reduced such that
the (p sensor is large, with the intention of spreading the detected
jump over a number of control volumes. Adaptation will be
employed to narrow thewidth of the discontinuity. The tanh function
is employed to smooth the combined nondimensional pressure-jump
ratio,

&heuristic % 1 & tanh

!
(p

min!p1; p2"

"
(16)

and restricts the limiter to the range (0,1]. A tanh function is
employed to provide a smoothly varying and differentiable function
that enables residual convergence that can be impeded by a
nonsmooth limiting function. This limiter is active (to some degree)
in all regions with pressure variations, so it will not switch on and off
intermittently during iterative convergence. The design accuracy of
the limited scheme is therefore below second order, even for smooth
flows. The limiter is more active when the pressure variation is
significant, as compared to the local pressure.

The cut cells require pressure, extrapolated to the boundaries, to
compute boundary fluxes. This reconstruction requires limits to
prevent unrealizable face states and must be smoothly differentiable
to facilitate iterative convergence:

(pd %
$$$$$
(xxrpx
(xyrpy
(xzrpz

$$$$$ (17)

§Private communication with J. A. White, 2007.
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&extrapolation % 1 & tanh

!
(p

p

"
(18)

The extrapolation limiter is formulated to mimic the interior-face
limiter using only the data from the cell adjacent to the boundary.
These limiters reduce, but do not eliminate, the incidence of
unrealizable face reconstructions, as discussed in Sec. III.F.

A diamond airfoil in Mach 2.0 flow at a 5 deg angle of attack is
provided to illustrate the convergence issues of reconstruction
limiters (see Fig. 12). The grid is anisotropically adapted to resolve
the shocks.A symmetry plane grid of the 3-D extruded airfoil domain
is colored with pressure in Fig. 12a. Figure 12b shows the
convergence history of the residual 2-norms of the five conservation
equations for the Barth–Jespersen, Venkatakrishnan, and proposed
heuristic limiters. The convergence of the Barth–Jespersen and
Venkatakrishnan limiters initially stall. They both converge after" is
frozen at iteration 150. The heuristic limiter converges without
modification.

A plane in the center of the 3-D domain of the extruded airfoil is
shown in Fig. 13.A close-up of pressure around the diamond airfoil is
shown in Fig. 13a. The minimum " or & involved in the face
reconstruction for a control volume is shown in Figs. 13b–13d. The
Barth–Jespersen limiter (Fig. 13b) is active over large portions of the
domain, including regions with small variations. This" function has
a large amount of high-frequency variation. The Venkatakrishnan
limiter (Fig. 13c) is the least active and its activity is narrowly
restricted to the shock and strongest expansion regions. The heuristic
limiter (Fig. 13d) is more active than theVenkatakrishnan limiter and
includes more of the expansion region. The & scalar is active in
regionswithmoderate to large pressure variation. It has awider active
region than the Venkatakrishnan limiter and a smoother variation
than the Barth–Jespersen limiter. The effect of limiter function on
propagated pressure signatures for sonic boom prediction is
examined in Sec. V.

F. Realizability
Even with the use of reconstruction limiters, it is still possible to

reconstruct states with negative % or p. These unrealizable states

cause catastrophic problems for flux calculations. To allow the
calculation to proceed, unrealizable reconstructed face states are set
to the cell-averaged value, locally reducing the scheme to first order.
These unrealizable states are most common during start up from
freestream conditions. As the simulation continues, the incidence of
this clipping is reduced and often eliminated.

The cell-averaged state must also be prevented from reaching
unrealizable values. Inviscid supersonic flow expands around
corners to reach extremely low % and p. The updated values of % and
p are artificially floored at 1% of freestream values. Flooring the %
and p effectively changes the iterative time advancement scheme.
This modification to the flow solver time advancement scheme can
disrupt the iterative convergence of the flow and adjoint solver.

G. Body-Fitted and Cut-Cell Supersonic Vortex Uniform Refinement
A supersonic vortex has been used by a number of researchers to

verify the accuracy of schemes and error-estimation techniques
[11,54–58]. The 2-D geometry of the problem is given in Fig. 14. The
domain is a section of an annulus. This domain is extruded for the
3-D domain used for this study. The solution only varies in the radial
direction and is given by
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where M is Mach number and a is the speed of sound. There is an
error in the equations provided in Ilinca et al. [57] The flow
conditions at the inside radius of the vortex domain ri % 1 are %i % 1,
pi % 1=!, Mi % 2:25. The outer radius for the vortex domain is
ro % 1:384. The vortex is modeled for a 90 deg turning angle.

A series of uniformly refined grids are employed to verify the
design order accuracy of the existing body-fitted and current cut-cell
approaches. The body-fitted approach has also been verified by
Thomas et al. [59]. The coarsest body-fitted grid is shown in Fig. 15a.
It is constructed of nearly right tetrahedra. The coarsest background
grid used for the cut-cell approach is shown in Fig. 15b. It is
constructed of right tetrahedra. The cut surface has 400 triangulated
linear segments. This fine resolution may be excessive, but it

Face

Edge

Face Center

xδ 1

δ x2

p
1

p2

Fig. 11 Edge and face geometry.

Fig. 12 Diamond airfoil pressure colored symmetry plane grid and convergence history.
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eliminates the geometry error of the cut surface as a source of error for
this uniform refinement study.

The coefficient of lift is computed on the inner and outer curved
surfaces of the vortex domain:

Cl %
Z

)=2

0

Cporo sin!*" d* &
Z

)=2

0

Cpiri sin!*" d* (23)

The exact pressure is constant along the curved surfaces:

po=pi %
%
1# ! # 1

2
M2
i

&
1 &

!
ri
ro

"
2
'( !

!&1 % 3:98035302289919

(24)

The coefficient of pressure is

Cpo % 2
po=pi & 1

!M2
i

% 0:841016726038573 (25)

The coefficient of lift for the vortex domain per unit span is

Cl % roCpo % 1:16396714883738 (26)

The error in computed lift divided by the exact lift is shown in
Fig. 16 for a series of uniformly refined body-fitted grids and cut-cell
background grids with both the heuristically limited and unlimited
reconstruction schemes. The inflow conditions are specified as the
analytic solution. The outflow conditions are taken from the interior
of the domain. The tangency boundary conditions are applied to the
inner and outer boundaries as well as the two sides. The body-fitted
and cut-cell methods employing the heuristic limiter have a similar
lift error level. This error level is higher than the unlimited
reconstruction schemes. The error introduced by the heuristic limiter

Fig. 13 Diamond airfoil pressure and limiter function.

r

ri

o

M

Fig. 14 Supersonic vortex geometry.
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does not appear to be exacerbated by the irregular shape of the cut
cells. Both unlimited reconstruction methods asymptote to second
order as indicated by the triangle with a slope of two. The unlimited
cut-cell method hasmore error than the unlimited body-fittedmethod
for the same characteristic length (degrees of freedom). The higher
error level of the cut-cell method is offset by an increase in the
adaptive mechanics robustness, which can produce more efficient
grids.

IV. Output-Based Adaptation
Venditti [14] describes an output-based error-estimation and

adaptation scheme. The adaptation intensity Ie# for each control
volume # is formed on an embedded grid:

Ie# %
1

2

X5

i%1

fj(R$!$H")i;#(QH &QL)i;#j# j($H & $L)i;#(R!QH")i;#jg

(27)

where$H ,$L,QH , andQL are the high- and low-order interpolants of
the adjoint and flow solutions on the embedded grid. The flow R and
adjoint R$ residual operators are also on the embedded grid. To
formulate the error estimate, an embedded grid is required.
Constructing the entire embedded grid can be infeasible for large 3-D
grids and has prevented the use of adjoint error-estimation techniques
for large-scale problems even with a parallel implementation [18].

While the embedded grid can be formed in sections, this increases the
error-estimation scheme complexity. Forming a portion or the entire
embedded grid is also complicated by the need to respect curved
boundaries and recompute the intersection tests of cut cells. These
difficulties have motivated the desire to employ only the current grid
in the error-estimation procedure. A procedure is described that
obtains an indicator for output adaptation with the current grid, but
does not provide a functional error correction.

Park [28] provides a derivation of the single-grid adaptive
indicator by placing it in the context of the embedded grid approach
of Venditti [14]. In the interest of brevity, the single-grid error
estimation and adaptive indicator is provided without a derivation:

I# %
1

2

X5

i%1

fj(R$!$̂")i;#(Q̂ & $Q)i;#j# j($̂& $$)i;#(R!Q̂")i;#jg (28)

It has the same pieces as the Venditti [14] error indicator, where the
five conservation equations are contracted by the summation over i.
The vector I 2 RN has a single value for each grid control volume #.
The original residual operators are used. The $̂ and Q̂ higher-order
reconstructions and the $$, and $Q lower-order reconstructions on the
current grid are described by Park [28]. The $̂ and Q̂ reconstructions
are formedwith afit of quadratic functions to cell-averaged states and
their gradients. The difference between the ^and $ reconstructions is
intended to provide adequate guidance for the relative distribution of
error, not a sharp bound on error.

Venditti [14] provides a procedure to calculate a new grid spacing
request from the adaptive indicator I# and an error tolerance tol#. The
adaptation indicator is summed to find the global indicator
I# %P

I#. The ratio of the remaining error to a user-specified error
tolerance tol# is

"# % I#
tol#

(29)

The ratio of the control volume indicator to an equal share of tol# is

"# %
N

tol#
I# (30)

whereN is the number of control volumes.When a cost function does
not have an intuitive error tolerance, i.e., sonic boom surface pressure
integrals, the tol# is set to half I# at each adaptive iteration. The
requested isotropic element length h is computed with an estimate of
the spacing on the original mesh h0 and the global and local error
ratios,

Fig. 15 Coarsest uniformly refined body-fitted and cut-cell grids.
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(31)

where an exponent of !% 0:20 is based on a a priori estimate of the
spatial error convergence. The anisotropy of mesh elements is based
on the Mach Hessian, where the element size in the smallest spacing
direction is dictated by the adjoint adaptation parameter. The parallel
metric-based grid mechanics described by Park [28] and Park and
Darmofal [60] are used to modify tetrahedral background grid.

V. Application to Sonic Boom Prediction
The output-based adaptation algorithm is applied to accurately

predict near-field signatures by reducing the estimated error in the
calculation of an offbody pressure integral. The integral of quadratic
pressure deviation over a surface s in the domain is

f% 1

As

ZZ

s

!
p & p1
p1

"
2

ds (32)

where As is the area of the integration surface. This focuses the
adaptation on improving the calculation of pressure deviation from
freestream near this surface. Previous applications have been
performed with the integral of pressure deviation [18,19]. However,
the square of this deviation has been shown to producemore accurate
signatures with less control volumes [24]. A cylindrical integration
surface is employed that is aligned to the x axis and optionally
clipped in the Cartesian directions.

A. Double-Cone Cylinder
A double-cone geometry, denoted as model 8 in a 1965 wind-

tunnel report [61], is shown in Fig. 17 with a shaded triangular
surface grid. The same case was employed to evaluate [18] and then
validate [19] a parallel adaptive body-fitted grid approach. This
configuration has also been used by other researchers to evaluate
their signature prediction techniques [5,8]. The pressure integral
output function was defined as a cylinder, six body lengths in radius,
centered about the geometry axis. The cylinder is clipped forward of
three body lengths behind the nose, aft of nine body lengths behind
the nose, and outside of 0.1 body lengths off the centerline to focus
only on the region where wind-tunnel data are available. The surface
grid is Boolean-subtracted from a 9 deg wedge-shaped background
tetrahedral volume grid. A tangency boundary condition is applied to
the radial faces of thewedge. A symmetry plane of the volume grid is
shown in Fig. 18. The location of the integration surface is denoted
with a black line. The initial grid (4000 control volumes) was created
with no prior knowledge of where the shocks would propagate
through the domain (Fig. 18a). The freestreamMach number is 1.26
and the heuristic limiter is employed during adaptation. The parallel
execution scheme used 32 partitions, and the 17th adapted grid
(7,500,000 control volumes) is shown in Fig. 18b. The shocks have
been implicitly targeted and refined to propagate the signal to
the pressure integral surface. The anisotropy of the grid, based on the
Mach Hessian, is clearly evident. This anisotropy reduces the
number of required control volumes.

The adaptation history of the pressure integral with error bars the
width of twice the remaining error estimate I# are shown in Fig. 19.
Error is underestimated on the initial few adapted grids before the
shocks are propagated to the integration surface. Once this con-
nection is established, the error is reduced. The adaptation history of
the pressure signature extracted at six body lengths is shown in
Fig. 20. The circular symbols are digitized from awind-tunnel report
[61]. The solid line is the final adapted signature. The signal is absent
on the original coarse grid. The extrema of the pressure signal start to
form and grow. The inflection points at x=l% 2:3 is the last part of the

Fig. 17 Double-cone-cylinder geometry [61].

Fig. 18 Symmetry planes of initial and output adapted double-cone 3-D volume grids with integration surface shown as black line.
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signal to form. The over- and undershoots of the signal intensify on
the final few adapted grids as the grid-shock alignment improves.
The final adapted grid is simulated with the Venkatakrishnan,
heuristic, and Barth–Jespersen limiters in Fig. 21. The circular
symbols are digitized from a wind-tunnel report [61]. The
Venkatakrishnan limiter has similar over- and undershoots to the
heuristic limiter. The Barth–Jespersen limiter produces a signature
without over- and undershoots. All of these limiters havevery similar
signatures, except at the discontinuities.

B. Straight-Line Segmented Leading Edge

The straight-line segmented-leading-edge (SLSLE) low-boom
configuration (Fig. 22) is described by Mack and Kuhn [62,63].
These reports provide wind-tunnel data from two tests, performed at
the NASA Langley Research Center (LaRC) Unitary Plan Wind
Tunnel Facility [62] and theNASAJohnH.GlennResearchCenter at
Lewis Field (GRC) 10 * 10 ft Wind Tunnel Facility [63]. The test
condition is Mach 2.0. The model geometry is rotated to provide the
wind-tunnel lift coefficient of CL % 0:08309 at zero deg angle of
attack [4]. The configuration has a finite thickness trailing edge,
which was modeled with a transpiration boundary condition [28] to
prevent a strong inviscid supersonic corner flow expansion. Pre-
liminary body-fitted results for this configuration [18] extended the
blunt trailing edge to sharp trailing edge to avoid the strong
supersonic expansion.

The original symmetry plane and cut-surface grid colored with
pressure is shown in Fig. 23a. A linear distribution of pressure is
shown in each control volume, resulting in a discontinuous pressure
distribution on the surface. The initial background grid is isotropic.

The final adapted symmetry plane and cut-surface grid colored with
pressure is shown in Fig. 23b. The initial background grid contains
40,000 control volumes, and the final adapted background grid
contains 5,700,000 control volumes.

The initial (Fig. 24a) and final (Fig. 24b) grid integration surfaces
are colored with pressure deviation from freestream. These are the
cylindrical integration surfaces used to compute the output for
adaptation. The cylinder has a radius of 10 body lengths, which is the
location of the most distant available wind-tunnel data. The cylinder
is restricted to its lower quadrant between 32.6 and 41.0 body lengths
aft of the model. The integration surface is piecewise linear in each
tetrahedral background grid element. The pressure signature is not
visibly propagated to the initial integration surface, which is poorly
resolved due to the initial coarse grid. The final adapted grid
integration surface is a much better approximation of a cylinder due
to the background grid refinement. The peak signature pressure is
larger at the horizon than the centerline, because the model is
designed to have a reduced centerline pressure signature.
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Fig. 19 Model 8 pressure integral and uncertainty convergence at six body lengths.
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Fig. 20 Model 8 pressure signature adaptation history at six body
lengths.
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Fig. 22 Low-boom-wing body-sting geometry [64].
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Fig. 23 SLSLE surface grid colored with pressure.

Fig. 24 SLSLE pressure on quarter-cylinder integration surface 10 body lengths below the model.
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Fig. 25 SLSLE pressure integral and uncertainty convergence at 10 body lengths.
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The adaptation history of the pressure integral and its error
estimation is shown in Fig. 25. The requested error tolerance tol# is
set to half of I# at each adaptive iteration for grids sized less than
2,000,000. Above 2,000,000 control volumes, the tol# is set to I#,
reducing the rate of grid growth. The goal of increasing tol# is to
obtain more resolved results with a more efficiently distributed and
aligned grid at the expense of wall clock time and more adaptation
cycles [26]. The change in requested error tolerance is observed as a
reduction in grid growth per adaptive iteration in Fig. 25a. This case
shows a less dramatic reduction in the remaining error estimate over
the final few grids than the previous cases, which may be due to the
less aggressive tol# % I# on the final grids.

The heuristic limiter is employed during adaptation. The
Venkatakrishnan, heuristic, and Barth–Jespersen limiters are applied
on the final grid. The resulting pressure signatures at one body length

are shown in Fig. 26. The signatures of all three limiters are very
similar, except near discontinuities. The Barth–Jespersen limiter
reduces the over- and undershoots of the bow and tail shocks. The
difference between the different limiter signatures is greater for this
case than the cone-cylinder and delta-wing/body cases.

Centerline pressure signatures are presented in Fig. 27 for 1.0, 1.5,
2.0, and 2.5 body lengths below the model. LaRC wind-tunnel data
are available for all four locations, but the closest GRC wind-tunnel
data are available at 2.5 body lengths below the model. The LaRC
and GRC wind-tunnel measurements are generally in good
agreement at 2.5 body lengths in Fig. 27, but the small differences of
the two measurements gives an indication of the level of uncertainty
in the measurements. The agreement between the wind tunnel and
computed signatures is good, except in the region near x=l% 0:8.
Other investigators [4,18] also showed a difference between wind-
tunnel and computed pressure signatures at x=l% 0:8. Both wind-
tunnelmeasurements agree favorablywith each other near x=l% 0:8.
The signature sensitivity in this mismatch region was examined with
the adjoint solution by Park [28]. When the wind-tunnel model was
scanned a mismatch between the as-built and as-designed geometry
was noted in a region that affects the signature near x=l% 0:8.
Correcting this discrepancy resulted in a partial improvement in
simulation and measurement comparison [28].

Figure 28 compares the adapted cut-cell method with the GRC
wind-tunnel measurement at 10 body lengths. This is the same
distance as the integration surface. The shock strength increases
away from the configuration centerline. The front portion of the
signature is well predicted in both Figs. 27 and 28. The aft portion of
the computed signal shows the largest difference from the wind-
tunnel data at all propagation distances. The discrepancy between the
wind-tunnel and computed signatures near x=l% 0:8 decreases for
the signatures away from the model centerline. This is the first
published CFD prediction of the offcenterline signatures.

None of the previously reported simulations of this model
provided offcenterline signature comparisons at 10 body lengths.
Preliminary body-fitted grid output-based adaptation results by
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Fig. 26 SLSLE final adapted pressure signature at 1.0 body lengths for
various limiters.
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Fig. 27 SLSLE centerline pressure signatures for various locations below the model.
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Lee-Rausch et al. [18] targeted the centerline pressure signature at
2.5 body lengths with a final grid of 2million control volumes. Laflin
at al. [4] used a hybrid method with an unstructured extreme-near-
field grid of 1.25 million nodes adapted to propagate the signal less
than 0.25 body lengths. A structured grid was employed to propagate
the signal at 0.25 body length to the wind-tunnel data at 2.5 body
lengths. Carter and Deere [64] showed centerline comparisons at 10
body lengths, but the grid size was not reported.

C. Low-Boom Wing Tail (LBWT-4)
The low-boom-wing tail (LBWT-4) [65] has a cranked-arrow

wing with conventional tail surfaces and was designed [66] to
accommodate four nacelles with boundary-layer diverters (Fig. 29).
This model is also referred to as WBVHN4 [67]. This case was
included in the NASA Fundamental Aeronautics Program Sonic
Boom Workshop. The model was rotated 2 deg nose-up to provide
thewind-tunnel normal force of 0.074. The flow conditions areMach
2.0 and 0 deg angle of attack. Pressure on the complete configuration
for the final adapted grid is shown in Fig. 30a. The forward portion of
the configuration has lower magnitude shocks and expansions than

the complex shock and expansion interactions near the nacelles and
tail. The cutting surface grid was obtained from airplane simulations
[65] and is relatively coarse. The facets of the cutting surface are
visible as the pressure discontinues on the nacelles in Fig. 30b. The
shock–shock interactions generated by the nacelles and boundary-
layer diverters are also apparent. The interior of the nacelles has been
modified to account for boundary-layer growth, which increased the
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Fig. 28 SLSLE pressure signatures for various locations 10 body lengths below the model.

Fig. 29 LBWT planform [65].
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base area [65]. These base areas are treated with a transpiration
boundary condition. The pressure on sting-body-tail juncture of the
configuration is shown in Fig. 31. The symmetry plane of the
background grid is over plotted in Fig. 31b. The final adapted grid is
well aligned with the complex network of shocks and expansions.

The pressure signature at 1.16 body lengths is shown in Fig. 32.
The wind-tunnel report [65] was scanned and digitized to provide
comparison. The signature computed on the final adapted grid and
wind-tunnel measurement compares favorably for the forward
portion of the signal. The signature aft of a x=l% 1:1 has different
details in the computed and measured signal. These aft locations
include the influence of the nacelles and boundary-layer diverters.
The aft portion of this signal had the greatest difference between the

simulation methods used in the NASA Fundamental Aeronautics
Program Sonic Boom Workshop. None of these methods predicted
the location of the small peak in the wind-tunnel measurement at
x=l% 1:2.

VI. Conclusions
A cut-cell approach to CFD is described that uses the median dual

of tetrahedral background grid with a topologically consistent cut-
cell geometry calculation method. The discrete adjoint is also
calculated, which permits adaptation based on improving the
calculation of a specified output (offbody pressure signature).
Output-based adaptation simulations are presented for a cone-
cylinder and low-boom configurations. These predicted signatures
are compared to wind-tunnel measurements to validate the method
for sonic boom prediction. These predicted signatures are compared
to wind-tunnel measurements up to 10 body lengths below the
model, providing simultaneous on- and offcenterline predictions.

The use of cut cells with an output-based adaptive scheme
automates the volume grid generation task after the triangular surface
mesh is generated. This robust adaptation scheme allows extremely
coarse isotropic initial grids that can be generated without a priori
knowledge of shock locations or Mach angles. The heuristic limiter
dramatically improves the iterative convergence of the flow solver
and robustness of the adjoint solution scheme. This heuristic limiter
produces similar signatures to the existing Venkatakrishnan and
Barth–Jespersen limiters. The general anisotropy of the adapted
background grids allows for accurate centerline and offcenterline
signal prediction. The forward portion of the signatures is well
predicted for all cases. The aft signatures have the most difference
between measurements and simulation. These differences may be
due to differences in geometry or a result of viscous flow phenomena
that is missing from the Euler calculations.

Fig. 30 LBWT surface pressure.

Fig. 31 LBWT aft detail.
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Fig. 32 LBWT final adapted pressure signature at 1.16 body lengths.
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