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Abstract. The adjoint solution has found many uses in computational simulations where the
quantities of interest are the functionals of the solution, including design optimization, error esti-
mation, and control. In those applications where both the solution and the adjoint are desired, the
conventional approach is to apply iterative methods to solve the primal and dual problems separately.
However, we show that there is an advantage associated with iterating the primal and dual problem
simultaneously since this enables the construction of iterative methods where both the primal and
the dual iterates may be chosen so that they provide functional estimates that are “superconvergent”
in that the error converges at twice the order of the optimal global solution error norm. In partic-
ular, we show that the structure of the Lanczos process allows for this superconvergence property
and propose a modified QMR method which uses the same Lanczos process to simultaneously solve
the primal and dual problems. Thus both the primal and the dual systems are solved at essen-
tially the same computational cost as the conventional QMR method applied to the primal problem
alone. Numerical experiments show that our proposed method does indeed exhibit superconvergence
behavior.
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1. Introduction. We consider the primal linear output,

Jpr(x) = gTx,(1.1)

arising from the solution of a large nonsingular linear system,

Ax = b.(1.2)

The equivalent dual statement of this problem expresses the output as

Jdu(y) = yTb,(1.3)

where Jdu(y) = Jpr(x) when y is the adjoint vector and is the solution of

ATy = g.(1.4)

The adjoint solution has multiple uses in the context of computational simulation. For
example, the adjoint can be employed in design optimization to efficiently calculate
the gradients of the outputs with respect to the control factors (Jameson [13], Reuther,
Jameson, and Alonso [18, 19], Giles and Pierce [12], Elliot and Peraire [6], Anderson
and Venkatakrishnan [2]). Furthermore, the adjoint solution can be used to estimate
and control errors in functional outputs of computational simulations (Becker and
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Rannacher [3], Peraire and Patera [16], Pierce and Giles [17], and Venditti and Dar-
mofal [26]). Of particular interest to this work, Pierce and Giles have demonstrated
that superconvergent functional estimates can be achieved in a fairly general setting
using an adjoint-based recovery method [17]. Motivated by the numerous uses of the
adjoint solution, we consider Krylov methods where both the primal and the dual
solutions are desired. In particular, we show how the structure of the Lanczos process
allows this to be done efficiently and develop a modification of the QMR method [10]
in which we have the following:

• The primal and dual problems are solved simultaneously with essentially the
same computational work as solving only one of the problems with the original
QMR algorithm.

• The error in the functional estimates obtained from either the primal or dual
iterates is “superconvergent” in a sense to be defined later.

A widely used Krylov subspace method for solving nonsymmetric linear systems is
GMRES [22], which uses the Arnoldi process to find iterate xn which minimizes the
2-norm of the residual vector within the nth Krylov subspace generated by the matrix
A and starting vector v1,

Kn(v1,A) ≡ span{v1,Av1,A
2v1, . . . ,A

n−1v1}.(1.5)

However, the Arnoldi process cannot be done recursively since all the vectors obtained
in the previous iterations need to be stored. Furthermore, the work per iteration
increases linearly with the iteration number. Therefore, for solving large systems
such as those arising from the discretization of PDEs, the version of GMRES with
restarts is used. This has the undesirable property that the residual norm stagnates
after each restart.

For larger systems, an attractive alternative is the class of Krylov subspace meth-
ods based on the nonsymmetric Lanczos process. Methods from this class include
BiCG and QMR [10]. These methods are characterized by recursivity, requiring no
storing of prior vectors and taking constant work per iteration. Here, two Krylov
subspaces are generated using starting vectors v1 and w1:

Kn(v1,A) ≡ span{v1,Av1,A
2v1, . . . ,A

n−1v1},
Kn(w1,A

T ) ≡ span{w1,A
Tw1, (A

T )2w1, . . . , (A
T )n−1w1}.(1.6)

The starting vector w1 in the Lanczos process may be chosen arbitrarily, as long as
wT

1 v1 �= 0. In particular, we note that with the choice of w1 = g, the Lanczos process
solves not only the primal problem (1.2) but also the dual problem (1.4) at essentially
no extra cost. This property of the Lanczos process is well known [21], but the dual
solution that is solved implicitly has not been utilized in practice. We demonstrate
this simultaneous primal-dual approach using the QMR method.

Superconvergence is a concept usually used in contexts such as Galerkin finite
element methods to describe convergence of functional estimates [27]. Let us now
describe what we mean by superconvergence in the context of iterative methods. For
the iterative solution of linear systems of the form (1.2), we have the following global
a priori estimate:

‖x− xn‖ ≤ ‖A−1‖‖rpr
n ‖,(1.7)

where rpr
n ≡ b−Axn. The above estimate is optimal in the sense that no higher ex-

ponent on the residual norm is possible. Therefore, in general we expect the solution
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error and arbitrary output functionals to converge at a rate no higher than that of
the residual. Under the special circumstances that certain functionals of the approx-
imate solution converge at orders of the residual norm higher than that given by the
global estimate (1.7), those quantities are said to be superconverging. Note that this
phenomenon is distinct from superlinear convergence [25, 4], which describes the ac-
celeration of residual convergence rate as the iteration proceeds, or superconvergence
as used in [5] to loosely describe the faster residual convergence when certain projected
solutions are used as initial guess. In particular, we define an iterative method to be
superconvergent if the superconvergence phenomenon can be demonstrated for arbi-
trary linear systems and linear functionals. A goal of this paper is to illustrate how
the underlying structure of the nonsymmetric Lanczos process allows one to obtain
iterates giving superconvergent functional estimates. To do this, we need to describe
the Lanczos process.

We compare the proposed superconvergent variant of QMR with the conventional
QMR method in a number of numerical experiments. It is demonstrated that while
both the primal and the dual residual norm converge at rates similar to that of QMR
applied to the respective problems separately, the proposed approach provides primal
and dual iterates both of which give superconvergent estimates for the linear func-
tional. This translates to linear functional estimates obtained with either the primal
or the dual iterates that can be much better than those provided by conventional
QMR. Alternatively, the computational work required to produce primal and dual
approximations of a fixed functional output accuracy can be reduced compared to
conventional approaches.

2. Superconvergent estimates of linear functionals. Most Krylov subspace
methods choose iterates to satisfy certain orthogonality conditions or, equivalently, to
minimize certain norms. For example, the 2-norm of the residual vector is minimized
in the case of the GMRES method [22] and the 2-norm of the error vector in the case
of the generalized minimal error method (GMERR) [28]. In cases where the principal
quantity of interest is a linear functional Jpr(x) rather than the solution itself, those
methods may not give optimal results within the Krylov subspace. Alternatively, one
could minimize the error in the linear objective function which may be expressed as
a linear functional of the primal residual through the adjoint

∆Jpr
n ≡ Jpr(x)− Jpr(xn)

= gT (x− xn)
= yTA(x− xn)
= yT rpr

n .

Unfortunately, the adjoint is not easily obtained since the dual problem is just as
difficult to solve as the primal problem. Let us now suppose that estimates of the
adjoint are obtained in parallel with the primal problem through some means. Denote
the nth iterative estimate of the primal problem (1.2) by xn, and that of the dual
problem (1.4) by yn. Then, it may be shown that the true value of the functional
may be expanded as

Jpr(x) = gTx
= gTxn + yT

n r
pr
n + (y − yn)

TA(x− xn).

Then, rewriting the above using the dual residual rdu
n ≡ g −ATyn, we obtain

Jpr(x) = gTxn + yT
n r

pr
n + (rdu

n )TA−1rpr
n .(2.1)
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The smallest singular value of A, denoted by σmin, satisfies the following:

σmin = min
z,z �=0

‖Az‖
‖z‖ .(2.2)

Then, we have the following bound on the last term of (2.1), as is also discussed in
[14]:

|(rdu
n )TA−1rpr

n | ≤ ‖rpr
n ‖‖rdu

n ‖
σmin

.(2.3)

Using the above, the error in the functional estimate provided by the nth primal
iterate xn is bounded by

|Jpr(x)− gTxn| ≤ |yT
n r

pr
n |+ ‖rpr

n ‖‖rdu
n ‖

σmin
.(2.4)

Our approach to obtaining superconvergent functional estimates is to seek the
primal iterates within the respective Krylov subspaces such that the term linear in
the primal residual, yT

n r
pr
n , contributes little to the functional error. That is, we

will seek to minimize, in some sense, the primal residual weighted by the adjoint
approximation, while ensuring that the primal residual norm goes to zero. If the first
term on the right-hand side of (2.4) may be successfully removed, we see that the
functional estimates evaluated using the primal iterates would scale as

|Jpr(x)− gTxn| ∼ ‖rpr
n ‖‖rdu

n ‖
σmin

.(2.5)

That is, this method would have the potential of producing primal iterates which give
functional estimates converging at the rate of the product of the primal and the dual
residual norms. Therefore, if it can be assumed that the convergence of dual residual
norms corresponding to the given adjoint approximations may be bounded above by
some power of the primal residual norm, superconvergence is attained. This gives
the ingredients for the construction of the class of Krylov methods which have the
superconvergence property.

Our basis for the modification will be the QMR method [10], which is robust and
exhibits satisfactory residual norm convergence behavior. We will attempt to remove
the first order dependence of the functional error on the primal residual norm through
a choice of certain parameters present in the norm-minimization. We note that the
Lanczos process treats the primal and dual problem symmetrically and the primal
and dual matrices have the same eigenvalue distribution. Therefore, if the problem
is relatively well-conditioned (perhaps by the use of effective preconditioners) so that
eigenvalue convergence bounds are descriptive, the dual convergence is the same as
that of the primal and we expect superconvergence of the primal functional estimates
at twice the order of the primal residual convergence rate.

It is to be noted that the above observations made regarding superconvergent
iterative estimates also apply to the dual problem. We have the result analogous to
(2.4),

|Jdu(y)− yT
nb| ≤ |xT

nr
du
n |+ ‖rpr

n ‖‖rdu
n ‖

σmin
.(2.6)

So, here the approach is to choose the dual residual such that

xT
nr

du
n ≈ 0.(2.7)
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Our proposed method incorporates the strategy towards superconvergence for both
the primal and the dual problem.

3. Nonsymmetric Lanczos process. The nonsymmetric Lanczos process con-
structs biorthogonal basis vectors of Krylov subspaces which are then used in methods
such as QMR. We use the Lanczos process based on coupled two-term recurrences
rather than that based on three-term recursions as used in [10] since, even though
they are mathematically equivalent, the former is numerically more robust than the
latter, as observed in [8]. Also, to simplify matters the look-ahead process [9] is not
included.

• Initialization
– Choose normalized initial vectors v1 and w1.
– Set p0 = q0 = 0, ε0 = ρ1 = ξ1 = 1, n = 1.

• At iteration n:
1. If εn−1 = 0, stop. Otherwise compute δn = wT

nvn. If δn = 0, then stop.
2. Update

pn = vn − pn−1(ξnδn/εn−1),
qn = wn − qn−1(ρnδn/εn−1).

3. Compute

εn = qT
nApn,

βn = εn/δn.

Update

ṽn+1 = Apn − vnβn, ρn+1 = ‖ṽn+1‖,
w̃n+1 = ATqn −wnβn, ξn+1 = ‖w̃n+1‖.

4. If ρn+1 = 0 or ξn+1 = 0, then stop. Else, update

vn+1 = ṽn+1/ρn+1,
wn+1 = w̃n+1/ξn+1.

The result of the above iteration may be summarized compactly. First, we introduce
the notation

Vn ≡
[
v1 v2 · · · vn

]
,

Wn ≡
[
w1 w2 · · · wn

]
,

Pn ≡
[
p1 p2 · · · pn

]
,

Qn ≡
[
q1 q2 · · · qn

]
.(3.1)

Then, it may be seen from the Lanczos process that the above satisfies
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Vn = PnUn,
Wn = QnΓ

−1
n UnΓn,

APn = Vn+1Ln,
ATQn = Wn+1Γ

−1
n+1LnΓn,(3.2)

where the matrices Γn, Un, and Ln are defined as

Γn = diag(γ1, γ2, . . . , γn),(3.3)

Un =




1 ξ2δ2/ε1 0 · · · 0
0 1 ξ3δ3/ε2 · · · 0
0 0 1 · · · 0

0
. . .

. . .
. . . ξnδn/εn−1

0 · · · · · · 0 1


 ,(3.4)

Ln =




β1 0 0 · · · 0
ρ2 β2 0 · · · 0
0 ρ3 β3 · · · 0
0 0 ρ4 · · · 0

0
. . .

. . .
. . . βn

0 · · · · · · 0 ρn+1



,(3.5)

the scalars ξj , δj , εj , ρj are constants defined in the Lanczos process, and the constants
γj satisfy the relation

γj =

{
1, j = 1,

γj−1ρj/ξj , 1 < j ≤ n.
(3.6)

Furthermore, it may be verified that the vectors vj and wj satisfy the biorthogonality
condition

WT
nVn = diag(δ1, δ2, . . . , δn),(3.7)

and the vectors pj and qj satisfy the A-orthogonality condition

QT
nAPn = diag(ε1, ε2, . . . , εn).(3.8)

In the next section, we give a brief description of how QMR uses the Lanczos process
to generate iterates that approximate the linear system (1.2).

4. Description of conventional QMR. Let the initial guess for the linear
system (1.2) be x0. Then the initial residual is

r0 ≡ b−Ax0.

At each iteration, QMR seeks an iterate xn within the Krylov subspace

xn ∈ x0 +Kn(r0,A)
∈ x0 + span{r0,Ar0,A

2r0, . . . ,A
n−1r0}.(4.1)
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With the initial vector taken to be the normalized initial residual, v1 ≡ r0/ρ1, ρ1 ≡
‖r0‖, it may be seen from the Lanczos iteration that

span{v1,v2, . . . ,vn} = span{r0,Ar0,A
2r0, . . . ,A

n−1r0}.

Hence, from (4.1) xn may be written as

xn = x0 +VnU
−1
n zn,(4.2)

where the matrices Vn, Un are defined in (3.1) and (3.4), respectively, and the vector
zn is yet to be determined. Using the identities given in (3.2), it may be seen that

rpr
n = b−Axn

= r0 −Vn+1Lnzn.(4.3)

Using the fact that v1 = r0/ρ1, and introducing an (n+ 1)× (n+ 1) diagonal weight
matrix Ωpr

n ,

Ωpr
n = diag(ωpr

1 , ωpr
2 , . . . , ωpr

n+1),

(4.3) may be written as

rpr
n = Vn+1

(
Ωpr

n

)−1(
ρ1ω

pr
1 e

(n+1)
1 −Ωpr

n Lnzn

)
.(4.4)

Finally, zn is chosen so that the 2-norm of the quasi residual is minimized:

zn = argmin
z

∥∥∥∥ρ1ω
pr
1 e

(n+1)
1 −Ωpr

n Lnz

∥∥∥∥.(4.5)

Since the matrix Ln has a bidiagonal structure, the above minimization may be done
recursively, essentially performing QR decomposition of Ln using successive Givens
rotations.

The original QMR algorithm is formulated with a diagonal weighting matrix Ωpr
n ,

and convergence has been shown for arbitrary weights ωpr
j �= 0 [10]. Extension of the

weight matrix to block diagonal form having upper triangular blocks has also been
done [23]. However, in practice the weight matrix is usually set to unity owing to
the lack of a better choice. Moreover, in practice the two starting vectors are usually
taken to be the same and the fact that the same Lanczos iteration contains a dual
problem is not utilized. The desire of not using AT partly led to the development of
transpose-free variants of QMR [7, 11].

5. Modifications for simultaneous dual solution. Here, we show the mod-
ifications to the conventional QMR which enable the solution of the dual problem
(1.4) together with the primal problem (1.2) using the same Lanczos process. First,
we observe that (3.2) implies not only

AVn = Vn+1LnUn,(5.1)

but also

ATWn = Wn+1Γ
−1
n+1LnUnΓn.(5.2)



1700 JAMES LU AND DAVID L. DARMOFAL

If we take y0 to be the zero vector, this suggests taking the starting vector w1 for the
Lanczos process to be

w1 =
g

ξ1
, ξ1 = ‖g‖.(5.3)

It may be observed that in the Lanczos process, given a certain v1, the choice of w1 is
arbitrary so long as wT

1 v1 �= 0. Only in rare circumstances will the nonorthogonality
condition not be satisfied. Note that this is a departure from the standard QMR,
which chooses the starting vector for the Lanczos iteration to be w1 = v1.

Let us seek iterates for the dual problem of the form

yn = WnΓ
−1
n U−1

n Γnkn,(5.4)

where the vector kn is yet to be determined. Then, the dual residual rdu
n is of the

form

rdu
n = g −ATyn

= Wn+1

(
Ωdu

n

)−1(
ξ1ω

du
1 en+1

1 −Ωdu
n Γ−1

n+1LnΓnkn

)
,(5.5)

where the dual weight parameter matrix Ωdu
n has been introduced. Analogous to the

approach of QMR for the primal problem, we will seek kn to minimize the 2-norm
quasi residual

kn = argmin
k

∥∥∥∥ξ1ωdu
1 en+1

1 −Ωdu
n Γ−1

n+1LnΓnk

∥∥∥∥.(5.6)

We note that the term Γ−1
n+1LnΓn in (5.5) is the analogue of Ln in (4.3). In fact, we

see that

Γ−1
n+1LnΓn =




β1 0 · · · 0
ξ2 β2 · · · 0

0
. . .

. . . 0

0
. . . ξn βn

0 · · · 0 ξn+1



,(5.7)

and comparison with Ln defined in (3.5) shows that Γ−1
n+1LnΓn is just Ln with the

replacement ρj → ξj . Thus, the adjoint iterates yn may be obtained from the Lanczos
vectors with the same procedure as the standard QMR method for the primal problem
by replacing vj → wj , pj → qj , and ρj → ξj .

6. Superconvergent QMR with preconditioning. With the use of precon-
ditioners M1 and M2, the primal problem (1.2) effectively becomes

A′x′ = b′, where A′ ≡ M−1
1 AM−1

2 ,
x′ ≡ M2x,
b′ ≡ M−1

1 b.(6.1)

We require that the value of the primal linear functional be invariant under the pre-
conditioning transformation; that is,

Jpr(x) = gTx = g′Tx′,(6.2)
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thereby obtaining the expression for g′,

g′ = M−T
2 g.(6.3)

Then, the adjoint for the preconditioned system, y′, is just the solution to

A′Ty′ = g′.(6.4)

From (6.4), it may be verified that

y′ = MT
1 y.(6.5)

Furthermore, from (6.4) and (6.1),

bTy = b′Ty′.(6.6)

Equation (6.5) shows that the adjoint for the original system (1.4) may be recovered
from that of the preconditioned system by simply multiplying with the matrix M−T

1

at the end of the iterations. In what follows, we will work exclusively with the
preconditioned systems.

In achieving superconvergence, we seek to minimize

y̌
′T
n+1r

pr
n ,(6.7)

where y̌′
n+1 is an estimate of the adjoint available at the (n + 1)th iteration and rpr

n

is the primal residual at the nth iteration, both for the preconditioned system. Note
that the check mark on y̌′

n+1 is used to differentiate the adjoint estimates that we
use to determine weight parameters and the adjoint estimates carried forward in our
simultaneous primal-dual method.

The above provides a natural scaling for the QMR weight parameters. Specifically,
by letting

ωpr
j = y̌

′T
n+1vj , 1 ≤ j ≤ n+ 1,(6.8)

then

y̌
′T
n+1r

pr
n = y̌

′T
n+1

[
v1 v2 · · · vn+1

](
Ωpr

n

)−1(
ρ1ω

pr
1 e

(n+1)
1 −Ωpr

n Lnzn

)

=

[
y̌

′T
n+1v1 y

′T
n+1v2 · · · y̌′T

n+1vn+1

](
Ωpr

n

)−1(
ρ1ω

pr
1 e

(n+1)
1 −Ωpr

n Lnzn

)

=
[
1 1 · · · 1 1

](
ρ1ω

pr
1 e

(n+1)
1 −Ωpr

n Lnzn

)
.

Thus, with the ωpr
j as chosen in (6.8), the linear error term (6.7) in the linear func-

tional is approximately equal to the sum of the entries of the primal quasi residual.
By selecting zn to minimize this weighted primal quasi residual, the primal iterates
obtained from our modified QMR approach should more accurately approximate the
linear functional.

However, the scheme as described above could suffer from nonrecursivity because
at each iteration n, all weights ωpr

j , 1 ≤ j ≤ n must be updated and all prior vectors
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might need to be stored. To maintain recursivity, we introduce a truncated approxi-
mation to the adjoint, y̌′

i,n+1, where the index i is an approximation parameter. We
define y̌′

i,n+1 as

y̌′
i,n+1 ≡

(
Y̌

′T
i+1v1

wT
1 v1

)
w1 +

(
Y̌

′T
i+2v2

wT
2 v2

)
w2 + · · ·+

(
Y̌

′T
i+n+1vn+1

wT
n+1vn+1

)
wn+1,

where we take Y̌′
i to be the adjoint iterate from the standard QMR algorithm. Al-

though other choices may be thought of, using this truncated approximation, we have

y̌
′T
i,n+1vj = Y̌

′T
i+jvj .(6.9)

Associated with a certain choice of i is the storage needed for the i vectors [p1 · · · pi],
each of the size of x′, but no extra computational work is required. We will see that
for our numerical experiments, a small i (≈ 3) works well enough.

With y̌′
i,n+1 as defined in (6.9), we take the weight parameters to be

ωpr
j = y̌

′T
i,n+1vj

= Y̌
′T
i+jvj .(6.10)

A similar strategy of weight parameter determination may be done for the dual prob-
lem. Analogous to (6.10), we take the dual weights to be

ωdu
j = X̌

′T
i+jwj ,(6.11)

where similarly, X̌′
n is the primal solution estimate obtained at iteration n using the

QMR method.
It is to be noted that although (6.10) and (6.11) imply forming the QMR iterates

X̌′
n and Y̌′

n and performing inner products for the calculation of each weight, this
is not necessary. Instead, they are equivalently but cheaply calculated from scalars
obtained in the i Lanczos iterations ahead of the current primal and dual iterates.

7. Algorithm implementation. In this section, we describe an implementa-
tion of the superconvergent simultaneous primal-dual QMR method. The Lanczos it-
eration is carried i steps ahead of both the primal and the dual iterates. This method
takes essentially the same computational work as the conventional QMR since the
same number of Lanczos iterations is used. However, the former requires a constant
extra storage of two sets of vectors P = [p1 p2 · · · pi] and Q = [q1 q2 · · · qi], where
each vector is of the same size as b. Additionally, three sets of i scalars need to be
stored : β = [β1 β2 · · · βi], ρ = [ρ1 ρ2 · · · ρi], and ξ = [ξ1 ξ2 · · · ξi]. After convergence
by some criteria, the primal and dual solutions for the original systems are recovered
by observing (6.1) and (6.5).

ALGORITHM WITH LANCZOS FORWARD INDEX i.
• Initialization

– Set initial guesses to be the zero vector : xpr
0 = xdu

0 = 0.
– Let ρ1 = ‖M−1

1 b‖, v1 = M−1
1 b/ρ1. Let ξ1 = ‖M−T

2 g‖,w1 = M−T
2 g/ξ1.

– Check that wT
1 v1 �= 0, otherwise restart.

– Set p0 = q0 = dpr
0 = ddu

0 = 0.
– Set cpr

0 = cdu
0 = ε0 = 1, ϑpr

0 = ϑdu
0 = 0, ηpr

0 = ηdu
0 = −1.

– Set w cpr
0 = w cdu

0 = 1, w ϑpr
0 = w ϑdu

0 = 0, w ηpr
0 = w ηdu

0 = −1.
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– Initialize vector storage P = [p1 p2 · · · pi] and Q = [q1 q2 · · · qi], scalar
storage β = [β1 β2 · · · βi], ρ = [ρ1 ρ2 · · · ρi], and ξ = [ξ1 ξ2 · · · ξi].

– Set counter values for weight parameter accumulation :
k0 = 1
for h = 1 : i do

m(h) = 2− h
end

• For n = 1, 2, 3, . . . , do
1. If εn = 0 or δn = 0, stop. Otherwise, compute δn = wT

nvn.
2. Update counter kn = (kn mod i) + 1. Update vectors

pn = vn − pn−1(ξnδn/εn−1),
qn = wn − qn−1(ρnδn/εn−1).

Store P(:, kn) = pn, Q(:, kn) = qn.
3. Compute p̃n = A(M−1

2 pn) and q̃n = M−T
1 qn. Update εn = q̃T

n p̃n, and
set βn = εn/δn.
Update

ṽn+1 = M−1
1 p̃n − βnvn,

w̃n+1 = M−T
2 (AT q̃n)− βnwn.

Update ρn+1 = ‖ṽn+1‖, ξn+1 = ‖w̃n+1‖. Store β(kn) = βn, ρ(kn) = ρn,
ξ(kn) = ξn.
If ρn+1 �= 0 and ξn+1 �= 0, update

vn+1 = ṽn+1/ρn+1,
wn+1 = w̃n+1/ξn+1.

4. Update

w ϑpr
n =

ρn+1

w cpr
n−1βn

, w cpr
n =

1√
1 + (w ϑpr

n )2

w ηpr
n = −w ηpr

n−1

ρn(w cpr
n )2

βn(w cpr
n−1)

2

w ϑdu
n =

ξn+1

w cdu
n−1βn

, w cdu
n =

1√
1 + (w ϑdu

n )2

w ηdu
n = −w ηdu

n−1

ξn(w cdu
n )2

βn(w cdu
n−1)

2
.

5. Weight parameters ωpr
n−i+1 and ωdu

n−i+1 calculation
For h = 1 : i do

if m(h) = 1 then
w qpr(h) = δn, w dpr(h) = 0, w xpr(h) = 0
w qdu(h) = δn, w ddu(h) = 0, w xdu(h) = 0

end
if 1 < m(h) < i then

if n �= 1 then w qpr(h) = −(ξnδn/εn−1)w qpr(h)
w dpr(h) = w ηpr

n w qpr(h) + w dpr(h)(w ϑpr
n−1w cpr

n )2

w xpr(h) = w xpr(h) + w dpr(h)
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if n �= 1 then w qdu(h) = −(ρnδn/εn−1)w qdu(h)
w ddu(h) = w ηdu

n w qdu(h) + w ddu(h)(w ϑdu
n−1w cdu

n )2

w xdu(h) = w xdu(h) + w ddu(h)
end
if m(h) = i− 1 then

m(h) = 2− i
ωpr
n−i+1 = w xdu(h)

ωdu
n−i+1 = w xpr(h)

end
end

6. If n ≥ i then

ϑpr
n−i =

ωpr
n−i+1ρ((kn mod i) + 1)

ωpr
n−ic

pr
n−i−1β((kn mod i) + 1)

cpr
n−i =

1√
1 + (ϑpr

n−i)
2

ηpr
n−i = −ηpr

n−i−1

ρ((kn mod i) + 1)(cpr
n−i)

2

β((kn mod i) + 1)(cpr
n−i−1)

2

dpr
n−i = ηpr

n−iP(:, (kn mod i) + 1) + (ϑpr
n−i−1c

pr
n−i)

2dpr
n−i−1

xpr
n−i = xpr

n−i−1 + dpr
n−i

ωpr
n−i = ωpr

n−i+1

ϑdu
n−i =

ωdu
n−i+1ξ((kn mod i) + 1)

ωdu
n−ic

du
n−i−1β((kn mod i) + 1)

cdu
n−i =

1√
1 + (ϑdu

n−i)
2

ηdu
n−i = −ηdu

n−i−1

ξ((kn mod i) + 1)(cdu
n−i)

2

β((kn mod i) + 1)(cdu
n−i−1)

2

ddu
n−i = ηdu

n−iQ(:, (kn mod i) + 1) + (ϑdu
n−i−1c

du
n−i)

2ddu
n−i−1

xdu
n−i = xdu

n−i−1 + ddu
n−i

ωdu
n−i = ωdu

n−i+1

end
7. for h = 1 : i do

m(h) = m(h) + 1
end

• Obtain primal and dual solutions for the original systems

Primal solution = (M2)
−1xpr

n ,
Dual solution = (M1)

−Txdu
n .

8. Numerical experiments. Here, we show the results of numerical exper-
iments conducted using MATLAB. The proposed method with weight parameters
determined using (6.10) and (6.11) is denoted as superconvergent simultaneous QMR
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(SSQMR). The method which solves both the primal and the dual problem but with
all weight parameters set to unity is denoted as simultaneous QMR (SQMR). The
conventional QMR method has unity weights and initial vectors are chosen to be the
same: w1 = v1. QMR is separately applied to the primal and dual problems, and the
results are compared to SSQMR and SQMR.

For all the examples shown here, the Lanczos forward index i for SSQMR is taken
to be 3, since this has been shown to give good results. Also, the initial guesses x′

0 and
y′

0 for all the methods are chosen to be the zero vector. No convergence criteria are
used; rather, the number of iteration steps is specified in each case. The test problems
are not excessively large so that the solutions for the linear systems are available up
to the level of roundoff.

Example 1. In this example, we consider the second order finite difference dis-
cretization on a 51× 51 grid of

∇2u =
1

π
exp−(x+2)2−(y−1/2)2 , Ω ∈ [0, 1]× [0, 1],

u|Γ = 0,

resulting in the matrix A with 12205 nonzero elements. The linear functional is the
discretized approximation of∫ 1

0

∫ 1

0

u(x, y) sin(πx) sin(πy)dxdy.

The left and right preconditioners were obtained from the incomplete LU factorization
[21], of A using a drop tolerance of 2× 10−2, resulting in L and U having 12059 and
12057 nonzero elements, respectively.

From Figure 1 it may be seen that the primal and dual functional estimates
obtained using standard QMR converge at roughly the same rate as the respective
residual norms, showing that it is not superconvergent. SQMR obtains better func-
tional estimates as a result of the better choice of starting vectors. In fact, the method
appears to exhibit superconvergence. However, the behavior is not very consistent.
On the other hand, SSQMR obtains functional estimates that are consistently super-
converging at twice the order of residual convergence, and improvement in functional
estimates over SQMR is clearly seen.

Example 2. In this example, we consider a linear system arising from a first
order backward-Euler implicit scheme for solving a first order upwind discretization
of the two-dimensional compressible flow Euler equations using the NASA Langley
unstructured flow solver FUN2D [1]. The specific problem is the transonic flow around
the NACA 0012 airfoil (freestream Mach number of 0.8 and 1.25 degree angle of
attack). The mesh is composed of 1980 triangular elements with 990 nodes. The
linear output is the airfoil drag functional linearized about the current iterate.

The matrix A has 108532 nonzero entries. The left and right preconditioners
were obtained from the incomplete LU factorization of A using a drop tolerance of
10−2, resulting in L and U having 88253 and 93588 nonzero elements, respectively.

Again, from Figure 2 we observe that the functional error convergence slopes of
SSQMR are roughly twice that of conventional QMR, confirming the prediction made
regarding superconvergence. In this example, the functional error of SQMR is close
to that of SSQMR, showing that the unity parameter happens to be quite a good
choice in this case. Still, SSQMR consistently gives better functional estimates than
SQMR.
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Fig. 1. Plots from Example 1: Poisson problem.

9. Conclusions. We show that the inherent structure of the nonsymmetric
Lanczos process allows for the simultaneous solution of a dual problem associated
with a desired functional output. Then, applying adjoint analysis to iterative meth-
ods, we show how iterates may be chosen so that they give superconvergent functional
output estimates. This superconvergence property associated with the choice of start-
ing vector of the Lanczos process appears not to have been studied in literature. We
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Fig. 2. Plots from Example 2: Euler flow.

modify the QMR method to construct a superconvergent variant (SSQMR), and nu-
merical experiments demonstrate that the modified method gives the convergence of
functional output to be twice the order of the residual norm, while giving residual
behavior that is highly similar to QMR. This may lead to noticeable computational
savings for applications where functional output is of particular interest. The inclu-
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sion of the look-ahead procedure in the Lanczos process to increase the robustness
of SSQMR and the extension of superconvergence to other Krylov methods remain
subjects for further research.
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[20] M. Rozložńık and R. Weiss, On the stable implementation of the generalized minimal error
method, J. Comput. Appl. Math., 98 (1998), pp. 49–62.

[21] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.
[22] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[23] C. H. Tong, A family of quasi-minimal residual methods for nonsymmetric linear systems,

SIAM J. Sci. Comput., 15 (1994), pp. 89–105.
[24] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for

the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp.



QMR FOR SUPERCONVERGENT FUNCTIONAL ESTIMATES 1709

631–644.
[25] H. A. Van der Vorst, The superlinear convergence behaviour of GMRES, J. Comput. Appl.

Math., 48 (1993), pp. 327–341.
[26] D. A. Venditti and D. L. Darmofal, Adjoint error estimation and grid adaptation for func-

tional outputs: Application to quasi-one-dimensional flow, J. Comput. Phys., 164 (2000),
pp. 204–227.

[27] L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Springer-Verlag, Berlin,
Heidelberg, 1995.

[28] R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Comput., 15 (1994), pp.
511–527.


