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Abstract. The effects of dual consistency on discontinuous Galerkin (DG) discretizations of
solution and solution gradient dependent source terms are examined. Two common discretizations
are analyzed: the standard weighting technique for source terms and the mixed formulation. It is
shown that if the source term depends on the first derivative of the solution, the standard weighting
technique leads to a dual inconsistent scheme. A straightforward procedure for correcting this dual
inconsistency and arriving at a dual consistent discretization is demonstrated. The mixed formu-
lation, where the solution gradient in the source term is replaced by an additional variable that is
solved for simultaneously with the state, leads to an asymptotically dual consistent discretization.
Numerical results for a one-dimensional test problem confirm that the dual consistent and asymp-
totically dual consistent schemes achieve higher asymptotic convergence rates with grid refinement
than a similar dual inconsistent scheme for both the primal and adjoint solutions as well as a simple
functional output.
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1. Introduction. In recent years, the discontinuous Galerkin (DG) finite ele-
ment method has become a popular tool in the numerical simulation of many com-
plex physical phenomena. In particular, many researchers have investigated high-
order accurate DG discretizations of the Euler and Navier-Stokes equations for use
in computational fluid dynamics [22, 11, 5, 7, 6, 12, 4]. In this context, DG is at-
tractive because it allows the development of high-order accurate discretizations with
element-wise compact stencils. These compact stencils simplify the task of achieving
high-order accuracy for problems involving complex geometries, where unstructured
meshes are often employed, and allow the development of efficient solution methods.

In this paper, high-order accurate DG discretizations of source terms depending
on the state and its gradient are examined. Interest in such terms stems from the
Reynolds-averaged Navier-Stokes (RANS) equations and, specifically, from the turbu-
lence models used to close the RANS equations. For example, the Spalart-Allmaras
turbulence model [25] incorporates state and state derivative dependent source terms
to model the production, destruction, and diffusion of turbulent eddy viscosity, and
state derivative dependent source terms appear in both the k−ǫ and k−ω turbulence
models [28].

The focus of the paper is the impact of dual consistency on source term discretiza-
tions. Dual consistency provides a connection between the continuous and discrete
dual problems. In particular, if a discretization is dual consistent, then the exact
solution of the strong form of the dual problem satisfies the discrete dual problem
taken about the exact solution of the strong form of the primal problem. A more
precise definition of dual consistency is given in Section 2.

For many types of discretization, algorithms involving the dual problem have
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become popular for design optimization, error estimation, and grid adaptation [21, 1,
14, 16, 8, 9, 17, 27]. It is well known that dual consistency can significantly impact the
performance of these algorithms. For example, Collis and Heinkenschloss [13] showed
that when applying a dual inconsistent streamline upwind/Petrov-Galerkin (SUPG)
method for linear advection-diffusion to an optimal control problem, superior results
are obtained using a direct discretization of the continuous dual problem as opposed
to the discrete dual problem derived from the primal discretization. Specifically, both
the control function and the adjoint solution converge at a higher rate when the
continuous dual problem is discretized directly.

For DG discretizations, Harriman et al. [19, 18] examined symmetric and non-
symmetric interior penalty (SIPG and NIPG, respectively) DG methods for the so-
lution of Poisson’s equation. They showed that to achieve optimal convergence rates
for a linear functional output, the dual consistent method (i.e. SIPG) must be used.
Lu [23] considered the impact of dual consistency on the accuracy of functional out-
puts computed using DG discretizations of the Euler and Navier-Stokes equations. He
demonstrated the importance of implementing the boundary conditions on the pri-
mal problem in a dual consistent manner. In particular, when using dual consistent
boundary conditions, super-convergent functional output results were obtained, while,
when using a dual inconsistent boundary condition treatment, significant degradation
of the output convergence rates was observed. More recently, Hartmann [20] proposed
a framework for analyzing the dual consistency of DG discretizations. He uses the
framework to expand upon the analysis of the SIPG discretization for the Navier-
Stokes equations, proposing a modification of the boundary conditions to make the
scheme dual consistent. Similar to the results shown by Lu, Hartmann’s modifica-
tion of the SIPG scheme produces superior results to the original, dual inconsistent
boundary condition treatment.

Furthermore, it is well known that dual consistency can impact the convergence
of the L2 norm of the error in the primal solution [3]. For example, for many DG
discretizations of Poisson’s equation, standard proofs of order of accuracy of the so-
lution error in the L2 norm exist. Typically these proofs rely on the Aubin-Nitsche
“duality trick” [26, 24] to obtain an optimal estimate in the L2 norm given an optimal
estimate in the energy norm [10, 3]. The use of this duality argument requires that
the scheme be dual consistent. Thus, some dual inconsistent methods—e.g. NIPG
and the Baumann-Oden method—do not achieve optimal accuracy in the L2 norm,
and dual inconsistent methods that do achieve optimal accuracy in the L2 norm are
typically super-penalized [3].

The paper begins with a brief review of the definition of dual consistency in
Section 2. The standard weighting DG discretization of source terms is considered
in Section 3. It is shown that, while this treatment of solution derivative dependent
source terms leads to a dual inconsistent DG discretization, dual consistency can be
achieved by adding terms proportional to the jumps in the solution between elements
to the discretization. Mixed formulations for the source term are analyzed in Section 4.
The resulting discretizations are shown to be asymptotically dual consistent. Finally,
numerical results for a simple test problem are shown in Section 5.

2. Dual Consistency Definition and Preliminaries. Consider the following
primal problem: compute J (u), where J : V → R is a functional of interest, V is an
appropriate function space, and u ∈ V solves

R(u, v) = 0 ∀v ∈ V,
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where R : V × V → R is the weak form of a PDE of interest. For simplicity, it is
assumed that this primal problem and its dual are well-posed.

Let Vph be a finite dimensional vector space of piecewise polynomial functions of
degree at most p on a triangulation, Th, of the domain of interest, Ω ⊂ R

n, into
elements, κ, such that Ω̄ = ∪κ∈Th

κ̄. In particular,

Vph ≡ {v ∈ L2(Ω) | v|κ ∈ P p, ∀κ ∈ Th},

where P p denotes the space of polynomial functions of degree at most p.
Let Wp

h ≡ Vph + V, where

Vph + V ≡ {h = f + g | f ∈ Vph, g ∈ V}.

Then, consider a general DG discretization of the primal problem: find uh ∈ Vph
such that

Rh(uh, vh) = 0, ∀vh ∈ Vph,

where Rh : Wp
h × Wp

h → R is a semi-linear form derived from the weak form of the
primal problem. For the remainder of the paper, it is assumed that this discrete
problem is also well-posed.

Let Jh : Wp
h → R be the discrete functional of interest. Then, the discrete dual

problem is given by the following statement: find ψh ∈ Vph such that

R′
h[uh](vh, ψh) = J ′

h[uh](vh), ∀vh ∈ Vph

where R′
h[uh](·, ψh) : Wp

h → R is the linear functional given by evaluating the Frechét
derivative of the function Nψh

: Wp
h → R at uh, where, for fixed ψh ∈ Wp

h,

Nψh
(wh) = Rh(wh, ψh), ∀wh ∈ Wp

h.

Similarly, J ′
h[uh](·) : Wp

h → R is the linear functional given by evaluating the Frechét
derivative of Jh at uh.

Two concepts of dual consistency are used in this work: dual consistency, de-
fined in Definition 2.1, and asymptotic dual consistency, defined in Definition 2.2.
Dual consistency has been used in the analysis of DG methods by multiple authors.
For example, [19, 18, 3] define dual consistency for linear problems. A general def-
inition of dual consistency for nonlinear problems is provided by both Lu [23] and
Hartmann [20]. Lu also defines asymptotic dual consistency for general nonlinear
problems. The definitions used here follow [23].

Definition 2.1. The discretization defined by the semi-linear form, Rh, and

discrete functional, Jh, is said to be dual consistent if, given exact solutions u ∈ V
and ψ ∈ V of the continuous primal and dual problems, respectively,

R′
h[u](v, ψ) = J ′

h[u](v), ∀v ∈ Wp
h.

Definition 2.2. The discretization defined by the semi-linear form, Rh, and

discrete functional, Jh, is said to be asymptotically dual consistent if, given exact

solutions u ∈ V and ψ ∈ V of the continuous primal and dual problems, respectively,

lim
h→0



 sup
v∈Wp

h
,‖v‖

W
p
h
=1

|R′
h[u](v, ψ) − J ′

h[u](v)|



 = 0.

Clearly, all dual consistent discretizations are automatically asymptotically dual con-
sistent. In this work, a discretization will be referred to as asymptotically dual con-
sistent only if it is not also dual consistent.
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3. The Standard Weighting Technique for Source Terms. This section
considers DG discretizations of source terms depending on the state and first deriva-
tives of the state. As will be shown, the simple approach of weighting by a test
function and integrating leads to a dual inconsistent scheme for source terms that
depend on derivatives of the state. However, a dual consistent discretization can be
constructed by adding terms to the discretization.

Let u ∈ V ≡ H1(Ω) be the solution of the following scalar problem:

−∇ · (ν∇u) = f(u,∇u) for x ∈ Ω ⊂ R
n(3.1)

u = 0 for x ∈ ∂Ω,

where f ∈ C1(Rn+1) is the source term of interest. As before, it is assumed that this
problem and its dual are well-posed.

Let J : H1(Ω) → R be a functional of interest defined as

J (w) =

∫

Ω

J(w),(3.2)

where J ∈ C(R). For simplicity, the functional chosen here does not include bound-
ary integrals. The inclusion of boundary integrals would slightly alter the boundary
conditions on the dual problem and the analysis of the boundary terms shown here.
However, these modifications are not central to the analysis of the source term dis-
cretization. For an analysis of dual consistency for equations without source terms
that includes functionals with boundary integrals, see [23].

For J , the dual problem is given by

−∇ · (ν∇ψ) −D1f(u,∇u)ψ + ∇ · (D∇uf(u,∇u)ψ) = J ′[u] for x ∈ Ω,(3.3)

where ψ is the adjoint state, D1f(u,∇u) is the partial derivative of f with respect to
u evaluated at (u,∇u) and

D∇uf(u,∇u) = [D2f(u,∇u), . . . ,Dn+1f(u,∇u)]
T

where Dif(u,∇u) is the partial derivative of f with respect to ∂u
∂xi−1

for 2 ≤ i ≤ n+1,

evaluated at (u,∇u). The boundary conditions on the dual problem can be written
in the following weak form:

−

∫

∂Ω

ψq = 0, ∀q ∈ H−1/2(∂Ω).

Consider the following DG discretization: find uh ∈ Vph such that

Rh(uh, vh) ≡ Bh(uh, vh) −
∑

κ∈Th

∫

κ

vhf(uh,∇uh) = 0, ∀vh ∈ Vph,(3.4)

where Bh is a consistent and dual consistent bilinear form for the diffusion operator
(e.g. BR2 [6, 4] or LDG [11, 12]). Furthermore, define the discrete functional of
interest, Jh : Wp

h → R, as

Jh(wh) =
∑

κ∈Th

∫

κ

J(wh).(3.5)
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In the following dual consistency analysis, additional smoothness is assumed for
the exact primal and dual solutions, u and ψ. In particular, it is assumed that u, ψ ∈
H2(Ω). This smoothness assumption is common in the analysis of dual consistency
for discretizations of second-order operators [3, 23].

Proposition 3.1. The discretization defined by the semi-linear form Rh, defined

in (3.4), together with the discrete functional Jh, defined in (3.5), is dual inconsis-

tent.

Proof. Linearizing Rh about the exact solution and integrating by parts gives

R′
h[u](wh, vh) = Bh(wh, vh) −

∑

κ∈Th

∫

κ

wh(D1f(u,∇u)vh −∇ · (D∇uf(u,∇u)vh))

−

∫

Γi

(JwhK · {D∇uf(u,∇u)vh} + {wh}JD∇uf(u,∇u)vhK)

−

∫

∂Ω

wh(D∇uf(u,∇u)vh) · ~n,

where J·K and {·} denote the standard jump and average operators, respectively, on
interior faces (see e.g. [3]), ~n is the outward pointing unit normal vector, and Γi
denotes the union of the interior faces of the triangulation Th.

The assumptions ψ ∈ H2(Ω), u ∈ H2(Ω), and f ∈ C1(Rn+1), imply that {D∇uf(u,∇u)ψ} =
D∇uf(u,∇u)ψ and JD∇uf(u,∇u)ψK = 0. Thus,

R′
h[u](vh, ψ) = Bh(vh, ψ) −

∑

κ∈Th

∫

κ

vh(D1f(u,∇u)ψ −∇ · (D∇uf(u,∇u)ψ))

−

∫

Γi

JvhK · (D∇uf(u,∇u)ψ) −

∫

∂Ω

vh(D∇uf(u,∇u)ψ) · ~n.

Evaluating the dual consistency using the discrete functional as defined in (3.5) gives

R′
h[u](vh, ψ) − J ′

h[u](vh) = (Lh,I(u, ψ))(vh) + (Lh,B(u, ψ))(vh),

where

(Lh,I(u, ψ))(vh) ≡ −

∫

Γi

JvhK · (D∇uf(u,∇u)ψ),(3.6)

(Lh,B(u, ψ))(vh) ≡ −

∫

∂Ω

vh(D∇uf(u,∇u)ψ) · ~n.(3.7)

In general, there exists vh ∈ Vph such that at least (Lh,I(u, ψ))(vh) does not vanish.
Thus, the scheme is dual inconsistent. Due to the boundary condition on the dual
problem, the boundary term, (Lh,B(u, ψ))(vh), will vanish if (D∇uf(u,∇u)vh ·~n)|∂Ω ∈
H−1/2(∂Ω). However, if this condition does not hold, the boundary term will also
contribute to the dual inconsistency.

Remark 3.1. It is possible to construct a dual consistent discretization by adding
terms to the semi-linear form Rh. In particular, define a new bilinear form,

Rh,DC(wh, vh) ≡ Rh(wh, vh) +Ah,I(wh, vh) +Ah,B(wh, vh),

where Ah,I will serve to eliminate the interior face dual inconsistency term, LI , and
Ah,B will serve to eliminate the boundary face dual inconsistency, LB . Furthermore,
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to maintain consistency, Ah,I and Ah,B must vanish when evaluated at u:

Ah,I(u, vh) = 0, ∀vh ∈ Vph,

Ah,B(u, vh) = 0, ∀vh ∈ Vph.

The interior face and boundary face contributions to the dual inconsistency are
examined separately. To eliminate the dual inconsistency from the interior faces, the
following term is added to the semi-linear form Rh:

Ah,I(wh, vh) =

∫

Γi

JwhK · {~βi(wh, vh)},

where dual consistency requires that {~βi(u, ψ)} = D∇uf(u,∇u)ψ.
To eliminate the boundary dual inconsistency, the following term is added to Rh:

Ah,B(wh, vh) =

∫

∂Ω

wh ~βb(wh, vh) · ~n,

where dual consistency requires ~βb(u, ψ) = D∇uf(u,∇u)ψ.
Proposition 3.2. Let Bh be a dual consistent bilinear form corresponding to the

diffusion operator. Let ~βi be such that ~βi(w, v) = D∇uf(w,∇w)v for all w, v ∈ H2(Ω).

Let ~βb be such that ~βb(w, v) = D∇uf(w,∇w)v for all w, v ∈ H2(Ω). Then, the semi-

linear form given by

Rh,DC(wh, vh) = Bh(wh, vh) −
∑

κ∈Th

∫

κ

vhf(wh,∇wh)

+

∫

Γi

JwhK · {~βi(wh, vh)} +

∫

∂Ω

wh ~βb(wh, vh) · ~n,

together with the discrete functional Jh, defined in (3.5), is dual consistent.

Proof. Linearizing Rh,DC gives

R′
h,DC [u](vh, ψ) = R′

h[u](vh, ψ) +

∫

Γi

JvhK · (D∇uf(u,∇u)ψ)

+

∫

∂Ω

vh(D∇uf(u,∇u)ψ) · ~n, ∀vh ∈ Wp
h.

Thus,

R′
h,DC [u](vh, ψ) − Jh[u](vh) = 0, ∀vh ∈ Wp

h.

Remark 3.2. The choices of ~βi and ~βb are not fully determined by requiring
dual consistency. One valid choice is given by

~βi(wh, vh) = {D∇uf(wh,∇wh)vh}; ~βb(wh, vh) = D∇uf(wh,∇wh)vh.

Then,

Rh,DC(wh, vh) = Bh(wh, vh) −
∑

κ∈Th

∫

κ

vhf(3.8)

+

∫

Γi

JwhK · {D∇uf(wh,∇wh)vh} +

∫

∂Ω

wh(D∇uf(wh,∇wh)vh) · ~n.
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However, if necessary, one could construct more complex functions that satisfy the
dual consistency requirement as well as add stability to the discretization. For ex-
ample, given that the dual problem is a convection-diffusion-reaction problem, one
option to add stability is to upwind the dual consistency terms instead of averaging.

Remark 3.3. In addition to being dual consistent, if Bh is a consistent bilinear
form for the diffusion operator, the discretization of Proposition 3.2 is consistent for
any choice of ~βi and ~βb because, for the exact solution u, JuK = 0 and u|∂Ω = 0. Thus,

Rh,DC(u, vh) = Bh(u, vh) −
∑

κ∈Th

∫

κ

vhf(u,∇u) = 0, ∀vh ∈ Vph.

4. The Mixed Formulation for Source Terms. In addition to the standard
weighting source term treatment discussed in Section 3, another source term treatment
of interest has appeared in the DG literature. In this method, known as the mixed
formulation, the gradient of the state is replaced by a variable that is solved for
simultaneously with the primal state [4]. Variants of this technique are widely used
in DG discretizations of second-order operators. See [3] for a full analysis of those
discretizations. This section provides a brief derivation of the mixed method as applied
to source terms involving the gradient of the state. Furthermore, analysis of the mixed
formulation shows that, in general, it is asymptotically dual consistent.

4.1. Discretization Derivation. Consider (3.1)—i.e. the model problem con-
sidered in Section 3—and consider the following discretization: find uh ∈ Vph and
~gh ∈ [Vph]

n
such that

Rh(uh, vh) ≡ Bh(uh, vh) −
∑

κ∈Th

∫

κ

vhf(uh, ~gh) = 0, ∀vh ∈ Vph,(4.1)

∑

κ∈Th

∫

κ

~τh · ~gh = −
∑

κ∈Th

∫

κ

uh∇ · ~τh +

∫

Γi

(Jû(uh)K · {~τh} + {û(uh)}J~τhK)(4.2)

+

∫

∂Ω

ub(uh)~τh · ~n, ∀~τh ∈ [Vph]
n

where û and ub are numerical flux functions on interior and boundary faces respec-
tively. Integrating by parts on (4.2) gives

∑

κ∈Th

∫

κ

~τh · ~gh =
∑

κ∈Th

∫

κ

~τh · ∇uh +

∫

Γi

Jû(uh) − uhK · {~τh}(4.3)

+

∫

Γi

{û(uh) − uh}J~τhK

+

∫

∂Ω

(ub(uh) − uh)~τh · ~n, ∀~τh ∈ [Vph]
n
.

Define the lifting operators ~rh and ~ℓh (see e.g. [3]) by the following problems: find

~rh(uh) ∈ [Vph]
n and ~ℓh(uh) ∈ [Vph]

n such that

∑

κ∈Th

∫

κ

~τh · ~rh(uh) = −

∫

Γi

Jû(uh) − uhK · {~τh}(4.4)
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−

∫

∂Ω

(ub(uh) − uh)~τh · ~n, ∀~τh ∈ [Vph]
n
,

∑

κ∈Th

∫

κ

~τh · ~ℓh(uh) = −

∫

Γi

{û(uh) − uh}J~τhK, ∀~τh ∈ [Vph]
n
.(4.5)

Then, using (4.3) gives

~gh = ∇uh − ~rh(uh) − ~ℓh(uh).(4.6)

Substituting (4.6) into (4.1) gives the following discretization: find uh ∈ Vph such that

Bh(uh, vh) −
∑

κ∈Th

∫

κ

vhf(uh,∇uh − ~rh(uh) − ~ℓh(uh)) = 0, ∀vh ∈ Vph,(4.7)

where ~rh and ~ℓh are defined in (4.4) and (4.5), respectively. To complete the scheme,
one must define the numerical flux functions û and ub. For the remainder of the
paper, it is assumed that these fluxes have the following properties:

1. for each interior edge, e, there exists a constant vector ~de such that û(wh) =

{wh} + ~de · JwhK,
2. ub = 0.

Remark 4.1. While the assumptions on the numerical fluxes may seem restric-
tive, to the best of the authors’ knowledge, all existing mixed method formulations
that are consistent use fluxes satisfying these assumptions for problems with homo-
geneous Dirichlet boundary conditions [3].

4.2. Dual Consistency Analysis. In this section, the dual consistency of the
mixed formulation defined in Section 4.1 is considered. The dual consistency of this
discretization is analyzed in two parts. First, a restrictive condition is assumed which
implies that the scheme is dual consistent. Then, the proof is extended to the general
case, where only asymptotic dual consistency can be shown.

Proposition 4.1. Let D∇uf(u,∇u)ψ ∈ [Vph]
n. Then, the DG formulation de-

fined in (4.7) together with the discrete functional Jh defined in (3.5) forms a dual

consistent discretization.

Proof. Noting that the lifting operators ~rh and ~ℓh are linear functionals and that
~rh(u) = ~ℓh(u) = 0, linearizing Rh about the exact solution gives

R′
h[u](wh, vh) = Bh(wh, vh) −

∑

κ∈Th

∫

κ

vhD1f(u,∇u)wh

−
∑

κ∈Th

∫

κ

vhD∇uf(u,∇u) · (∇wh − ~rh(wh) − ~ℓh(wh)).

Thus, integrating by parts gives

R′
h[u](wh, vh) = Bh(wh, vh) −

∑

κ∈Th

∫

κ

whD1f(u,∇u)vh(4.8)

+
∑

κ∈Th

∫

κ

wh∇ · (D∇uf(u,∇u)vh) −

∫

∂Ω

wh(D∇uf(u,∇u)vh) · ~n

−

∫

Γi

(JwhK · {D∇uf(u,∇u)vh} + {wh}JD∇uf(u,∇u)vhK)

+
∑

κ∈Th

∫

κ

vhD∇uf(u,∇u) · (~rh(wh) + ~ℓh(wh)).
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Using the assumptions on û and ub combined with the hypothesis thatD∇uf(u,∇u)ψ ∈
[Vph]

n,

∑

κ∈Th

∫

κ

(D∇uf(u,∇u)ψ) · ~rh(wh) =

∫

Γi

JwhK · {D∇uf(u,∇u)ψ}(4.9)

+

∫

∂Ω

wh(D∇uf(u,∇u)ψ) · ~n,

∑

κ∈Th

∫

κ

(D∇uf(u,∇u)ψ) · ~ℓh(wh) = −

∫

Γi

(~de · JwhK)JD∇uf(u,∇u)ψK.(4.10)

Substituting (4.9) and (4.10) into (4.8) gives

R′
h[u](wh, ψ) = Bh(wh, ψ) −

∑

κ∈Th

∫

κ

wh (D1f(u,∇u)ψ −∇ · (D∇uf(u,∇u)ψ))

−

∫

Γi

(û(wh)JD∇uf(u,∇u)ψK) .

Furthermore, by the assumptions on the smoothness of u, ψ, and f , JD∇uf(u,∇u)ψK =
0. Thus,

R′
h[u](vh, ψ) = Bh(vh, ψ) −

∑

κ∈Th

∫

κ

vh (D1f(u,∇u)ψ −∇ · (D∇uf(u,∇u)ψ)) .

Finally,

R′
h[u](vh, ψ) − J ′

h[u](vh) = 0, ∀vh ∈ Wp
h,

which implies that the scheme is dual consistent.
Of course, in general, the assumption of D∇uf(u,∇u)ψ ∈ [Vph]

n is not realistic.
For D∇uf(u,∇u)ψ 6∈ [Vph]

n, Proposition 4.1 does not hold. In this case, the mixed
formulation is only asymptotically dual consistent.

Proposition 4.2. If D∇uf(u,∇u)ψ ∈ [Hk+1(Ω)]n, where 1 ≤ k ≤ p, then the

DG discretization defined in (4.7) together with the functional Jh defined in (3.5)
forms an asymptotically dual consistent discretization.

To simplify the proof, some preliminary notation and lemmas are required. In
particular, let Eh denote the set of all faces in the triangulation Th. Define the jump
operator, J·K, on boundary faces by JsK = s~n for scalar quantities and J~vK = ~v · ~n for
vector quantities. Define the average operator, {·}, on boundary faces by {~v} = ~v.

For the following lemmas, it is assumed that Wp
h = (Vph + H2(Ω)) ∩ H1

0 (Ω).
Furthermore, it is assumed that the set of triangulations, [Th]h>0, is quasi-uniform
(see [15, 24] for definition).

Lemma 4.3. There exists a norm, ||| · |||∗ : Wp
h → R, and a constant, c, such that

h−1/2
∑

e∈Eh

‖JvK‖0,e ≤
∑

e∈Eh

h−1/2
κe

‖JvK‖0,e ≤ c|||v|||∗, ∀v ∈ Wp
h,

where κe is such that e ⊂ ∂κe, h = maxκ∈Th
hκ, and hκ = supx,y∈κ |x− y|.

Proof. An example of such a norm is used by Arnold et al. [3]. In particular,

|||v|||2∗ ≡
∑

κ∈Th

(|v|21,κ + h2
κ|v|

2
2,κ) +

∑

e∈Eh

‖re(JvK)‖
2
0,Ω,
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where
∫

Ω

re(JvK) · ~τ = −

∫

e

JvK · {~τ} ∀~τ ∈ [Vph]
n.

For the proof of the lemma for this norm, see [3], Section 4.1, or [10], Lemma 2. Note
that only the existence of such a norm, not its particular form, is important here.

Lemma 4.4. For a face, e ∈ Eh, such that e ⊂ ∂κ, there exists a constant, c, such

that, for all v ∈ H1(κ) and w ∈ L2(e),
∫

e

|vw| ≤ ch−1/2
κ (‖v‖0,κ + hκ|v|1,κ)‖w‖0,e.

Proof. Apply the Cauchy-Schwarz inequality, and then use

‖v‖0,e ≤ ch−1/2
κ (‖v‖0,κ + hκ|v|1,κ), ∀v ∈ H1(κ),

which is a standard trace theorem [2].
Lemma 4.5. For all w ∈ Hk+1(Ω), where 1 ≤ k ≤ p, there exists a constant, c,

such that

(

∑

κ∈Th

‖w − Πp
h(w)‖2

1,κ

)1/2

≤ chk|w|k+1,Ω,

where Πp
h : L2(Ω) → Vph is the L2(Ω)-orthogonal projection onto Vph.

Proof. If Πp
κ : L2(κ) → P p is the L2(κ)-orthogonal projection onto P p, then

Πp
h(v)|κ = Πp

κ(v|κ), ∀v ∈ L2(Ω).

To complete the proof, apply Proposition 1.134(iii) from [15] to each element κ and
sum over the elements.

Proof. [Proposition 4.2] Define ~π ∈ [Vph]
n by

πj = Πp
h((D∇uf(u,∇u)ψ)j), for j = 1, . . . , n.

Furthermore, define ~ǫ ∈ [L2(Ω)]n by

ǫj = (D∇uf(u,∇u)ψ)j − πj , for j = 1, . . . , n.

By assumption, D∇uf(u,∇u)ψ ∈ [H1(Ω)]n. Thus, ~ǫ|κ ∈ [H1(κ)]n, for all κ ∈ Th.
From the proof of Proposition 4.1, it is clear that

Eh(vh) ≡ R′
h[u](vh, ψ) − J ′

h[u](vh) =
∑

κ∈Th

∫

κ

(D∇uf(u,∇u)ψ) ·
(

~rh(vh) + ~ℓh(vh)
)

−

∫

Γ

JvhK · (D∇uf(u,∇u)ψ), ∀vh ∈ Wp
h,

where Γ ≡ Γi ∪ ∂Ω. Thus,

Eh(vh) =
∑

κ∈Th

∫

κ

(~π + ~ǫ) ·
(

~rh(vh) + ~ℓh(vh)
)

(4.11)

−

∫

Γ

JvhK · (~π + ~ǫ), ∀vh ∈ Wp
h.
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From (4.4), (4.5), and the assumptions on û and ub,

∑

κ∈Th

∫

κ

~π · ~rh(vh) =

∫

Γ

JvhK · {~π},(4.12)

∑

κ∈Th

∫

κ

~π · ~ℓh(vh) = −

∫

Γi

(~de · JvhK)J~πK.(4.13)

Substituting (4.12) and (4.13) into (4.11) gives

Eh(vh) =
∑

κ∈Th

∫

κ

~ǫ · (~rh(vh) + ~ℓh(vh)) −

∫

Γ

JvhK · {~ǫ} −

∫

Γi

(~de · JvhK)J~πK.

By the definition of ~ǫ,

∑

κ∈Th

∫

κ

~ǫ · ~zh = 0, ∀~zh ∈ [Vph]
n.

Furthermore, since JD∇uf(u,∇u)ψK = 0, it is clear that J~πK = −J~ǫK. Thus,

Eh(vh) = −

∫

Γ

JvhK · {~ǫ} +

∫

Γi

(~de · JvhK)J~ǫK.

Then, using the assumption on û, Eh(vh) can be rewritten as

Eh(vh) = −

∫

∂Ω

vh~ǫ · ~n−

∫

Γi

JvhK ·

[(

1

2
− ~de · ~n

+

)

~ǫ+ +

(

1

2
+ ~de · ~n

+

)

~ǫ−
]

,

where (·)+ and (·)− refer to trace values taken from opposite sides of an interior face,
and ~n+ is the outward pointing unit normal for κ+.

Applying Lemma 4.4 to each edge in the triangulation, one can show that

|Eh(vh)| ≤
∑

e∈Eh

n
∑

j=1

[

ceh
−1/2
κe

(‖ǫj‖0,κe
+ hκe

|ǫj |1,κe
) ‖JvhK‖0,e

]

.

Thus,

|Eh(vh)| ≤
∑

e∈Eh

n
∑

j=1

[

ceh
−1/2
κe

(

‖ǫj‖
2
1,κe

)1/2
‖JvhK‖0,e

]

,

≤
∑

e∈Eh

n
∑

j=1



ceh
−1/2
κe

(

∑

κ∈Th

‖ǫj‖
2
1,κ

)1/2

‖JvhK‖0,e



 ,

≤ C

n
∑

j=1





(

∑

κ∈Th

‖ǫj‖
2
1,κ

)1/2


×

[

∑

e∈Eh

h−1/2
κe

‖JvhK‖0,e

]

.

Finally, applying Lemmas 4.3 and 4.5 gives

|Eh(vh)| ≤ C|||vh|||∗h
k

n
∑

j=1

|(D∇uf(u,∇u)ψ)j |k+1,Ω.

Thus, as h → 0, |Eh(vh)| → 0 for all vh ∈ Wp
h, which implies that the scheme is

asymptotically dual consistent.
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5. Numerical Results. As a demonstration of the effects of dual consistency,
a simple test problem based on a nonlinear ODE is considered. The effect of dual
consistency on the convergence rates of the solution and adjoint solution errors as well
as a simple functional output is demonstrated.

Consider the following ODE:

−((ν + u)ux)x − cuxux = g for x ∈ (0, 1),

u(0) = u(1) = 0,

where ν = 1 and c = 1
2 . Setting

g(x) = π2((ν + sin(πx)) sin(πx) − (1 + c) cos2(πx)),

it is easy to show that the exact solution is given by

ue(x) = sin(πx).

This nonlinear problem has been solved using three discretizations: the standard
weighting method as shown in (3.4), a dual consistent method with a penalty term as
shown in (3.8), and an asymptotically dual consistent mixed method with û = {u}.
In all cases, the BR2 scheme is used to discretize the nonlinear diffusion operator.

Figure 5.1 shows the error in the primal solution versus grid refinement. The
error is measured in a broken H1 norm defined by

‖v‖2
H1(Ω,Th) =

∑

κ∈Th

∫

κ

(v2 + v2
x).

In this norm, all three schemes produce essentially the same error in the primal
solution. However, as shown in Figure 5.2, the dual consistent and asymptotically
dual consistent schemes produce superior results when the error is measured in the
L2 norm. In particular, for the dual inconsistent discretization, the L2 norm of the
error is proportional to hp for even p and proportional to hp+1 for odd p. It is not
clear why the even and odd p results show different asymptotic rates, but similar
results have been observed for other dual inconsistent discretizations [19].

Alternatively, the dual consistent and asymptotically dual consistent discretiza-
tions give O(hp+1) for all p tested. Furthermore, it is interesting to note that the
asymptotically dual consistent method produces essentially exactly the same results
as the dual consistent discretization. This fact shows that, for the asymptotically dual
consistent scheme, the contribution of the dual inconsistency error to the total error is
sufficiently high-order that it does not degrade the asymptotic rate convergence rate
of the L2 error. This result is not surprising given the form of the dual consistency
error derived in Section 4.

Examining the adjoint solution error, one can see that the dual consistent and
asymptotically dual consistent schemes are superior for computing the adjoint. Fig-
ure 5.3 shows the adjoint error in the broken H1 norm. The adjoint error is computed
relative to a 40th order solution of a Galerkin spectral discretization of the dual prob-
lem. When using the dual inconsistent discretization, the broken H1 norm of the
adjoint error does not converge to zero with grid refinement. For the dual consistent
and asymptotically dual consistent schemes, this error converges at O(hp). Similarly,
Figure 5.4 shows that the L2 norm of the adjoint error converges at O(h) when us-
ing the dual inconsistent scheme, regardless of p, while, for the dual consistent and
asymptotically dual consistent schemes, this error converges at O(hp+1).
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(c) Asymptotically dual consistent

Fig. 5.1. Primal error in the broken H1 norm

To further understand the differences in the adjoint solutions for the different
discretizations, Figure 5.5 shows the adjoint solution for each scheme, computed with
p = 2 polynomials on an eight element mesh. At the scale shown, it is difficult to see
the difference between the discretizations. However, examining the pointwise error
relative to the 40th order spectral solution, shown in Figure 5.6, it is clear that the
adjoint solution for the dual inconsistent scheme is more oscillatory than that for the
dual consistent or asymptotically dual consistent discretizations.

Finally, let

J (u) =
1

2

∫ 1

0

(w − u)2,

where w(x) = 2 sin(πx), be the output of interest. Then, computing the exact func-
tional output is trivial, enabling comparison of the computed result with the exact
value, J (ue) = 1/4.

Figure 5.7 shows the error in the computed functional for the three discretizations
considered. The figure shows that, as in the state and adjoint results, the performance
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(c) Asymptotically dual consistent

Fig. 5.2. Primal error in the L2 norm

the dual consistent and asymptotically dual consistent schemes is very similar. Both
schemes achieve O(h2p) for 1 ≤ p ≤ 4. However, for the dual inconsistent scheme,
the convergence rate of the functional is O(hp) for even p and O(hp+1) for odd p.
Thus, the dual consistent and asymptotically dual consistent discretizations predict
the functional with greater accuracy than the dual inconsistent discretization for sim-
ilar numbers of degrees of freedom.

6. Conclusions. The effect of dual consistency on DG discretizations of solution
and solution gradient dependent source terms has been examined. In particular, the
standard weighting DG discretization of source terms depending on the gradient of
the solution has been analyzed and shown to be dual inconsistent. Starting from
this dual inconsistent scheme a dual consistent discretization has been developed.
Furthermore, discretizations derived using the mixed formulation have been shown
to be asymptotically dual consistent. Numerical results from a simple test problem
demonstrate that the dual consistent and asymptotically dual consistent schemes are
superior both in terms of solution accuracy and output accuracy.
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(c) Asymptotically dual consistent

Fig. 5.3. Adjoint error in the broken H1 norm

Further work is required in many areas. In particular, this work has considered
only the effect of dual consistency. Using the methods presented in Section 3 and
Section 4, one could construct a consistent and dual consistent but unstable scheme.
Thus, while techniques for constructing a consistent and dual consistent (or asymptot-
ically dual consistent) discretization have been shown, a method for ensuring that the
resulting scheme is stable is left for future research. Finally, given the extremely sim-
ilar results shown for the dual consistent and asymptotically dual consistent schemes
considered, it remains to be determined which of these schemes is most effective for
practical problems.



16 T. A. OLIVER AND D. L. DARMOFAL

0 1 2 3 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

2.0

3.0

4.0

5.0

log
2
(h

0
/h)

|| 
ψ

h −
 ψ

 ||
L2 (Ω

)

 

 

p=1
p=2
p=3
p=4

(a) Dual consistent

0 1 2 3 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1.0

log
2
(h

0
/h)

|| 
ψ

h −
 ψ

 ||
L2 (Ω

)

 

 

p=1
p=2
p=3
p=4

(b) Dual inconsistent

0 1 2 3 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

2.0

3.0

4.0

5.0

log
2
(h

0
/h)

|| 
ψ

h −
 ψ

 ||
L2 (Ω

)

 

 

p=1
p=2
p=3
p=4

(c) Asymptotically dual consistent

Fig. 5.4. Adjoint error in the L2 norm
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Fig. 5.5. Adjoint solution computed using the p = 2 dual consistent (DC), dual inconsistent
(DinC), and asymptotically dual consistent (ADC) discretizations on an eight element mesh
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Fig. 5.6. Adjoint error for p = 2 on eight and sixteen element meshes
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Fig. 5.7. Functional output error
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[18] K. Harriman, D. Gavaghan, and E. Süli, The importance of adjoint consistency in the ap-
proximation of linear functionals using the discontinuous Galerkin finite element method,
Tech. Report 04/18, Oxford University Computing Laboratory, Numerical Analysis Group,
Oxford, England, July 2004.

[19] K. Harriman, P. Houston, B. Senior, and E. Süli, hp-Version discontinuous Galerkin meth-
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