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Abstract

A high-order discontinuous Galerkin finite element discretization and output-based
adaptation scheme for the compressible Euler equations are presented and applied to
an isolated rotor in hover. A simplex cut-cell mesh generation technique is used to
support robust and autonomous creation of higher-order meshes. The calculations are
performed using a parallel implementation of the DG discretization and the results
are compared to experimental data. As accurate simulation of rotorcraft wakes and
blade-vortex interactions continues to be a challenge, the output-based adaptation
scheme is used with thrust as the output of interest to refine the mesh. The result is a
solution with less than three million degrees of freedom that is capable of preserving
a rotor tip vortex for three and a half revolutions.
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Chapter 1

Introduction

The compressible Euler equations have been used extensively to model an isolated
rotor in hover [2, 6, 21, 31, 41-43, 49]. Computations based on the Euler equations
have matched experimental results for static pressure and sectional thrust and have
been used to optimize a rotor geometry to reduce horsepower, vibrations, and rotor
weight[1]. Accurate computations for an isolated rotor in hover are feasible because
the influence of the rotor tip vortex on loading is small.

For more complex problems such as full rotorcraft simulations or rotors in descent,
accurate load estimates require preservation of the rotor tip vortex over multiple rev-
olutions. The importance of the successful modeling of the tip vortex is due to the
significance of wake modeling for predicting acoustics, performance, and vibrational
loading. For a typical finite volume flow solver, the element size required to accurately
model the small scale vortex core demands a grid which is impractically large [10].

An alternate approach is to explicitly include a vortex core model in the numerical
scheme[10, 35, 47, 48]. Examples of this approach include vortex embedding and vor-
tex confinement. Vortex embedding was developed from potential methods and allows
for rotational flow only on the wake structure which is then convected downstream us-
ing the potential. While vortex embedding has been shown to provide good results for
hover, it is hard to implement for forward flight. The goal with vorticity confinement

is to achieve a wake-preserving solution through the addition of an acceleration term

13



in the momentum equations. The acceleration term is non-zero in the defined vortical
regions of the flow and acts in the tangential direction of the flow mimicking vorticity.
Therefore, inner vortical regions exist only insofar as they contain a non-dissipating
circulation due to the acceleration term in small regions, but they are not resolved
through small mesh elements. The inner vortical regions have no physical meaning
other than their circulations. Vorticity confinement has been shown to successfully

model wake around the body of the helicopter [48].

Higher-order and adaptive methods have also been applied to an isolated rotor in
hover and have been able to improve the preservation of the tip vortex. Hariharan
et al. [20] relied on an overset grid technique to support their fifth-order or seventh-
order finite difference method, while Boelens et al. [6] used linear polynomials to
model the solution in a second-order accurate Discontinuous Galerkin (DG) method

with adaptation based on gradients of vorticity to preserve the vortex core.

This work also utilizes a DG discretization and extends previous work by applying
higher-order elements (quadratic polynomials) and an output-based adaptive method
to the rotor in hover problem. This represents the first application of output-based
adaptation to rotor flow computations. Output-based adaptation estimates the im-
pact of local discretization errors on an output and then adapts the mesh to reduce
these errors [19, 36]. Engineering applications have included lift and drag for two-
dimensional and three-dimensional flows [16, 32, 45|, sonic boom problems [23, 25],
and forces on re-entry vehicles [30]. Output error estimation techniques require the
solution of an adjoint problem, where the adjoint relates the output error to the local

residual. Chapter 5 presents this technique in more detail.

To employ adaptation, the ability must exist such that, given an error estimate,
a new mesh can be reliably and autonomously generated. In order to support the
DG discretization, the output mesh must have higher-order geometry. To this end, a
simplex cut-cell technique first presented by Fidkowski [14] and detailed in Chapter
4 is used. With the cut-cell technique, a higher-order mesh is cut out of a simplex

background mesh that does not conform to the geometry. The cut-cell technique
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relies on the ability to accurately and autonomously intersect the geometry with the
background mesh and generate integration rules over the arbitrarily-shaped elements
that result from the intersection problem. Although the discretization is more costly
when using the cut-cell technique, cut-cells permit easy adaptation since elements do
not conform to the geometry.

Output-based adaptation results are presented in Chapter 6. The results demon-
strate the benefit of combining a higher-order discretization with output-based adap-
tation. The adaptation cycle is begun on a p = 0 mesh with ten thousand degrees
of freedom and autonomously a p = 2 solution is produced containing less than three
million degrees of freedom and capable of preserving three and a half revolutions of
the rotor tip vortex. Successful matching of experimental data [11] for an extruded

NACA 0012 rotor is achieved.
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Chapter 2

Model Equations

2.1 Euler Equations for a Rotating Reference Frame

The Euler equations, which govern the three-dimensional, inviscid, unsteady, com-
pressible problem of interest, can be formulated in the rotating frame of the rotor
such that the rotor in hover problem is steady. Two common choices for flow variables
exist in the rotating reference frame. The first choice is to solve for the velocities
relative to the rotating reference frame, w,. In this work, the x and y axes are in the
chordwise and spanwise directions rotating around the z axis at a constant rate 2. In

this case, the Euler equations are,
oU,

ot
Fr = frg_‘_grj_l'hrk

+ V-E =5, (2.1)
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where,

P Py PUr PWr
s pu? +p Py PUW,
U= pv, fr=1 pu, gr= | pvi+p hy = | pw,v,
puw, U w, U, pw; +p
pE pu,. H pv. H pw, H
= (fy_pl)pjt%(ufjtvfjtwf)——(u?ﬁ—vé)
H = E+Z
p
ug = —Qy
vo = Qx

The source term, S,., comes from the Coriolis accelerations, —p) x (2 X T) —2p) X 1,

appearing in the momentum equation and is

0
P2z + 2pQ0,
Sy = | pQ2y — 2pQu,

An inconvenience with this formulation of the Euler equations is the inclusion
of %(u% + v3) in the relationship between pressure and energy. A more convenient
approach is to solve for the absolute velocities (i.e. the velocities relative to a fixed

frame). In this case, the solution velocities are @ = u, + Q X Z,

u=u,—Qy, v=uv+Q, w=w,. (2.2)

18



Combining Equations (2.1) and (2.2), the Euler equations solving for absolute

velocities in a rotating reference frame are

oU
> t V. F=5

F o= (fi+gh+hk)—(@x@)U

where
p pu pv puw
ou pu? +p pou pwu
U= | pv f= puv g= 1| p*+p h = pwo
pw puUw pLW pw? +p
pE puH pvH pwH
- b +1(u2+v2+w2)
(v=1p 2
H = E+°
p

This form of the Euler equations is applied in this work.

(2.3)

2.2 QOwuter Boundary Condition for a Rotor in Hover

The background domain utilized in this work is shown in Figure 2-1. The boundary

conditions on the outer boundaries are modeled by a jet combined with a potential

sink (see Figure 2-2). This model has been shown to allow for much smaller domains

[2, 41-43].

The jet velocity at the outflow is given by

Ue = _2Mt g7
V 2
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Figure 2-1: Computational domain
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Figure 2-2: Jet-sink boundary conditions for an idealized hovering rotor sys-
tem

where M, is the tip Mach number and C; is the coefficient of thrust. The radius of
outflow velocity is R/v/2 [41, 43]. A point sink centered at the rotor hub is used to

model the inflow. The strength of the sink is set to conserve mass with the radial

M, [C, (R\?
Up = ——\/— | —
4 2 \r
To improve the jet-sink model for higher-order discretizations, the velocity disconti-

nuity in the outflow boundary conditions at R/+/2 where u, goes from u, = —2M,, / %

inflow velocity given by

to 0, must be removed. The discontinuity can be smoothed by making the transition
continuous using a sine curve over a 2A wide region surrounding %. In the range

%—A<r<%+Auecanbedeﬁnedas,
R
C =7
U, = M, 5[8111( Aﬁg)_l

The resulting jet velocity can be seen in Figure 2-3 for A = 0.1R.
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Figure 2-3: Plot of u.(r) showing smoothing at R/v/2.

In order to specify all five components of the state vector at the outer boundaries,
the pressure and density are determined using the isentropic relationships between the

flow at the boundary and the stagnation flow at infinity. Specifically, setting p;, pr = 1,

)
o= | ——
1—25

1u
The boundary condition is applied through the inviscid flux function, Hy(u, u;, 7

the pressure and density are,

= |~3m

S~

P = P

in the same manner as the internal faces except that u? is the state vector composed

from the radial velocity, p,, and py.

2.3 Flow Tangency Boundary Condition

The boundary condition used in this work for the rotor itself is flow tangency. For a
flow tangency boundary condition, the flux is computed by setting the relative velocity

components normal to the wall equal to zero. Thus,



where i is the velocity relative to the rotating reference frame computed from the

interior state. Therefore the boundary state from which the flux, F, is computed as

P
pu® — p® (@) - ) my
up, = | po® — g (@ i) e
pw® — p® (@) - i) ny

pE’
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Chapter 3

Discretization and Solution Method

3.1 Discontinuous Galerkin Discretization

The discontinuous Galerkin (DG) discretization of Equation (2.3) is created by choos-
ing a tessellation, T}, of the computational domain, €. The tessellation is comprised of
tetrahedral elements, £. At any instant in time, a solution is sought in V}', the space of
piecewise polynomials of order p, which satisfies a weak form of the equations. Using

the approximate solution wy, in V} and an arbitrary test function v, € V7, the weak

form is:
70U
Z/ h 8th Uh,Uh):O (31)
KETH
where,
R(on,un) = — Y Wh- (un) + / (o = v) " Ha(wyf w 1)
KET L
+ / {ing Hb uh,uh, Z/ (up) T vp (3.2)
0 KETH

In Equation (3.2), I'; is the combination of all interior faces while 02 is the do-

main boundary. () and ()~ represent values taken from either side of a face and 7n
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represents the unit normal pointing outward from the ()" element to the ()~ element.

Hi(uf,u;,, ) and Hy(ul, u)i, ) are the flux functions for the interior and boundary

faces, respectively. In this work, Roe numerical flux functions [37] approximating F - n

are used on the interior faces and all outer boundary faces.

For this work, a nodal Lagrange basis which spans the space V) is chosen. Further
details of the basis may be found in Fidkowski et al. [18]. The solution vector, us(z,t),

is then given as a linear combination of the bases,
un(z,6) =y, (Do, (2). (3.3)
Then, Equation (3.1) can be written in semi-discrete form as
duh
Mh% + Rh(uh) = 0, (34)
where My, is the mass matrix given by

My, = /vfivhjd\/. (3.5)
Q

An important feature of the mass matrix is that it is block-diagonal because the basis

functions are zero outside of each element.

3.2 Backward Euler Method

To integrate Equation (3.4) in time, a Newton-like method, equivalent to taking a
single linear step at each iteration of a backward Euler scheme, is used. A single

iteration is given by

. . 1 ORy\ ! .
Uttt = Uy _<EMh+8—UZ) R, (U). (3.6)

A steady state solution is obtained using this scheme and increasing the time step,
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At, such that At — oo. Directly setting At = oo is equivalent to using Newton’s
method to solve R;,(U,) = 0. This approach is unlikely to succeed if the initial guess
is too far from the actual solution. Thus, Equation (3.6) is used so that interme-
diate solutions approximate physical solutions in a time evolution of the flow and

convergence is more likely.

3.3 Linear Solution Method

The time-marching integration scheme given in Equation (3.6) involves the solution

to a large system of linear equations in the form Ax = b at every time step, where

1 ORy, B " B m
A= EMh"‘a—.U_h, X—AUh, b—Rh(Uh> (37)

The matrix A is commonly referred to as the Jacobian matrix. For the DG discretiza-
tion, the Jacobian matrix has a block-sparse structure with N, block rows of size ny,
where N, is the number of elements in the tesselation 7}, and ny is the number of un-
knowns per element. In this case n, = ng * n,,, where ng is the size of the state vector
and n,, is the number of modes per state. n,, is a function of the solution order, p, and
the spatial dimension, as shown in Table 3.1. The block rows of the Jacobian matrix
contain a nonzero diagonal block, corresponding to the coupling between states within
each element, and n off-diagonal blocks, corresponding to the coupling between states
of neighboring elements. ny is the number of faces per element (for 2D and 3D, ny is 3
and 4 respectively). When the time step, At, in Equation (3.6) is small the Jacobian
matrix is dominated by the block diagonal and the linear system is relatively easy
to solve iteratively. Unfortunately, as the time step increases, the coupling between
elements becomes increasingly important and the linear system becomes more difficult
to solve.

Due to the size of the Jacobian matrix and its block-sparse structure, an itera-
tive method is used to solve the linear system. As the Jacobian is non-symmetric,

a restarted GMRES algorithm is used [12, 38, 44]. Restarted GMRES finds an ap-
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P N, 2D Ny 3D

0 1 1

1 3 4

2 6 10
(p+D)(p+1)  (p+1)(p+2)(p+3)

1% 2 6

Table 3.1: Number of modes per element, n,,, for a given solution order and
spatial dimension

proximated solution, X, in the Krylov subspace, K = {b, Ab, A%b,... A""'b}, that
minimizes the L? norm of the linear residual r = b — AX. The convergence of the
GMRES algorithm depends greatly on the eigenvalues of A [24, 38, 44]. Therefore, to
improve the convergence a preconditioner is used to transform the linear system from
Ax = b to a related system P71Ax = P~!b. In this work, an in-place Block-ILU(0)
factorization with line reordering [13] of the Jacobian matrix is used as the precondi-
tioner for the GMRES algorithm. Based on the success of implicit line solvers for both
finite volume and DG discretizations [15, 18, 28, 29|, a matrix reordering algorithm
based on lines of maximum coupling was developed by Diosady [13]. The reordering
algorithm involves the creation of lines of maximum coupling in the flows as presented
by Fidkowski et. al [18]. The elements within A are then reordered in the order that

they are traversed along each line.

In order to support the large number of elements used in 3D modeling and the
resulting linear system, a parallel implementation is necessary. The parallel imple-
mentation [12] involves partitioning the computational grid across multiple proces-
sors. As each processor maintains all elements in a partition, the partitioning is based
on breaking up the grid to minimize the number of faces dividing partitions, while
attempting to balance the number of elements on each processor. In particular, it
is important to balance the number of cut-cell elements due to their larger number
of quadrature points. Each processor also maintains ghosted data, corresponding to
neighboring elements on other partitions that are required for the local computation

of the residual and Jacobian matrix. The ghosted states are updated from the ap-
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propriate partition at the beginning of each residual evaluation. Communication is

performed using the Message Passing Interface (MPI).
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Chapter 4

Simplex Cut Cells

4.1 Introduction

For a higher order discretizations, the geometry must be represented at a higher order.
Furthermore, DG discretizations of the Euler equations are known to behave poorly
even for p = 1 solutions when the geometry is only represented linearly [4]. Many is-
sues arise in the generation of grids with higher-order geometry information [14]. One
of the most common problems when attempting to create a higher-order mesh out of
a linear mesh occurs when the higher-order surface pushes through an opposing face
as in Figure 4-1. A method to tackle the problem of generating higher-order meshes
is the cut cell method. Purvis and Burkhalter [34] were the first to consider a cut-cell
method. They started with a structured Cartesian mesh that did not conform to the
geometry and simply “cut” the geometry out. Cut cells allow the grid generation pro-
cess to become automated, taking a process which previously dominated the solution
procedure and making it a preprocessing step. However, with the cut-cell method the
body must be intersected with the background mesh and the solver must be able to
discretize on the arbitrarily shaped cells that result from this intersection. Purvis and
Burkhalter’s method used rectangular /box shaped cells from which the geometry was
cut out in a piecewise linear fashion. Although the linear intersections did not provide

higher-order geometry, Purvis and Burkhalter laid down the building blocks for future
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work with Cartesian cut cells.

/Linear element

Curved boundary

Figure 4-1: Example of a curved boundary pushing threw the interior edge of
a boundary element. Attempting to curve the boundary edge of
the element results in a negative Jacobian in the mapping of the
reference triangle to the curved element and leads to an invalid
mesh.

Unfortunately, Cartesian meshes add the constraint that the background mesh
must be isotropic and aligned to a fixed coordinate system. This results in a mesh
which may be far from ideal for many fluid dynamics problems due to the presence of
boundary layers, shocks, wakes, etc. To introduce anisotropic meshes, the background
mesh can be changed to a mesh of simplices (triangles or tetrahedra). Fidkowski [14]
introduced the idea of using an unstructured simplex mesh for the background mesh.
As in the Cartesian method, the computational mesh is built in a preprocessing step

by intersecting the background mesh with the geometry.

4.2 Geometry Definition

A discussion of the simplex cut-cell method is included here, but for more details
consult Fidkowski[14]. Three obstacles exist for the simplex cut-cell method: the
geometry definition, the intersection problem between the geometry definition and
the background mesh, and the ability to integrate over arbitrarily shaped cut cells.

The geometry definition must be:
e Watertight

e Easy to construct from a CAD geometry definition
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e Feasible to intersect with tetrahedra

e Accurate enough to efficiently support higher-order solutions

Many choices of geometry definitions exist which meet the above requirements, but
the method chosen was to subdivide the geometry into quadratic patches. Quadratic
patches were selected because they greatly reduce the number of patches needed to
accurately represent the geometry when compared to linear patches and allow for the
intersections of the patch and tetrahedron to be solved for analytically. Figure 4-2

shows an example of a quadratic surface representation of the rotor.

Figure 4-2: Example showing the quadratic patch representation of the rotor
studied in this work.

Evaluating the surface of a quadratic patch involves storing the 3D coordinates
of the six nodes of a quadratic patch and using quadratic interpolation to represent
the surface. Figure 4-3 shows a pair of quadratic patches in 3D space as well as the
reference space of a single patch and the node numbering used.

The surface of the quadratic patch can be written as

x(X) = Z¢j(X)Xj> (4.1)

where x = [z,y,2]7 is a vector in 3D coordinates on the surface of the patch, X =

[X,Y]" is a vector in the 2D reference space of the patch, x; represents the 3D, physical



<

(a) Reference triangle (b) Two adjacent patches

Figure 4-3: Example of two patches in physical space with a patch in refer-
ence space showing the node numbering (taken from [14]).

space, coordinates of the six nodes and the ¢;(X) are quadratic Lagrange interpola-
tion functions. To simplify the evaluation of the surface, the Lagrange interpolation
functions can be written as ¢; = RT P;R, where R = [X,Y,1]7 and P; is a 3 x 3 matrix

representing the Lagrange polynomials. For example ¢, initially written as
01(X) = 1—-3X —3Y +2X*+4XY +2Y?

can also be written as

2 2 —3/2 X
P (X) = [X Y 1} 2 2 —3/2 Y
-3/2 -3/2 1 1

The output of the intersection problem is a cut-cell mesh for the computational domain
computed from the background mesh, where elements completely contained within the
geometry are removed, elements completely contained in the computational domain
are untouched, and elements intersecting the geometry are appropriately cut. Figure

4-4 shows an example of an element cut by the surface geometry. The upper half of
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the tetrahedron is within the computational domain and forms the cut cell. The lower

half of the element is discarded since it lies within the geometry.

Tetrahedron

Quadratic-patch surface

(a) (b)

Figure 4-4: Example of a single cut tetrahedron and the resulting “wire
frame” construction of the cut cell (taken from [14]).

Figure 4-4 also alludes to a key portion of the cutting procedure. In Figure 4-4
(b) a “wire frame” of a cut element exists. This “wire frame” is composed of zero-
dimensional nodes and one-dimensional curves which result from the intersection of
the patches and the background tetrahedron. The one-dimensional curves are built
from the zero-dimensional intersection nodes, while the two-dimensional surfaces are
assembled from the one-dimensional wire frames. Finally, the two-dimensional surfaces

are assembled to make the cut cell.

4.3 Geometry-Mesh Intersection

One of the reasons quadratic patches were selected is that the intersection between
them and a tetrahedron face is a portion of a conic section (ellipse, parabola, hyper-
bola, etc.) within the reference space of the patch. Consider the face of a tetrahedron.

For a given point x to be inside the tetrahedron or on a face of the tetrahedron, it
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must satisfy
(x—qy) -ny <0, (4.2)

where qy is a point on the tetrahedron face f and n; is the outward pointing normal
again for the face f, for all four of the tetrahedron faces. If the above inequality is not
satisfied for any of the faces of a tetrahedron the point lies outside the tetrahedron.
This test can be used on the quadratic patches themselves as, from Equation (4.1),

the points on the quadratic patches can be expressed as
6 6
x = Y ¢,X)x;=>_ (R"PR)x;. (4.3)
=1 j=1
If Equation (4.3) is substituted in Equation 4.2 the result is
6
RT (Z(Xj'nj)Pj> R—q;-n; <0
j=1

Then using the fact that R = [X,Y,1]7 and defining E; = [0,0,0;0,0,0;0,0,1] the
above inequality can be written in quadratic form in the reference space of the patch

as

RT'S;R < 0 (4.4)

6
> (xj-1;) Py — (a5 - ny) By
j=1

Sy

Equation (4.4) must again be satisfied for all four of the faces of the tetrahedron for a
reference patch point to lie inside the tetrahedron or on a face. Figure 4-5 shows the
conic sections that result from mapping the faces of a tetrahedron into the reference

space of a patch.

Since Equation (4.4) is an inequality there is one side of each conic section which
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Face 1

Face 3

Figure 4-5: Example of a patch in reference space showing the conics which
result from mapping the tetrahedron faces from physical space
to the reference space of the patch (taken from [14]).

represents the valid portion of the patch in reference space. In Figure 4-5, this is
represented with arrows attached to the conic sections pointing into the valid region
of the patch. Also, note that any area outside the reference triangle is not on the patch.
Therefore, the shaded region represents the portion of the patch that intersects the

tetrahedron.

4.4 Cut-Cell Integration

The final obstacle for implementing the cut-cell mesh generation technique is the
ability to accurately integrate on the arbitrarily cut elements which result from the
intersection problem. The higher-order DG discretization requires accurate integration
over the volume of the elements and area of the faces. The idea for integrating over the
cut element’s faces is to “speckle” sampling points in the area and apply the divergence
theorem to compute integration weights associated with each point. These “speckled”

points are a randomly chosen set of N4 points, x,, which are given weights, w,,
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therefore enabling quadrature like evaluation of integrals, such that

Nquad

/Q FA0~ Y w,fixy),

q=1

where f(x) is an arbitrary integrand and (2 is an arbitrary enclosed area or volume,

like the one in Figure 4-6.

(a) Tensor-product Lagrange (b) Sampling point selection
functions, ®;(x)

Figure 4-6: (a) Definition of the ®;(z) functions for use in defining the ba-
sis, (;(x), for integrating on the irregularly-shaped shaded area.
(b) Tlustration of the ray-casting procedure for sampling point
selection. (taken from [14]).

The quadrature weights are determined by projecting the integrand onto a set of
Npusis higher-order basis functions (;(x). These new basis functions are specifically
chosen to allow for the evaluation of the integral fQ (i(x)dS2 to be easy. Specifically,

the chosen (; are
G = V- (xPi(x)), (4.5)

where the ®;(x) are higher-order Lagrange basis functions on the bounding box of the
arbitrary area as seen in Figure 4-6 (a). This specific construction of ¢; allows for the

integral to be easily evaluated by applying the divergence theorem. Thus fQ Gi(x)dQ2
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becomes |, oo N - XPi(x)dS, where 0Q is the boundary of the arbitrary area or volume,
), and n is the outward pointing normal. The boundary integral is then computed
using the edge integrals. For the 2D surfaces, the 1D edge integral rules come directly
from Gauss Quadrature points distributed over the edge, as can be seen in Figure
4-6(b).

The projection is performed using a least squares minimization of the projection

error,

Nquad Nbasis

E* = Z Z FiGi(xq) = f(x4)

q=1 i=1

F; is found using a QR factorization of the matrix ;(x,) (which is Nyyed X Npasis),

F, = (R_l)ij (QT)jq f(Xq), where Ci(xq> = Qg Rji

Finally, the integral of an arbitrary integrand f(x) becomes

Nbasis Nquad

[stie =~ Y F [ a0 = Y )@y (7T, [ Gixin. (40
= Wq = qu (17'2_,11)]Z /S; CZ(X)dQ

Therefore, for each arbitrarily cut element the quadrature-like weights can be evaluated
once, in a preprocessing step, and can then be used to evaluate any integrand f(x).
As noted, the sampling points are chosen randomly in the interior of the area or
volume, however, their selection greatly influences the conditioning of the QR factor-
ization of (;(x,) used to solve for w,. Many methods exist for selecting the sample
points as the only real requirement is that they must be inside the area/volume.
One approach would be to uniformly fill the bounding box and then determine if each
point was inside or outside the area/volume. This would have the benefit of preventing
clumping of sampling points which directly leads to poor conditioning. Unfortunately,

this method becomes extremely inefficient when the area/volume is small compared to
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that of the bounding box. Therefore, in this work the method used is to cast rays from
the boundary sampling points which are the 1D quadrature points bounding areas or
2D sampling points bounding volumes. Figure 4-6 (b) shows an example of one of
these rays. The sampling point is then randomly cast along the ray between its origin
and where it exits the area/volume. Example sampling points can be seen in Figure
4-7 for a 2D cut-cell computation for a NACA 0012 airfoil. Figure 4-7 also exemplifies
the over sampling that is currently used to ensure accurate integration within the cut
elements by spreading points throughout the element. The selection of the sampling
points is an area of future work for the simplex cut-cell method.

Integration over the cut element volumes is simply an extension of the integration
procedure over the cut element faces. Although, the sampling points over the area faces
must be derived first so as to give origins to the ray casting method for “speckling”

points within each element’s volume.

4.5 Merging Cut Cells

During the course of this research, poor iterative convergence was observed in regions
of the mesh where small cut cells neighbor larger cells. Small cut cells are typically
formed when just the corner of a background element remains in the computational
domain, like the 2D example in Figure 4-8(a). In 3D cut-cell cases, the ratio of a small
cut cell volume to the volume of one of its neighbors can be O(10712).

The small cut cells adversely manifest themselves by generating large updates from
the solution to the linear system, Ax = b. Even when the residual is O(107%), it is
common for some components of x = AU, to be O(1). When these large updates are
used to advance the state, limits are placed on the fraction of the update to prevent
the state from going unphysical. In another attempt to prevent the solution from
becoming unphysical, At can be lowered. The result of lowering At is that Newton-like
convergence is never achieved and the simulations become extremely computationally

expensive.
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(a) Entire airfoil

(b) Leading edge (c) Trailing edge

Figure 4-7: Example of “speckled” points used for integration rules for a
NACA 0012 airfoil (taken from [14]).
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(a) Example small cut cell (b) Example merged cut cell

Figure 4-8: Example of a small cut cell, A, and the merged cut cell, C.

An approach to improve the discretization for small cut cells is to merge the small
cut cell with a large neighbor. For example, returning to Figure 4-8(a), if the internal
face between elements A and B is removed, the result is the new cut element C' in
Figure 4-8(b).

In practice using this method of merging small cut-cell elements has improved the
convergence of 3D Fuler cases. Figure 4-9 shows the residual history for a p = 2
solution for the rotor in hover case of interest in this work. With no merging the
residual drops to around 5 x 10~7 and then hovers there for quite a while and in this

case happens to eventually converge. If the volume ratio is defined as

volume of element &
VR - . 9
volume of largest neighbor to x

then, as Figure 4-9 shows, if every element with a volume ratio less than 107% is merged
into its neighbors the residual converges to machine zero with few problems. For the

extent of this work all elements with a volume ratio less than 107 are merged.
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Figure 4-9: Plot of convergence history for solutions using different volume
ratios to base merging on.
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Chapter 5

Output-based Adaptation

5.1 QOutput-based Error Estimation

The purpose of adaptation is to minimize the cost of a computational simulation by
locally enriching the computational domain in regions which most adversely affect the
accuracy of the final solution while coarsening the grid in more benign regions. One
of the difficulties in executing adaptation is a lack of reliable error indicators. Many
schemes rely on adapting on a variety of physical flow features, such as stagnation
points, shock waves, or vortex cores. These schemes often look for large flow gradients
and assume that areas of large gradients correspond to regions of large errors in the
final solution. One problem with this approach is that refinement of a specific flow
feature does not guarantee any level of global error.

This work relies on an output-based error estimation method that has been studied
extensively in the literature [3, 5, 19, 22, 26, 27, 33, 46]. The method uses an error
estimation and grid adaptation scheme specifically designed for improving the accuracy
of a functional output, in this case the lift caused by the rotor. Output-based error
estimation improve upon local error criteria because it captures propagation effects,
by linking local residuals to outputs through the use of the adjoint solution.

The adjoint can be interpreted as a Green’s function that relates the residual of a

PDE to an output derived from the solution to the PDE. Defining the PDE solution
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symbolically as R(u) = f then for a perturbed solution u + du, the change in the
output J(u) is

T(u+ 6u) — T(u) = / 4 (R(u + 6u) — R(w))

where ¢ is the adjoint. Through integration by parts, a PDE can be defined for the
adjoint. For application to the DG discretization, a system given by a semi-linear

form can be considered to find uy € Vy, such that
RH(uH,VH) =0, Vvy € VH,

where Vg is an appropriate finite dimensional functional space. Letting u € )V be
the exact solution of the underlying problem of interest, then for a general output of

interest, J(-), the adjoint or dual problem is: find ¢) € V such that
Ru(u,ug;v,¥) = J(w,ug;v), ¥YveVy+V,

where Ry and J are mean-value linearizations given by

1
Ru(w,uy;v,w) = / Ry [0u+ (1 —0)uy| (v, w)ds,
0

J(w,ug;v) = /Oj’[9u+(1—9)uH](v)d9,

and v,w € Vg + V. Thus, using v=u — uy,

RH(U,UH;U—UH,W) = RH(uaW)_RH(uHaW)7

J(wug;u—uy) = J(u)—J(ug).
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Assuming that Ry(u,w) =0, Vw € Vg + V, the output error can be expressed as

Ju) —Juy) = J(u,ug;u—upy)
= Rp(w,uy;u—uy,1)
= 0—Ry(ugy,)
= —Rpu(ug, ¥ —vYg), (5.1)

for all vy € V. Therefore, if the exact adjoint solution is known, the error can be
computed exactly by evaluating the primal residual. On the other hand, by defining

the adjoint residual,
ﬁﬁ(u, uy;v,w) = Ry(w,uy;v,w) — J(w,uy;v), v,weVg+V, (5.2)
the output error can also be expressed in terms of the exact primal solution as

j(u) - j(uH) = ﬁH(U, Ug;u — uH7¢H> - ﬁ%(uv Upg;u — U—H7¢H)
= Ru(w,vn) — Ru(um, vr) — Ry(w, ug;u — ug, ¥y)

= _R’L[ﬁ{(ua uH;u_uHa,lva)? (53)

for all Yy € Vy.

Since u and v are not known in general, two approximations are used to ease the
computational expense of the output error estimates. The first approximation replaces
the exact errors, u — uy and @ — ¥y, with u, — ug and ¢, — g, where u, and ¥,
come from a reconstruction of uy and ¥y in an enriched space V. In this work, the
mesh is fixed while V), is constructed from Vy by increasing the interpolation order to

p+ 1. See Lu [26] and Fidkowski[17] for more information on the reconstruction.

The second approximation replaces the exact mean value linearizations with lin-
eralizations about ugy. To help this approximation, ¥y is set to the discrete adjoint

solution. In more detail, vy satisfies Rﬁ(uH;vH,wH) = 0 for all vg € Vg where
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R%(uH; v, w) is the adjoint residual based only on linearizations about uy:
RY (up; v, w) = Ry[ug](v,w) — T'[ug](v), v,w e Vy+V.

Therefore, the error can be approximated with either the primal or adjoint residual

from the enriched space V), as:

Ju)—J(ug) =~ —Rp(up;vn —¢n) (5.4)
J) —J(ug) =~ —Ry(um;w, —uy,¥n). (5.5)

Using these two estimates for the error, a local error indicator can be constructed

on each element by averaging Equation (5.4) and (5.5). Thus, for each element s, the

). (5.6)

The global error is approximated as e = ) _¢,. This error estimate is not a bound

error 1s

€ —

<'Rh (ug, (Vn — Vu)lx)

i \R;‘: (s ( — 1011) o )

N | —

on the global error but it has proven sufficient to drive adaptation.

5.2 Grid Adaptation

The adaptation strategy takes the localized error estimate and modifies the compu-
tational mesh in an attempt to decrease and equally distribute the error. This work
uses h-adaptation at a constant p. Using this strategy does not take advantage of
the benefits of hp-adaptation but avoids the added complexity of making regularity
estimates involved in p-adaptation.

For three dimensional flows, the h-adaptation strategy consists of mesh optimiza-
tion, referring to the decision on which elements to refine or coarsen and/or the amount
of refinement or coarsening. The mesh optimization used in this work is based on Fid-

kowski [17].
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Mesh optimization has critical significance for flow solutions. Too little refinement
at each adaptation iteration results in an unnecessary number of iterations. On the
other hand, too much refinement may result in an overly-refined mesh with an un-
necessary computational cost. In order to equally distribute the error on the adapted
mesh, the number of fine mesh elements, Ny, or the sum of n,, the number of fine
mesh elements contained in element x, over all the elements in the current mesh, must
be predicted using the local error estimate. n, does not need to be an integer and
n, > 1 corresponds to mesh refinement. If the current size of element x is denoted by
the reference length h® and the requested element size is given by the length h, then

n, can be approximated as

e (1) -

where dim is the mesh dimension. The current size, h¢, is computed from the singular

values of the mapping of the unit equilateral tetrahedron to the element .

In order to satisfy error equidistribution, each fine-mesh element is given an error
of eg/Ny, where e, is the global error tolerance. This means that each element & is
allowed an error of n,eo/Ny. An expression for n,, can then be obtained by relating the
changes in element size to expected changes in the local error. An a priori estimate

for the output error gives

€, h\"™

e ) 5.8

€ (hc) (58)
where €¢ is the current error indicator, €, is the expected error indicator and r, is
the expected convergence rate of the error. In this work, r, is assumed to be at
least p + 1 away from geometric singularities (i.e. corners). For cut-cell elements
that contain geometric singularities, such as the trailing edge, and adjacent elements,

the convergence rate is limited to 1. This results in the isolation of the geometric

singularities in fewer adaptation iterations.
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If the allowable error and the expected error are equated the resulting relationship,

Tk
€p c h
Neg— = €l — 5.9
v a(y) (5:9)
———
allowable error a priori error estimate

expresses % in terms of n;, and yields a correlation between N; and n,. For example,

in two dimensions Equation (5.7) becomes

Substituting this into Equation (5.9),

X =
&
M

T
T3 K

€0 c 1 %i =
Ng——=—FE¢ — n = a7
an " Ny EQ/Nf

Given Ny =" _n,,

Ny = z}; [(60;%%) 13] . (5.10)

If all the 7, are equal Equation (5.10) can be solved directly for N;. Otherwise, it can
be solved iteratively. With N; known, Equation (5.9) yields n,, from which the h are
calculated using Equation (5.7). Thus, the output error estimate in conjunction with
the mesh optimization step provides the remaining piece of information necessary to
fully specify the reference length, h, for all the elements in the computational domain.
Since tetrahedra completely contained within the geometry are removed from the cut-
cell data structure, they do not possess an error estimate or an associated metric. On
these elements, a grid implied metric is used, which attempts to keep element size

approximately constant.

During each adaptation iteration, mesh optimization is performed after each output-
based error estimate. The adaptation cycle stops when the total error estimate is less

than the requested tolerance, e = ) €, < eo.
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When the error estimate is far from the target estimate, ey, as would arise with
a coarse mesh where the solution and the error estimate may have significant errors,
attempting to achieve an error of ¢y in one step can be overly aggressive leading to an
adaptation process with poor robustness. To alleviate this problem, the desired error
can be bounded from below by n,¢ where 7, is an aggressiveness parameter. Thus,
when the estimated error (scaled by 7, ) is larger than the desired error, adaptation will
be slowed. However, if 1,6 bounds the desired error, the convergence of the adaptive
cycle could stall as the error estimate, €, approaches the requested error tolerance, eq.

To address these issues the requested error level, ey, in Equation (5.9) is modified

to €,

éO = maX(UaQ 77t€0)7

with both 0 < n, <1 and 0 <7 < 1.

A value of 7, close to one indicates unaggressive adaptation and typically leads
to a large number of adaptation interations to converge, while a value close to zero
indicates aggressive adaptation, but has the danger of over-refinement. 7, controls the
targeted error level and prevents stalling of the adaptation convergence. The values
used for these parameters in this work are 7, = 0.7 and n, = 0.2

During each iteration of the adaptation cycle TetGen [40] preforms the re-meshing.

Currently, TetGen only supports isotropic mesh refinement.
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Chapter 6

Results

The output-based adaptive higher-order method was validated by comparing results
for an isolated rotor in hover against the standard Caradonna and Tung experiments
for an extruded NACA 0012 rotor[11]. The specific conditions are My, = 0.439 and
6. = 8°. The goal of this is to demonstrate the ability to accurately compute the
thrust of the rotor by matching the loading distribution along the chord and span. Of
secondary interest is the ability to capture the rotor tip vortex through output-based
adaptation targeting thrust. Comparisons of the adapted meshes and the estimated
error convergence histories are given in terms of degrees of freedom (DOF) using
interpolation orders p = 0 to p = 2. The degrees of freedom count does not include
the equation set specific unknowns, typically 5 for the 3D Euler equations.

Figure 4-2 shows the quadratic patch representation of the wing geometry. 6,976
patches are used, spaced evenly along the span, and distributed along the chord to
favor the leading and trailing edges. The initial background mesh in Figure 6-1(a) is
created using TetGen. An initially arbitrary set of elements filling the half-cylinder
background volume are adapted on. The adaptation indicator used to refine the mesh
is the number of quadratic patches from the geometry representation intersecting or
contained in each element. This geometric adaptation is performed to ensure sufficient
refinement of the mesh around the geometry to provide a valid initial solution. As the

output of interest is thrust, refinement is expected primarily along the leading and
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trailing edges of the rotor. The adjoint solution in Figure 6-2 (a) shows the adaptation
scheme’s desire to refine the mesh not only on the surface of the geometry but also in
the region upstream of the rotor surface. Also of note, in Figure 6-2 (b), is the presence
of an adjoint wake that lies above (and thus upstream) of the rotor. The result of
three adaptation cycles can be seen in Figure 6-1 (b) where many more elements have

been placed on the rotor surface.
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(a) Initial mesh with (b) Mesh with Ngjen, = 34,831
Netem = 11,664

Figure 6-1: Initial mesh and a mesh resulting from three adaptation cycles
viewed at r/R = 0.80.

Adaptation runs were performed for p = 0, 1, &2. Figure 6-3 shows the convergence
of the estimated output error versus degrees of freedom for all three of the solution
orders. Convergence with p = 0 is very slow and would take many orders of magnitude
more degrees of freedom to match the final error estimates of either p = 1 or p = 2.
The magnitude of the final error estimate per degree of freedom points towards p = 2
being the better solution procedure than p = 1, but this does not take into account
the robustness of the process which currently favors p = 1. Due to the impact of the

small cut cells, even when merging is used, Newton-like convergence is rare for p = 2
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(a) Slice at /R = 0.89 of (b) Adjoint solution for
the adjoint solution for mass directly behind the
energy trailing edge

Figure 6-2: Adjoint solution for the p = 2, DOF = 2,524,710 mesh.

solutions. Figure 6-3 shows that the p = 1 solution with N, = 750, 537 has a similar
error to the p = 2 solution with Ny, = 58,636, but as Figure 6-4 shows the p =1

solution demonstrates better convergence characteristics.

Figure 6-5 shows the convergence of the computed coefficient of thrust versus the
degrees of freedom. Figure 6-5 (a) shows that the p = 1 and p = 2 solutions have not
yet converged to the same value for coefficient of thrust. However, when the output
error estimate is included forming an estimated bound on the coefficient of thrust, seen
in Figure 6-5 (b), it is still reasonable to assume that the p = 1 and p = 2 solutions
are converging to the same value.

The improvement of surface pressure due to adaptation and polynomial order at
r/R = 0.80 and /R = 0.96 is shown in Figure 6-6 and 6-6, respectively. Although the
finest p = 1 mesh results in more degrees of freedom than the finest p = 2 mesh, the
p = 2 solution does a better job resolving the flow, particularly at the suction peak at
the leading edge.

In order to compare the final output of the adaptation cycle to experimental data,

Figure 6-8 shows the computed coefficient of pressure results from the finest p = 2
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Figure 6-3: Plot of the estimated output error for the coefficient of thrust
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Figure 6-4: Convergence characteristics of a p = 1 and a p = 2 solution with
similar error. Demonstrates the inefficiencies which still exist
with p = 2 cut-cell solutions.
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Figure 6-6: Selected coefficient of pressure plots at /R = 0.80 for the p = 0,
p =1, and p = 2 solution.
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Figure 6-7: Selected coefficient of pressure plots at /R = 0.96 for the p = 0,
p =1, and p = 2 solution.

59



solution at all five cross-section locations where experimental data exists. The agree-
ment between the experimental data and numerical results is generally good for the
four outboard stations along the span and compares well with results for the same case
presented by Agarwal and Deese [2] and Strawn and Barth[43]. There is a general lack
of agreement in the C,’s on the leading edge at /R = 0.5. This is very different than
the results from Agarwal and Deese who for the same case actually over predicted the
AC, at r/R = 0.5. The cause of this underprediction is unknown and an area for
future work.

Also of interest is the ability for the higher-order DG discretization and output-
based adaptation to capture the rotor tip vortex. Figure 6-9 and 6-10 show the
evolution of the rotor tip vortex, represented using an iso-surface of entropy, as the
adaptation cycle progresses. The higher-order, p = 2, solution does a much better
job capturing the tip vortex. For around three million degrees of freedom the p = 2
captures three and a half revolutions of the tip vortex while the p = 1 solution captures
about two revolutions of the vortex. The results of the output-based adaptation cycle
are comparable to results presented in the literature. Canonne et al. [9] used an
adaptation indicator based on the norm of the vorticity to preserve 380 degrees of the
tip vortex using 600, 000 degrees of freedom with a finite volume discretization. This is
better than what the p = 2 solution can do for 586, 360 degrees of freedom. Figure 6-10
indicates that only about 120 degrees can be preserved. On the other hand, Shaw et
al. [39] captured three turns of the tip vortex again using a finite-volume discretization
on a mesh with three million degrees of freedom and an adaptation scheme driven by
an analytic description of the tip vortex path based on Cp, while the p = 2 solution
with 2,524,710 degrees of freedom appears to capture three and a half revolutions.

It appears that the integrity of the tip vortex is preserved mainly via the higher-
order method as opposed to an increase in element density in the tip vortex region.
Figure 6-11 and 6-12 show the mesh and contours of entropy half a chord downstream
of the trailing edge of the rotor. In neither figure is it possible to see an increase in

element density around the contours that surround the tip vortex.
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Figure 6-8: Numerical results and experimental data for the coefficient of
pressure on the rotor surface for My, = 0.439 and 0. = 8°.
Results are taken from finest p = 2 solution with 2,524,710
degrees of freedom from the adaptation cycle.
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(a) DOF = 46,656, Nejem = 11,664 (b) DOF = 106,120,
Netem = 26,530

(c) DOF = 255,464, (d) DOF = 476,312,
Notem = 63,866 Notem = 119,078

(e) DOF = 1,085, 396, (f) DOF = 3,002, 148,
Netem = 271,349 Noejem = 750,537

Figure 6-9: Evolution of the rotor tip vortex, viewed as iso-surfaces of en-
tropy, for the p = 1 adaptation cycle.
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(a) DOF = 116,640, (b) DOF = 239,060,
Nejem = 11,664 Netem = 23,906

(c) DOF = 348,310, (d) DOF = 586,360,
Nojem = 34,831 Noatem = 58, 636

(e) DOF = 1,090, 820, (f) DOF = 2,524,710,
Nelem = 109, 082 Nelem = 252,471

Figure 6-10: Evolution of the rotor tip vortex, viewed as iso-surfaces of en-
tropy, for the p = 2 adaptation cycle.
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Figure 6-11: Selected p = 1 meshes and entropy contours on a slice half a
chord downstream from the trailing edge of the rotor.
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Figure 6-12: Selected p = 2 meshes and entropy contours on a slice half a
chord downstream from the trailing edge of the rotor.
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Chapter 7

Conclusions

This work demonstrates the use of an output-based mesh adaptation method for high-
order discontinuous Galerkin discretizations. In order to make the adaptation proce-
dure more autonomous while supporting the higher-order needs of the DG discretiza-
tion, a simplex cut-cell method is used to provide meshes which contain higher-order
geometry information. The inclusion of the cut-cell technique is an enabler for the
adaptation process, allowing the generation of higher-order meshes without user in-
volvement based on the requested mesh size parameters from the output-based error
estimation.

The results demonstrate that the DG discretization is a good foundation to model
rotary-wing aerodynamics. Even though the Euler equations are used in this work,
good agreement between the computed and experimental results is seen. Using the
output-based adaptation method convergence of a bound on the coefficient of thrust
is established. Compared solely on a degree of freedom count the p = 2 adaptation
cycle demonstrates better convergence than the p = 1 solution, however convergence
issues remain for p = 2 solutions with small cut cells.

Also explored in this work was the capability of a higher-order method combined
with output-based adaptation to preserve the tip vortex over large distances. Although
the output of interest used in this work, thrust, gives no guarantees on the importance

of the rotor tip vortex, the adjoint solution appears to highlight the vortex wake and
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with adaptation the tip vortex is increasingly preserved. With the adaptation cycle, a
final p = 2 solution is produced that contains less than three million degrees of freedom
and is capable of preserving the rotor tip vortex for three and a half revolutions.
Much work remains to be done to make the cut-cell mesh generation technique
presented in this work more functional. The impact of small elements on convergence
and solution quality needs to be studied. As the robustness of the cut-cell technique
improves, a logical next step would be to expand the output-based adaptation process
to include anisotropic adaptation and solve the Navier-Stokes equations for an isolated

rotor in hover.
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