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Abstract

A multilevel method for the solution of systems of equations generated by stabilized Finite
Element discretizations of the Kuler and Navier Stokes equations on generalized unstruc-
tured grids is described. The method is based on an elemental agglomeration multigrid
which produces a hierarchical sequence of coarse subspaces. Linear combinations of the ba-
sis functions from a given space form the next subspace and the use of the Galerkin Coarse
Grid Approximation (GCA) within an Algebraic Multigrid (AMG) context properly defines
the hierarchical sequence. The multigrid coarse spaces constructed by the elemental agglom-
eration algorithm are based on a semi-coarsening scheme designed to reduce grid anisotropy.
The multigrid transfer operators are induced by the graph of the coarse space mesh and
proper consideration is given to the boundary conditions for an accurate representation of
the coarse space operators. A generalized line implicit relaxation scheme is also described
where the lines are constructed to follow the direction of strongest coupling. The solution
algorithm is motivated by the decomposition of the system characteristics into acoustic and
convective modes. Analysis of the application of elemental agglomeration AMG (AMGe)
to stabilized numerical schemes shows that a characteristic length based rescaling of the
numerical stabilization is necessary for a consistent multigrid representation.
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Chapter 1

Introduction

Rapid advances in unstructured mesh methods for computational fluid dynamics (CFD)
have been made in recent years and, for the computation of inviscid flows [2—4], have
achieved a considerable level of maturity. Viscous flow technology is also rapidly develop-
ing and the use of unstructured grids has been started [5-7]. Unstructured meshes offer a
practical means for computation and have the advantage of providing both flexible approx-
imations of the domain geometry and easy adaptation/refinement of the mesh.

Accurate and efficient solutions to the compressible Navier-Stokes equations, especially
in the turbulent high Reynolds number limit, remains a challenging problem due in part
to the myriad of associated length scales required to properly resolve flow features. This is
especially true in the boundary layer regions which are characterized by strong gradients
in the normal direction and relatively weak streamwise variations. In order to accurately
resolve the boundary layer in a computationally efficient manner, grid anisotropy is em-
ployed. This introduces two problems that lead to the severe deterioration of many existing
numerical algorithms. The first is the increased stiffness of the discrete problem and the
second is the increase in the number of required mesh points which strains existing compu-
tational resources for problems of practical interest. Hence, the efficiency of current solution
methods remains a critical problem.

A brief review of the state-of-the-art in viscous flow technology is made by considering
two solution algorithms for practical aerodynamic applications. The first is by Pierce et
al [8] which is a structured grid solver that employs a conservative cell-centered semi-discrete

Finite Volume discretization with a characteristic based matrix artificial dissipation. Turbu-

19



20 CHAPTER 1. INTRODUCTION

lence is accounted for by the implementation of the Baldwin-Lomax and Spalart-Allmaras
one-equation turbulence models. The solution scheme is a J-coarsened non-linear multigrid
scheme with a point implicit block-Jacobi preconditioner. For the range of problems tested,
the convergence rate is roughly of the order of 0.94. The second flow solver considered is
by Mavriplis [9] which is an unstructured grid solver that employs a conservative vertex-
centered Finite Volume discretization with a matrix-based artificial dissipation and the
Spalart-Allmaras one-equation turbulence model. The solution scheme is a semi-coarsening
non-linear multigrid scheme with a hybrid point/line implicit block-Jacobi preconditioner
and for the range of problems tested, the convergence rates ranged from 0.78 to 0.965.
These convergence rates are a far cry from the ideal multigrid convergence rate of 0.1 which
has been theoretically proven and demonstrated for elliptic symmetric operators.

While these schemes represent an improvement over standard multigrid implementations
that typically achieve convergence rates of 0.99, it is still not fully clear why optimal rates
are not achieved. However, one conjecture that can be made is due to the common point
between these schemes which is that they are non-compact schemes i.e they have extended
stencils. The computational costs of evaluating and/or storing the flux Jacobians or non-
linear residuals for a non-compact formulation typically results in these schemes employing
a reduced order approximation that may lead to a convergence slowdown. Mavriplis [9] has
conducted a careful study of the use of lower order approximations in multigrid solutions
for Finite-Volume discretizations of the Euler and Navier-Stokes equations. He concludes
that any improvement in the multigrid components will have little effect and the only way
to achieve better convergence rates is through better full Jacobian approximations. In
contrast, the Finite Element Method (FEM) offers better alternatives. FEM formulations
offer advantages which are crucial to the development of an efficient solution scheme. Some

of these advantages include

e Compact scheme: FEM is a compact scheme which results in a nearest neighbor
stencil. This enables an exact derivative for the Jacobian matrix to be taken without

any approximations.

e Higher order formulations: FEM formulations allow for an easy extension to

higher order formulations.

e Variational structure: FEM features a rich variational structure for mathematical

analysis such as error estimation.
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e Grid distortion: FEM formulations also allow for more accurate interpolation within

the computational cells in the presence of strong mesh anisotropy.

However, a current problem with FEM discretizations is that existing solution methods
are typically slower and more memory intensive than for Finite Volume discretizations.
However, the properties of the FEM method, in particular the compactness for higher order
discretizations, we believe are critical to the future development of an accurate and efficient
method for solution of the Navier-Stokes equations. In this thesis, we will present an
Algebraic Multigrid method for solving stabilized FEM discretizations of the Navier-Stokes

equations. Specifically, the contributions of this thesis include:

1. Development of a fast solution method for Euler and Navier-Stokes equations for

non-trivial flows.
2. Implementation of Algebraic Multigrid within a stabilized Finite Element context.

3. Construction of improved multigrid components for convection-dominated flows.

1.1 Multigrid and Preconditioned Krylov Methods

Discretization of the governing partial differential equations on the mesh gives rise to large
non-linear systems of equations such that for 3D problems, the solution of these large
discrete problems is rendered intractable for direct solution methods. As a result, iterative
solution methods based on Krylov subspace methods [10-12] and/or multilevel methods
[9,13], which include multigrid and domain decomposition methods, are attractive.
Subspace methods can be very efficient methods but suffer from a dependence of the
convergence on the scaling of the eigenvalues with mesh size. This shortcoming may be
ameliorated by the use of a suitable preconditioner [14,15] and have been shown to be
effective for inviscid calculations of the Euler equations. On the other hand, for elliptic
operators, multigrid methods can provide mesh independent convergence rates [16-22] and
offer good scaling of the compute time as well as data storage requirements. Even though
there has been no generalized extension of the mesh independent convergence proof for
systems with hyperbolic components, multigrid methods have been effectively applied to
the Euler equations [23,24] and have remained a popular approach for the Navier-Stokes

equations [13,25,26]. Reusken [27] shows a grid independent convergence proof for a Finite
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Difference discretization of a 2D model convection-diffusion problem under some simplified
conditions using linear algebra arguments. For some simple cases, Roberts et al demonstrate
Textbook Multigrid Efficiency (TME) in the computation of the steady incompressible Euler
equations [28] and Thomas et al have also demonstrated TME for the steady compressible
Navier-Stokes equations [29]. TME here, is defined by Brandt [30] as solving a discrete
PDE problem in a computational work which is only a small (less than 10) multiple of the

operation count in the discretized system of equations itself

In general, problems for which subspace methods perform well such as elliptic problems,
are also problems on which standard multigrid algorithms perform well. For tougher prob-
lems such as the Navier-Stokes equations, both methods suffer a significant increase in the
work required for convergence. However, multigrid remains a more attractive option due to
the scaling of the computational resources required. For example, in a viscous computation
using an implicit discretization, the size of the system matrix which is typically sparse, is a

constant multiplied by N, where N is the number of unknowns.

For comparison, a much favored Krylov subspace method for this type of computation
is GMRES, with an Incomplete LU (ILU) preconditioner [7,31-33]. Any Krylov subspace
method needs to store a set of search space vectors which is typically of the order of 40 to 50
while the cost of the ILU factorization is of O(N). The storage requirements for multigrid
methods however are bounded by the complexity of the coarsening procedure such that
even in the worst case scenario of a 2:1 coarsening ratio on the multigrid coarse spaces, the
total storage for all the coarse space matrices is less than that for the fine mesh matrix. Let
7 < 1 be the ratio of the total multigrid coarse space matrix storage to the fine mesh matrix
storage. Also, let KN be the storage requirements for the Krylov search space vectors. A

direct comparison of the storage cost then gives

CN Fine grid sparse matrix
rCN C id matri
MULTIGRID storage cost = " .oarse .grl ma. Hees
+ N Fine grid solution array

+ rN Coarse grid solution arrays
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CN Sparse matrix
N luti
GMRES/ILU cost = { Solution array
+ CN ILU
+ KN Krylov vectors
MULTIGRID  (C+1)(1+7)
GMRES/ILU ~ (2C+K +1)
2(C +1)
= 20C+1)+(K-1)
< 1

Hence, a direct comparison of the computational resources shows that a multilevel ap-
proach is more attractive provided that the convergence rates are compared on an equal
basis. Krylov subspace methods may also be implemented in matrix free form [34] but the
more efficient preconditioners such as SSOR and ILU can no longer be used. Multilevel
methods, however, may be used as preconditioners for Krylov subspace iterative solvers
which provides a powerful and flexible framework for computation. Another added benefit

of this is the possibility of reducing the number of Krylov search space vectors.

1.2 Multigrid

The multigrid method essentially considers a decomposition of the solution error into rough
error components, which cannot be resolved on a coarser grid without aliasing, and the
complementary smooth error component which can be resolved on the coarser grid. Given
a hierarchical sequence of successively coarser grids, a recursive partitioning of the solution
error may be made amongst these grids such that the associated error components on each
coarse grid effectively form a basis for the smooth error component on the finest grid. The
partitioning of the error is achieved through a set of interpolation operators for the transfer
of error components between the spaces. The crux of multigrid methods is the elimination
of the rough error modes by means of a relaxation scheme on the current mesh. Hence,
the efficiency of the multigrid performance is dependent on the synergy of the relaxation
scheme with the coarsening algorithms.

Structured meshes have the advantage that the coarse spaces may be naturally defined
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using the fine mesh. However, unstructured meshes do not have a natural grid hierarchy
and as such introduce additional complexities such as proper identification of the coarse
grid problems. Some of the geometric methods for the construction of coarse spaces for
unstructured meshes include the a-priori generation of independent coarse grids which are
overset [35] and the subsequent construction of piecewise interpolants between the grids.
This could be advantageous since the same grid generator can be used for all the grids.
However, since no relationship exists between the fine grid nodes and the coarse grid nodes,
the work involved in computing the interpolants will be O(N?) [18]. This can be reduced
to O(N) using fast graph traversal algorithms [36]. In contrast to this, one may consider
the first mesh as the coarsest mesh and simply refine the elements in order to obtain a finer
mesh. This leads to a set of coarse spaces which are nested and for which interpolation
operators may be easily defined. One serious drawback of this method is the dependence
of the fine grid distribution on the coarse levels. Another approach is based on a nodal
decimation technique which involves selection of a vertex subset and retriangulation. The
selection process is typically based on the fine grid geometry and depends on some pattern
in the fine grid [37,38].

For numerical discretizations of the Euler and Navier-Stokes equations, one fundamen-
tal cause of degradation in standard multigrid algorithms is the decoupling of error modes
in one or more coordinate directions. Navier-Stokes computations using standard Geo-
metric Multigrid formulations suffer an appreciable degradation in performance [39] with
convergence rates of the order of 0.99. One means to combat this is the use of directional
coarsening algorithms in the construction of the coarse grids. Calculations in the inviscid
regions of the mesh use a full coarsening technique which gives a 4:1 element count reduc-
tion in 2D. However, depending on the chosen relaxation scheme, alleviation of the stiffness
due to stretched grids in viscous flow calculations requires semi-coarsening techniques [6]
which typically gives a 2:1 element count reduction in 2D within the boundary layer. These
methods are typically used within a Geometric Multigrid (GMG) context where the coarse
grid equations are based on a rediscretization of the governing PDE on these coarse spaces.
Extensive analysis of Geometric Multigrid as applied to elliptic problems has been done
by Brandt [16,17,40] from which theoretical properties such as mesh independent conver-
gence have been shown. These methods have also been extended to computational flow
calculations for transonic potential flow [41,42] and are now routine in inviscid Euler com-

putations [24,35,43]. These applications of Geometric Multigrid to the Euler applications
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have met with varying success and in general, the best achievable convergence rates have
been of the order of 0.7.

In contrast to rediscretizing the PDE as in GMG, Algebraic Multigrid (AMG) uses an
algebraic definition for the coarse space operators [44]. Under AMG, the coarse spaces may
be generated in a purely algebraic fashion or with the help of geometric constructs. In
the classic definition of AMG [44], the construction is algebraic which allows for automatic
construction of the coarse spaces and does not require geometric information. Classic AMG
makes use of an abstraction of traditional multigrid principles in an algebraic context leading
to a redefinition of such geometric concepts as grids. Let us consider the linear set of n
algebraic equations

Au=1b, {AeR""u,beR"}

where A = {a;;j }nxn, u = (u1, U2, ...,u,)" and M is an M-matrix. A 2-grid problem involves

a definition of the coarse space equations
Ai=b, {AcR"*N;a,bec RN}

through an algebraic transformation where A = {a;;}nxn, & = (1, u2,...,un)". These
equations now formally play the role of the coarse grid equations as in traditional multigrid
methods. This implies that we may view the fine grid (2 as being represented by the set of
unknowns {u; : Vi € [1..n]} from which we may now construct a graph G = (V,E) based
on the matrix. The vertices V are represented by the unknown variable index 7 and the
edges E are defined using the matrix coefficient entries to determine connectivity. In this
manner, it is possible to construct the coarse grid 2 by considering the coarse grid variables
to be a partitioned subset of the fine grid. Let the fine grid variables be partitioned into
two disjoint subsets: The first contains variables contained in the coarse level which we
denote as C-variables (or C-nodes). The complementary set is denoted as F-variables (or
F-nodes). Classic AMG now considers the construction of a Maximal Independent Subset
(MIS) of the C-nodes by using the matrix stencil to define the set S of strongly connected
nodes for a given node ¢ [44,45]. For an M-matrix {a;;}, a point i is strongly connected to

7, or strongly depends on j if

—aij 2 Omax{-ay},  0<0<1 (1.1)
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An MIS partitioning of a set of vertices in a graph is a subset of vertices which is independent
in the sense that no two vertices in the subset are connected by an edge, and maximal if the
addition of a vertex results in a dependent subset. This MIS set is now chosen to represent
the coarse grid.

The construction of the interpolation operators has given rise to different algorithms.
The original paper by Ruge and Stiiben [44] makes use of the assumption that smooth
error components are required to be in the range of the interpolation operators, and as such
gives rise to the definition for algebraic smoothness. Given a simple relaxation scheme G,
an algebraically smooth error e is defined as an error which is slow to converge using the
scheme G i.e

[Gell ~ lle]

This assumes that for these simple schemes, the residual defined for these smooth errors is
small:
Ae=r~0

This now provides the basis for the construction of the interpolation operators [44]. This
method is efficient for M-matrices [46] and has been extended to the case of general matrices
with both positive and negative off-diagonal entries [45]. Brezina et al [47] however, make use
of a different assumption in the construction of the interpolation operators. This assumption
states that the interpolation must be able to approximate an eigenvector of the governing
matrix A with error bound proportional to the size of the associated eigenvalue. They
show improved convergence for AMG when applied to certain classes of problems such as
2D linear elasticity.

Classic AMG can be efficient when applied to a wide range of problems such as scalar

elliptic problems but can also suffer from many deficiencies. Some of these include:

e Standard AMG cannot be applied to non-linear systems since the underlying principles

are based on a linear algebraic formulation.

e Extension of the standard AMG algorithm to block systems of equations is not clear

and often leads to poor convergence rates.

A hybrid variant of the classic AMG method is Agglomeration Multigrid which operates

by agglomeration of the finite element subspace on the fine grid. One such agglomeration
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(a) Nodal Agglomeration (b) Element Agglomeration

Figure 1.1: Agglomeration Types

technique is the nodal agglomeration technique [48-51] which results in the Additive Correc-
tion Multigrid (ACM) method. This involves the agglomeration of connected nodes of the
mesh graph as shown in Fig. 1.1(a). However, a known problem with typical nodal agglom-
eration methods is their inability to accurately represent higher order differential operators
on coarse meshes due to low accuracy multigrid transfer operators [36]. In the case of ACM,
the transfer operators turn out to be simple injection, i.e. zeroth order operators which are
inadequate for even the simplest elliptic problems. Another effective agglomeration method
is elemental agglomeration [18, 38,47, 52] for which higher order transfer operators may
be defined. This involves the agglomeration of neighboring elements into macroelements
as shown in Fig. 1.1(b). As can be observed, the coarse space elements are not standard
elements and appropriate basis functions need to be defined. Chan et al [18] present an
elemental agglomeration coarsening technique based on the underlying graph of the fine grid

that does not involve geometry. This technique produces a set of node-nested coarse spaces
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which is retriangulated based on fixed patterns in the agglomerated macroelement. This
method offers great potential since the interpolation operators can be based on integers and
lead to savings in storage and CPU time. Also, the algorithm recovers the natural structure
of the coarse grids if the fine grid is regular. However, since the elemental agglomeration
algorithm is purely topology-based, it cannot distinguish between anisotropic and isotropic
mesh regions.

The construction of the multigrid transfer operators has been the focus of much research
in AMG where the coarse space matrices are created algebraically using these operators.
These construction techniques may be classified into matrix based and grid based algo-
rithms. As discussed earlier, the standard interpolation used in classic AMG is a matrix-
based method which uses a fine/coarse node partitioning of the global matrix [18,53]. In
contrast to this method is elemental AMG (AMGe) interpolation which constructs a local
matrix-based interpolation from the elemental stiffness matrices [47,52]. An element-free
extension of this algorithm which attempts to capture the benefits of AMGe without access
to the elemental stiffness matrix has also been reported by Henson et al [54]. This leads to
significant storage saving and both versions of the AMGe interpolation operators have been
shown to exhibit excellent convergence rates for elliptic and elasticity problems.

In the context of structured meshes, mesh stencil-based interpolants [46,55] can be eas-
ily defined. For unstructured meshes, the use of the nodal basis functions has remained
a popular choice for the construction of the interpolants [35,56]. Leclercg et al [57] de-
scribe the construction and Fourier analysis of an upwind transfer operator for a Finite
Volume discretization of the Euler equations and demonstrated the robustness of the inter-
polant. Extension of the mesh stencil-based interpolant to unstructured meshes for AMG
is described by Chan et al [18] where several interpolants of varying complexities based on
elemental agglomeration are discussed. An energy minimization approach is taken by Wan
et al [58] which exploits the properties of the underlying PDEs while allowing general com-
putational domains. A smoothed aggregation technique as described by Vanék et al [59,60]
starts with a piecewise constant basis, which has high energy, and then smooths the basis
through the application of a relaxation method. This minimizes the energy of the basis
locally. A review of these algorithms may be found in [61].

The success of AMG formulations has been mostly limited to scalar elliptic applications
where similar mesh independent convergence rates as in GMG have been obtained, as well as
2D elasticity problems [38,47,62]. The early attempts at an AMG approach for the Navier-
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Stokes equations by Webster [51] and Raw [50] showed some promise but were limited by
various factors such as degradation of the convergence rates with large grid sizes. Recent
developments by Mavriplis [9,36,63] have shown significant improvements for more practical

applications.

1.3 AMG Approach for Navier-Stokes

In this thesis, we consider the development of a multigrid methodology for the solution of
convection-diffusion based problems, using stabilized Finite Element discretizations with

the final objective of efficiently computing high Reynolds number Navier-Stokes flows.

Non- Cell Flow Propagative
Problem Compactness Stretching Alignment Disparity
. FEM Semi- Line Implicit Block Implicit
Solution Formulation Coarsening Smoother Formulation

Figure 1.2: Diagnosis of multigrid breakdown for the Navier—Stokes equations and solutions.

Fig. 1.2 delineates the various issues which multigrid methods face when applied to
Navier-Stokes flows. For each category, a modification of standard multigrid components
is proposed to effectively deal with the issues. For both inviscid and viscous calculations,
discrete stiffness can arise from the disparity in the propagation speeds of the acoustic and
convective modes [39]. Hence, explicit schemes which use standard scalar preconditioners
are severely limited by stability constraints. Flow misalignment with the grid serves to
decouple convective error modes in the transverse direction which also leads to a slowdown in
convergence rate of standard multigrid schemes. Viscous computations however, introduce
an extra source of discrete stiffness due to the use of high aspect ratio cells within the

boundary layer. This effect serves to collapse the convective eigenvalues onto the origin while
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decoupling the acoustic modes from the streamwise coordinate direction [13]. Motivated by
Fourier analysis, Pierce and Giles develop a preconditioned multigrid methodology based
on point block implicit smoothing and semi-coarsening. While this leaves some error modes
lightly damped, the resulting algorithm is a significant improvement over previous multigrid
performances.

Motivated by the inherent problems of the application of standard multigrid to the
Euler/Navier-Stokes equations, Brandt advocated that a hyperbolic/elliptic splitting of the
advective/acoustic subsystems is a means for obtaining optimal multigrid performance [64].
Based on a local mode analysis for the Euler equations, Brandt shows that the convergence
rate for standard multigrid algorithms which utilize full coarsening and scalar precondition-
ing is limited by the error correction from the coarse spaces. By splitting the acoustic and
hyperbolic subsystems into components which are treated separately, Brandt and Yavneh
demonstrated optimal multigrid convergence rates for the Euler equations [65]. Extension
of this principal idea has been done by a number of researchers such as Thomas et al [29]
for the incompressible Navier-Stokes equations applied to high Reynolds number wakes and
boundary layers as well as the compressible Navier-Stokes equations [66]. Nishikawa et
al [67] utilize the Van Leer-Lee Roe (VLR) preconditioner to obtain a decomposition of
the discrete residual into hyperbolic and elliptic components for a cell-centered Finite Vol-
ume discretization of the Euler equations on a structured grid. A full coarsening approach
for the elliptic subsystem and a semi-coarsening approach for the hyperbolic subsystem is
taken and the formulation is shown to be O(N) with respect to the number of unknowns.
However, the current implementations of Brandt’s characteristic splitting idea are not yet
mature and the applications are still limited in scope.

In the approach this thesis takes towards addressing the hyperbolic and elliptic char-
acteristics of the flow equations, no attempt is made at formulating a discretization which
distinguishes between these components. Rather, the multigrid components are specifi-
cally designed to seperately deal with these components as applied to standard Finite Vol-
ume/Finite Element discretizations. A stabilized FEM discretization is chosen to provide
accurate yet compact discretizations of convection-dominated flows. This formulation has
been made use of by Rannacher et al [68] where a multigrid solution scheme for stabilized
FEM discretizations is implemented. This is based on a preconditioned GMRES formu-
lation using a defect-correction multigrid as the preconditioner, an injection prolongation

operator, an L?-projection for the restriction operator and an ILU GauB-Seidel smoother
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with node renumbering in the streamwise direction.

The multigrid implementation in this thesis is based on an Algebraic Multigrid (AMG)
formulation for fast and automatic construction of the multigrid components. For strongly
advection-dominated flows, line implicit relaxation schemes have been shown to possess
good smoothing properties using a Fourier analysis of a structured, constant spacing Finite
Difference discretization of a model 2D convection-diffusion equation [27,46,69]. Following
this reasoning, the choice of a line implicit relaxation scheme is made to deal with the
convective modes where the implicit lines are constructed to follow the direction of strongest
coupling. Point implicit relaxation methods based on this idea have been implemented for
structured meshes [13,70] and also successfully applied to unstructured mesh formulations
[9]. These are typically problems for which a primary flow direction can be identified a-priori
such that the points can be sorted in this primary direction. Strongly advected flows exhibit
characteristic directions along which information is propagated. Hence, the convergence rate
for these point implicit methods, which are sensitive to sorting such as Gauf-Seidel, is highly
dependent on the flow direction and will probably suffer if there are localized flow regions
for which no choice of a preferential direction can be made a-priori. A hybrid method by
Mavriplis [71] for unstructured meshes makes use of implicit lines within the boundary layer
and point implicit relaxation elsewhere. These lines are constructed by linking up nodes
where the coupling between the nodes is based on the edge length. This helps to reduce
some of the problems associated with the stiffness introduced by the stretched mesh but
does not fully address all the issues related to the degradation of the multigrid algorithm.
The proposed relaxation scheme is a generalized line implicit relaxation scheme where the
nodal coupling is derived from the discretization of the governing differential equation.

The acoustic modes are dealt with by means of the multigrid coarse space which is
effective in handling elliptic error modes. An agglomeration multigrid approach which en-
ables the construction of higher order interpolants was chosen as opposed to a pure algebraic
methodology. The construction of the coarse spaces is through elemental agglomeration due
to the difficulty of nodal agglomeration to accurately represent the second-order derivative
terms of the Navier-Stokes equations. The coarse space elements are generalized polygons
which obviates the need for retriangulation procedures [38]. The interpolation operator is
an extension of an interpolant developed by Chan et al [18] which is a linear interpolation
on the agglomerated element boundary and constant interpolation over the interior. The

current modification extends the linear interpolation over the agglomerated element inte-
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rior. The agglomeration algorithm makes use of semi-coarsening to further remove grid

induced stiffness.

1.4 Summary

This thesis deals with research into the application of an algebraic multigrid formulation
to stabilized Finite Element discretizations of the Euler and Navier-Stokes equations. The
core of this dissertation is the development of the multigrid components to effectively deal
with the elliptic and hyperbolic characteristics of these equations without the need to re-
sort to specialized discretizations. The discussion in the chapters is ordered by increasing
complexity starting with the basic formulation of the multigrid components for scalar el-
liptic operators and culminating in the final application to select Euler and Navier-Stokes
examples.

The first chapter on symmetric elliptic operators begins with the application of AMG to a
simple Galerkin FEM discretization of the Poisson equation. This can be viewed as the first
step towards addressing the acoustic subsystem of the Euler and Navier-Stokes equations.
This chapter focuses on the construction of the interpolation operators and the multigrid
coarse spaces. The generalized multigrid algorithm is described and the construction of the
multigrid components, especially the elemental agglomeration algorithm, within the AMG
context is outlined. Numerical studies into the behavior of the basic multigrid algorithm is
made for the Poisson problem on isotropic meshes and the robustness of the algorithm is
demonstrated. In addition, the algorithm is applied to the Poisson problem on anisotropic
meshes to demonstrate possible issues which arise in the application of standard multigrid
algorithms to viscous computations on stretched grids.

The second chapter on convection-diffusion operators introduces hyperbolic character-
istics by means of a convective component. The model problem considered is the linear,
stationary convection-diffusion equation and a stabilized FEM discretization for this prob-
lem is implemented. The application of the multigrid algorithm described in the first chapter
is shown to be inadequate for these problems especially in the strongly convective limit. A
modification of the multigrid smoother to a line implicit relaxation scheme is described
which effectively deals with the hyperbolic characteristics. The application of standard
AMG algorithms to stabilized numerical schemes is shown to require a characteristic length

based rescaling of the numerical stabilization for a consistent multigrid representation. This
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has not been addressed in the literature and a solution for this problem is proposed. Nu-
merical studies into the behavior of the modified multigrid algorithm is done and improved
convergence rates are demonstrated.

The next two chapters on 2D Euler and Navier-Stokes applications begins with a descrip-
tion of a GLS/FEM discretization of the equations using symmetrizing entropy variables.
The extension of the fully modified multigrid algorithm for the system of equations as well
as a solution strategy for the non-linear equations is described. Numerical studies for several
test cases are performed and improved convergence rates are demonstrated. Several issues
related to the formulation of the stabilization terms are also discussed.

The concluding chapter summarizes the main results of the thesis and provides some

suggestions for possible future work.
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Chapter 2

AMG: Symmetric Elliptic Operators

The multigrid technique has been applied with great success to elliptic PDEs. For symmetric
elliptic operators, efficient multigrid methods exist with mesh independent convergence
rates [46]. Theoretical bounds for the convergence rate of the multigrid algorithm applied
to these problems have been rigorously proven and provide a point for comparison of new
multigrid techniques. This class of problems also provides a basis for the extension of

multigrid to harder problems such as convection-diffusion.

In this chapter, we present an Algebraic Multigrid methodology as applied to a Fi-
nite Element discretization of the Poisson equation. The generalized multigrid algorithm
is described and the construction of the multigrid components within the AMG context is
outlined. The main contribution in this chapter is the development of an elemental agglom-
eration algorithm with improved accuracy interpolation between grid levels. Brandt [17]
has shown that the accuracy of the multigrid interpolation operators is important in the
construction of a multigrid algorithm with grid independent convergence rates. Further-
more, the behavior of standard multigrid algorithms is known to degrade appreciably in
the presence of anisotropy which may be either introduced through variable coefficients or
grid stretching [45,72]. The behavior of the proposed multigrid algorithm when applied to

elliptic anisotropic problems is tested and the results analyzed.

35



36 CHAPTER 2. AMG: SYMMETRIC ELLIPTIC OPERATORS

2.1 Model Problem

The model problem considered is the symmetric two dimensional diffusion problem repre-

sented by the differential equation:

V- (u(z,y)Vu) = —f in €, (2.1)
plz,y)Vu-n = gy on 'y, (2.3)

The domain € is a bounded domain in IR? with boundary T which is made up of a Dirichlet
boundary I'p and a Neumann boundary 'y = I'\I'p. The function f = f(z,y) is a given
source function while gy and gp are data defined on the boundary I' with n being the

outward unit normal to I'. The variational weak formulation of Eq. 2.1 can be stated as:

Find v € H'(;Tp) such that
/ p(z,y)Vu - Vo dQ = / vf, dQ Yo € Hj(%Tp) (2.4)
Q Q
where H'(€;T'p) is the Sobolev space of functions with square integrable first derivatives
that satisfy the Dirichlet boundary conditions and Hg(; ' p) is the space of functions which

vanish on I'p. A unique solution for Eq. 2.4 is guaranteed if u(x,y) is a strictly positive

function and f(z,y) is square integrable, subject to admissible boundary conditions [73].

This figure was broken... original no longer exists.

Figure 2.1: Domain and Finite Element Discretization using Linear Triangles
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Let us now consider a partitioning of the domain 2 as in Fig. 2.1 into n, non-overlapping

triangular elements ¢ with boundary I' and n, vertices such that:

Q, = UQ (2.5)
e=1

0 = (e]Qe (2.6)
e=1

For a domain with curved boundaries, the Finite Element partitioning of the domain may
create a region | — Q| # @ as shown in Fig. 2.1 which can be minimized by refinement
through a reduction in the characteristic element size h.. Within each element, the solution
and geometry is approximated by a set of kth-order interpolation polynomials P, which are

C° continuous across elements and belong to the space H C H' defined as:
H'™ = (UM | UM € CO(9), UP|qe € PR(0°) VQ° € Q) (2.7)

The approximate (or trial) Finite Element solution can now be described as belonging to
the space S® C H'™ which is the finite dimensional subspace of piecewise kth-order C°

continuous functions defined on €2p:
St ={vh |Vt e H" Vh = gp on Tp} (2.8)

The classical Galerkin Finite Element Method makes use of a weighted residual formulation
based on Eq. 2.4. We introduce the space V? of weighting (test) functions which is the same

as the trial function space S”, up to the Dirichlet boundary conditions:
Vi = (Wh | W" e H"", W" =0 on I'p} (2.9)

Any function u” in H' can be written as a linear combination of a set of nodal basis

functions N;(z,y) such that
uP(z,y) =Y wNi(z,y). (2.10)
i

The coefficients u; are nodal values u”(z;,;) and the nodal basis functions are such that
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N; € H" and
Ni(zj,y;) = bij, (2.11)

where J;; represents the Kronecker function. The Galerkin Finite Element formulation for

the discrete problem now reduces to:

Find u, € S" such that
B(up, wh)gal + Blun, wp)pe =0,  Vawy, € V" (2.12)

where the forms B(-,-)gq and B(:,:)s. account for the Galerkin and boundary condition

terms respectively, and are defined as
Blunondgu = [ (uVun- V= wpf) d2
Qp

B(up, wp)pe = / pwp, (Vuy -n) dT° :/ wpgn dT
FN 1—‘N

The nodal basis functions provide local support such that a choice of wy, = N;, {i = 1...np}

results in Eq. 2.12 being written as a linear system
Apup = by, Ap € R"™ " up, by € R™ (2.13)

where uy, is a vector of nodal unknowns and each row of Ajp corresponds to a different
weighting function. For the model problem, we make use of linear P; interpolation poly-
nomials which result in the basis function being the so-called hat function. Eq. 2.12 now

represents a sparse linear system of equations with the following properties [73]:
1. Symmetric: Ap = Af
2. Positive definite: v Apu >0 VYu#0andI'p # 0

3. Diagonally dominant: |a;| > ) |a;j|, Vi and isotropic elements.
J#
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2.2 Multigrid: Operation and Components

Given the linear system of equations Ajuy = by, arising from the Finite Element discretiza-
tion of Eq. 2.1, we consider a multigrid formulation for the solution. Discrete operators
which are derived from Finite Difference, Finite Volume and Finite Element discretizations
tend to be large, sparse matrix systems of equations which are well adapted to iterative
schemes. The application of an iterative scheme or smoother S (u%,bh,Ah,n) to the so-
lution of Eq. 2.13 results in a better estimate u}! to the solution after a given number of

iterations n, starting from an initial guess ug. The iteration error may be defined by:
€l = U} — Up- (2.14)

Since u} represents an approximation to the solution, it does not satisfy Eq. 2.13 exactly

and so we can define a residual rp;
rh = by — Apuj. (2.15)

We may now take the difference between Eq. 2.13 and Eq. 2.15 and further use the linearity

of the discrete operator to obtain:

rh, = Ahuh—Ahuz (2.16)
= Ap{up—uf} (2.17)
= Ap{-¢}) (2.18)

The basic idea behind multigrid is the computation of corrections to the error e} on a
coarser grid Qg given a set of equations which have been discretized on a fine grid Q.
Specifically, consider a restriction operator Ry, : IR™ +— IR™ where nj, and ng are the
dimensions of the finite dimensional spaces associated with grids 2, and Q2y. We may now

h .
define the rough error component el,loug of e} as error components for which

Ryep e =0, (2.19)
such that the smooth error component ezm""th is simply the complement. This ensures

that the transfer of the error to the coarse grid involves the smooth error component only.
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Hence, the application of a smoother S(u9, by, Ap,n) to the current estimate of the solution

implies that the selected smoother must be effective in the elimination of e;lough. A coarse
grid representation of Eq. 2.18 which can be more efficiently solved is
AHG?[ = —Rh’l”h (2.20)

where Ay and e?; are the coarse grid representations of A, and e} respectively. The error
correction e’ computed on the coarse grid is now interpolated back to the fine grid and

used to update the solution by means of the prolongation operator Py, : IR"# — IR™,

up < up — Prely. (2.21)

2.2.1 Multilevel Algorithm

Given the basic description of the multigrid process, we may now consider a recursive
multilevel formulation. Let {Qy : (kK =0,...,m)} represent a hierarchy of grids such that
Qo = Qp. Let ny be the dimension of the finite dimensional vector space IR™ associated
with each grid Qj such that ny > ngy1 and let {Ax : (kK = 0,...,m), Ay € R™ "}
be the representations of Ay on these coarse grids such that Ay = Ajy. Also, let {Ry :
R™ +— IR™+'} and {Py : IR™ +— IR™ -1} represent the restriction and prolongation
operators defined on these spaces respectively. Reduction of rough error components on
each grid level k requires a smoother and these smoothers may be different on each grid

level depending on Ry, but are typically chosen to be the same.

A recursive application of the 2-grid multigrid algorithm can now be constructed on a
sequence of coarser grids where the error on each coarse grid level k may also be decomposed
into smooth and rough components by means of a suitable definition for Ry. This leads to
the m-grid linear multigrid algorithm (Algorithm 1) where S(u,b, A,v) is the smoothing
procedure.

In our implementation of multigrid, the coarsening procedure terminates when the coarse
grid system of equations A, u,, = by, is small enough to be solved exactly. Depending on
the scheduling of operations between the coarse spaces, we end up with different multigrid
cycles. Two of the most common cycles are the V(vq,v5)-cycle (¢ = 1) and the W (vq, v5)-

cycle (yx = 2) which are depicted in Fig. 2.2.
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Algorithm 1 MG (ug, b, v, v, m)

if k = m then
Set um = (Am)~! by,
else

Perform v; smoothing sweeps: S(ug, bg, Ak, 1)

Compute residual: 7, = by — Agug

Restrict residual: bx+1 = Ryrg

Initialize correction: ug41 =0

for i =0 to y do

“Solve” on level k+1: MG (ug41,bgt1,v1,v2,m)

end for

Correct solution: uy < ug + Prugi1

Perform 5 smoothing sweeps: S(ug, bg, Ak, 1)
end if

This figure was broken... original no longer exists.

Figure 2.2: V- and W-cycles
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2.2.2 Multigrid Smoother

Let us consider a general coarse space matrix system given by
Agup = by. (2.22)
Let us also consider a splitting of the matrix Ay:
A, = Mp—N; (2.23)

where My, is non-singular. The basic idea in defining a smoother S(uy, b, Ak, My, v) is
to obtain a matrix My such that the rough error modes are effectively reduced while the
inversion of My, is much less expensive than Ag. A basic iterative method for the system

is defined as the following linear fixed-point iteration:

witt = ul + M, (b — Agul) (2.24)
= Skufc + Mlzlbk
Sk = I-M; A (2.25)
= M, 'Ny

where u}c represents the current solution estimate at iteration i. The matrix M; is the
preconditioning matrix and Sy, is called the iteration matrix or smoother. It may be shown

that the iteration error ei = u}c — uy, satisfies

el = Syel, (2.26)

and the residual ¢ = b, — Ajul satisfies
rith = AgSEA, 'ri (2.28)
Hence, for the basic iterative method to be convergent

lim ||S}|| =0 (2.29)

1—00
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where ||A] is the contraction number of the matrix A for any vector norm |-||, and is
defined as
| Al
|A[| = sup (2.30)

Theorem 2.1 The basic iterative method Eq. 2.2/ will converge for any initial guess ug iff

p(Sk) < 1 (2.31)

where p(Sg) is the spectral radius of the matrix Si. Convergence conditions for many
relaxation schemes may be found in [46]. Damping may also be introduced using a relaxation

factor w by defining:

i+3 i ~1
(8 = Spug + M, b
-1
i+l _ ity i
u = wuy 2+ (1 —w)uy

= Sjuj, +wM; b (2.32)
where
S =wSk+ (1 —-w)l
It may be shown that Eq. 2.32 corresponds to the splitting
Mj; = My/w, Nj=A;—-M;j (2.33)

Let us consider the general splitting Ay = Dy — Ly — U, where Dy, is the matrix diagonal,
and —L; and —Uy are the strictly lower and upper triangular parts of Ay, respectively.

Two popular relaxation schemes we will use throughout this thesis are given by:

D .
M, = k Jacob1- (2.34)
D, — L, Gaufl — Seidel

The discrete system defined by Eq. 2.12 is characterized by a linear symmetric positive

definite (SPD) operator for which many theoretical properties have been rigorously proven.
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For SPD matrices, the Gau-Seidel method always converges for any initial guess while the
Jacobi method converges for any initial guess if the matrix is strictly diagonally dominant
[74]. The Jacobi and GauB-Seidel method are two very popular choices for their simplicity
and ability to quickly damp out spatially rough error modes. However, the spectral radius
for both the Jacobi and Gauf3-Seidel methods is such that

p(M;1A,) =1 - O(h?). (2.35)

Hence, without multigrid, the asymptotic convergence rate of these methods deteriorates

rapidly with increasing grid size.

2.2.3 Interpolation and Coarse Grid Operators

The multigrid algorithm requires an approximation of the fine grid operator on the hierar-
chical coarse spaces. The coarse space matrix Aj; may be constructed by rediscretization,
however Algebraic Multigrid (AMG) considers an algebraic alternative to this [46] given by
the recursive relation:

Api1 = Rp APy (2.36)

Although the Ry and Py operators are independent, the choice of Ry = P:,C results in the
minimization of the error in the solution after coarse grid corrections when measured in
the A-norm, | - ||a,, for SPD operators. Given Eq. 2.36, let us assume the restriction and
prolongation operators are independent. Let vy represent the correction from the coarse
grid and uy the current solution estimate on the fine grid. The error in the solution after

correction is thus

_ 1
ex = g + Progy1 — Ak by

Let us measure the error in the A-norm, || - |a, and minimize the error:
min||ek||Ak = m1n||(ﬂk +kak+1) - Alzlbk ”Ak (237)
Vk+1 Vk+1

= %in(ﬂk + Prvkr1 — AL k)T Ag(ug + Progsr — Ay o)
+1
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Differentiation of the quadratic form with respect to vg; and application of the stationarity

condition gives
PL(Ak + Af) (@ + Progr1 — AL tb) =0 (2.38)
For a symmetric matrix Ay, we may easily solve for vx1; and obtain
vkyr = (PLARPL) P (b — Agiiy) (2.39)
The Hessian matrix for Eq. 2.37 is
H =2PT AP, (2.40)

which shows that Eq. 2.39 is a minimum when Aj is positive definite. The coarse grid

correction from the linear multigrid algorithm is:
vk = (Agp1) 'Re(be — Agity) (2.41)
Comparing Equations 2.36, 2.39 and 2.41, we find that
Ry = PT (2.42)

The same argument, however, cannot be made for a non-symmetric matrix. This choice
for the interpolation operators also has the added advantage that only one of the operators
needs to be constructed. This algebraic method for coarse space operator construction is
called the Galerkin Coarse Grid Approximation (GCA).

Mesh size independent convergence rate for the multigrid GCA formulation makes use
of a fundamental rule for the accuracy of the interpolation operators [17,46]. This may be

simply stated as:

Theorem 2.2 Let mp and mg be the order (degree plus one) of the polynomials that are
interpolated exactly by the prolongation P and restriction R operators respectively, and 2m
be the order of the governing partial differential equation. A necessary condition for mesh

independent convergence is

mp + mg > 2m (2.43)
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Chan et al [18] carry out a convergence analysis for domain decomposition based sub-
space correction methods as applied to FEM discretizations of the Poisson problem using
linear elements. In order to obtain grid independent convergence rates, the subspaces have
to satisfy certain properties. This analysis is extended to the convergence rate of the multi-
grid method where the definition of the space associated with €2 is obtained by interpolation
in Qf_1. According to the analysis in [18], these multigrid subspaces must satisfy stability
and approximation properties to ensure grid independent convergence. These properties

are:

|Ruli,o < Cluliq, (stability) Vu € H*(Q) (2.44)
Chlulio (approximation) Vu € H'(Q) (2.45)

A

Ru — ullo,0

where R is some continuous interpolation or projection operator unto the subspaces and
is related to Rg. Eq. 2.45 is closely related to the standard Finite Element theory of
interpolating polynomials for linear elements [75] while Eq. 2.44 is a statement regarding
the smoothness of the interpolation operator. If we consider the use of a zeroth degree
interpolant (injection), Eq. 2.44 is violated since it does not lie in H'”*. Further consideration
of Eq. 2.45 implies that the interpolating operator Ry has to be at least linear. If we make
this minimal assumption about the order of Ry, then Theorem 2.2 is automatically satisfied
for any choice of interpolation order for P;. Hence, Theorem 2.2 is a more general statement
of the approximation and stability properties. For a more detailed convergence theory, we
refer to [19-21,76-80].

A promising technique for the construction of these interpolation operators which satisfy
the rules outlined above is based on the agglomeration technique [81,82] which operates
by fusing neighboring fine grid entities to form coarse grid macroentities. This provides
a natural and automatic way for coarse space construction. The agglomeration technique
defined on the Finite Element space can be vertex based (nodal) [48-51] or element based
[47,52]. Our choice of elemental agglomeration is motivated by the need to address higher
order accuracy for the interpolation operators and has been the subject of recent research
[18,38,47,54,83].

The standard use of nodal agglomeration [48-51] to construct the interpolation opera-
tors results in the definition of the restriction as an injection operator. This presents two

fundamental problems for discretizations of higher order differential operators. First, this
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operator violates the stability property. Secondly, mp and mg are unity and for the Lapla-
cian operator (2m = 2), the accuracy condition (Eq. 2.43) is violated [46]. This results

in suboptimal convergence rates due to mesh dependent scaling errors in the coarse grid

corrections.
Coarse Grid Coarse Grid Op. | Restriction | Prolongation | Convergence
(a) Independent Rediscretization Linear Linear 0.100
(b) Triangulated Seed pts | Rediscretization Linear Linear 0.125
(c) Agglomerated GCA Injection Injection 0.512
(d) Agglomerated Scaled GCA Injection Injection 0.254

Table 2.1: Effect of Coarse Grid Operator for Agglomeration Multigrid [36]

Table 2.1 is a reproduction of the results by Mavriplis [36] for the two grid solution of
the isotropic Laplace equation using a multigrid V-cycle with three pre- and post-smoothing
Jacobi sweeps on the fine grid, and 20 sweeps on the coarse grid. A comparison for the
multigrid convergence rates is made for (a) a two grid overset mesh approach using an inde-
pendently generated coarse mesh, (b) a coarse triangular mesh generated by triangulating
the seed points of the agglomerated coarse grid, (c) a nodal agglomeration implementation
of the GCA formulation and (d) a scaled nodal agglomeration implementation of the GCA
formulation where the coarse space matrix is scaled to take the interpolation order deficiency
into account. As can be observed in Table 2.1, there is appreciable degradation in the con-
vergence rate when the interpolation operators are of zeroth degree. Appendix B outlines a
brief one dimensional proof of the inadequacy of nodal agglomeration when applied to the

solution of a simple Poisson equation.

2.3 Coarse Space Agglomeration

As discussed, the standard application of nodal agglomeration techniques results in sub-
optimal convergence rates when applied to higher order differential equations due to the
violation of the interpolation order rule (Eq. 2.43). An alternative to this is the elemental
agglomeration technique which enables us to easily construct higher order interpolants that
satisfy the interpolation order rule.

The proposed algorithm is based on the fusion of elements into macroelements with a
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subsequent definition of the coarse grid topology and basis functions. This method is applied
recursively to generate the hierarchy of coarse spaces. A review of elemental agglomeration
is given by Chan et al [38] who also propose alternative elemental agglomeration algorithms.

In our approach to elemental agglomeration, the driving force behind the agglomeration
is the reduction of mesh anisotropy which becomes important later in the discretization of
convection-diffusion type equations [6, 71]. This is however, less important for FEM dis-
cretizations of isotropic elliptic problems. One important distinction between this proposed
method and that described by Chan et al [38] is that the coarse mesh elements are not
converted into standard elements by a retriangulation but are generalized polygons formed
by the agglomerated fine mesh elements. This is especially attractive in 3D because of the
complicated rules which may be involved for the retriangulation [38]. One drawback of
this formulation is that the support for the basis functions defined on these macroelements
is larger than standard triangular elements. This algorithm also has the feature that the
resulting coarse space is nested. This implies that the interpolants automatically satisfy the
stability condition (Eq. 2.44) [18,38,52].

2.3.1 Coarse Space Topology

N
"'gﬁ&ﬁyﬂ “:“ Coarse Grid Node
V¥ A\

Figure 2.3: Coarse Space Topology

The coarse grid topology is constructed by partitioning the elements into macroelement
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groups as shown in Fig. 2.3 for a 2D mesh. A macroedge is defined to be the ordered col-
lection of fine grid edges which are shared by two neighboring macroelements. To complete
the definition of the coarse grid graph, the coarse nodes are chosen to be the fine grid nodes
where three or more macroedges meet. Macroelements with exactly two coarse nodes are
modified by the addition of extra supporting coarse nodes using fine grid nodes which lie

on the macroedge connecting these two coarse nodes as shown in Fig. 2.4

Fine Grid node

Support Coarse Grid Node

Macroelement Macroedge Coarsegrid Node

Figure 2.4: Coarse space topology with exceptional macroelement bearing two coarse nodes and
extra support node

2.3.2 Elemental Agglomeration Algorithm

The proposed algorithm is based on the removal of grid anisotropy and makes use of edge
lengths such that the geometry for the coarse spaces is defined entirely in terms of the fine
grid, i.e. the macroedge lengths are simply the sum of the edge lengths of the constituting
fine grid edges. If the fine grid geometry is not specified, then this technique becomes
a purely topological one where the elements are assumed to be isotropic. The decision
to agglomerate two neighboring elements is determined by a geometry based connectivity

concept which we term macroelement skew.

Definition 1 For a macroelement defined by a general polygon, the macroelement skew is

a measure of anisotropy and is defined as the area of the n-gon divided by the area of an
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isotropic n-gon with the same perimeter.

In the extreme cases, this is zero for co-linear polygon vertices and unity for an isotropic
n-gon. Macroelement skew can be extended to 3D through a suitable redefinition such as
ratio of macroelement volume to macroelement circumsphere volume similar to the control
volume skew described by Venkatakrishnan et al [84]. The macroelemental areas for the
coarse spaces are also easy to compute as they are simply sums of the agglomerated element
areas. In order to complete the operators required for this algorithm, we need to define an

edge based connectivity concept which we term edge skew.

Definition 2 For an element which borders a macroelement/element on a given edge, edge
skew is defined as the macroelement skew of the macroelement which would be created if the

element is merged with the macroelement/element across that edge.
We now present the algorithm in detail:

Procedure 1 (Macroelement Construction)

Step 0: Consider the graph of the mesh: G = (V,E) and calculate the edge length for the
edges E.

Step 1: Obtain seed element: If there is no seed element in the queue, choose any suitable

element which does not belong to a macroelement group.

Step 2: Perform accretion around the seed element. Fuse unassigned neighboring elements
with edge skew larger than some specified fraction (typically 0.75) of the average edge

skew.

Step 3: Enqueue seed elements. New seed elements are placed in the queue to continue the
algorithm. These are chosen to be elements which share a vertex but no edges with the
last macroelement created. In 3D, this would extend to elements which share a vertex

and/or an edge but no faces with the macroelement.

Step 5: Repeat Step 1 until either all elements belong to a macroelement or there are no

more seed elements.



2.3. COARSE SPACE AGGLOMERATION 51

After the algorithm terminates, post-processing is necessary to deal with “sliver” ele-
ments. These are fine mesh elements which were not originally selected by the algorithm
to be merged into a macroelement. A determination of which macroelement to merge these
elements with is made a-priori based on edge skew. In the case where the lengths and
areas are equal, the algorithm degenerates to a 4:1 isotropic agglomeration in 2D and fully
recovers the natural coarse structure for a regular grid. Unstructured mesh examples are
shown in Fig. 2.5.
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(a) Fine mesh (Level 0) (b) Level 1 agglomeration

Figure 2.5: Multilevel Elemental Agglomeration Example

2.3.3 Coarse Space Basis Functions

The construction of the interpolation operators may be facilitated by the definition of
nodal basis functions on the coarse space and serves as a natural extension of the Finite
Element algorithm on these coarse spaces. As outlined by Chan [18], a number of desirable

properties have to be satisfied by the coarse spaces to ensure a good convergence rate. These

are summarized briefly as:
e Smoothness: To guarantee satisfaction of the stability property (2.44)

e Approzimation: To guarantee satisfaction of the approximation property (2.45)
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o Small supports: To reduce the density pattern of the coarse space operators
o Conformity: To facilitate analysis and construction of algorithms
o Recursion: To ensure that the coarse spaces have the same properties as the fine grid.

We require the basis functions to at least satisfy the stability (Eq. 2.44) and approx-
imation (Eq. 2.45) conditions, preserve the constant function, and behave like standard

interpolants i.e

@i(x;) = { Lo (2.46)
0 ifi#j
Chan et al show that if the interpolant preserves at least the constant function, the ap-
proximation property is assured. The construction of the proposed basis functions makes
use of topology and geometry if provided. If the geometry is not given, then the elements
are assumed to be isotropic which leads to a purely topological interpolant. We now define
the basis functions using graph distance interpolation on both the boundary and interior,
which is geometry weighted to form a more accurate interpolant. This is an extension of an
interpolation proposed by Chan et al [18] which makes use of graph distance interpolation
on the boundary and constant interpolation over the interior. This algorithm leads to a

quasi-linear interpolant as shown in Fig. 2.6.

®,=1

Coar se

Node q)oz O q)0: 0 q)O: 0

Figure 2.6: Coarse Space Basis Function Based on Graph Distance
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Fig. 2.6 shows the basis function ® defined over the agglomerated macroelement for the
coarse grid node at xg. This basis function is constructed from a graph distance interpolation
over the macroelement and weighted with edge length. It satisfies Eq. 2.46 such that it has a
value of 1 at xg and 0 at every other coarse grid node. Interpolation over the macroelement
interior as well as the boundary is also present.

In order to fully describe the algorithm, we give a description of an important component
called the Breadth First Search (BFS) algorithm which is essentially a Greedy algorithm
for graph traversal. The definition for the BFS algorithm [85] is

Definition 3 The Breadth First Search (BFS) is a search algorithm which considers neigh-
bors of a vertex, that is, outgoing edges of the vertex’s predecessor in the search, before any

outgoing edges of the vertex such that extremes are searched last.

The BFS algorithm forms an integral part of the coarse space basis function construction

and the detailed description for the BFS algorithm is given in Algorithm 2.3.3:

Algorithm 2 BFS
Unmark all vertices
Choose some starting vertex x
Mark x
Set list L = x
Set tree T = x
Set level set (LS) of x =0
while L nonempty do
Choose some vertex v from front of list
Visit v
for each unmarked neighbor w do
Mark w
Set LS(w) = LS(v) + 1
Add it to end of list
Add edge v-w to T
end for
end while

The detailed algorithm for the construction of the coarse space interpolant as well as the
coeflicients for the prolongation operator Py in 2D is given below. The restriction operator
Ry is simply defined using the GCA formulation.
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Procedure 2 (Basis Function Construction)

Step 1: For each macroelement, create a local subgraph. In the process, create an ordering

of the boundary edges such that the boundary can be traversed.

Step 2: Extract the list of interior vertices. Extract the ordered list of coarse grid vertices

by traversing the boundary edges.

Step 3: For all fine grid edge vertices which lie between consecutive coarse grid nodes,
construct length weighted interpolation data. The macroedge length is also computed

simultaneously.

Step 4: Interior vertex interpolation. For each coarse grid node in the macroelement, a
Breadth First Search (BFS) iteration on the local subgraph is done with the coarse grid
node as a seed. Both the level set as well as the graph distance from the coarse node
is recorded for all interior (fine) nodes in the subgraph during the process. The graph
distance of each fine grid node from the coarse grid nodes is then computed. For each

fine grid node, these distances are then weighted to sum to unity.

The necessary matrix coefficients for the prolongation operator P, may now be extracted

from the basis functions as follows.
Procedure 3 (Prolongation Operator Construction)

Step 1: For every fine grid node i in macroelement which corresponds to a coarse grid node

j, set the prolongation operator coefficient

Pr(i,7) =1 (2.47)

Step 2: For every other fine grid node i in macroelement which does not correspond to a
coarse grid node, given the length weighted graph distance dist(i,j) from every coarse

node j, set the prolongation operator coefficient

1

. dist(3,]
Py(i,j) = # (2.48)
- @St
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2.4 Consistency Scaling Formulation

The success of the multigrid methods depends heavily on how good of an approximation

the coarse space matrix Ay, is to Ag. Let us choose the restriction operator to be
Ry = oPj (2.49)

where P} is the formal adjoint of the prolongation and o is a suitable scaling factor. The
scaling of Ry, is determined by the role of Rg. If Ry is to be used to construct coarse grid

representations of the fine grid unknown uyg, then
D Ry(i ) =1
J

However, if Ry is to be used to transfer residuals to the coarse grid, then the correct
value of the scaling depends on the scaling of the fine grid and coarse grid problems. This
implies that the coarse grid discretization should be consistent with the governing PDE in
the same way as the fine grid discretization. Let A; represent a characteristic area (e.g
control volume area) on the fine grid associated with fine node j and let A; represent a
corresponding characteristic area on the coarse grid associated with coarse node i. Finite

Volume and Finite Element schemes in 2D lead to a scaling rule which states that
> Ry(i,5)A; = A
J

This is derived by considering the integral terms for the interior fluxes. However, the
boundary flux integral terms are line integrals which necessitates a modification of the
restriction operator. Let L; represent a characteristic length on the fine grid associated
with boundary fine node j and let L; represent a corresponding characteristic length on the
coarse grid associated with boundary coarse node i. The corresponding scaling rule for the

restriction operator as applied to the boundary integral terms is

> Ry(i,5)L; = Li
J
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In order to deal with the dual scaling issues, we introduce the splitting:
Ap =A% 4 Al (2.50)

where Azal consists of the Galerkin terms which scale with area and Azc consists of the
boundary condition terms which scale with length. We may now correspondingly split Ry,

into Rial and ch such that GCA definition for the coarse space matrix becomes

Api1 = RITAIPIY 4 RICALPY (2.51)

where
R{ = gopyd’ (2.52)
Rl = gheple’ (2.53)

The construction for Pial exactly follows the algorithm described in Sec. 2.3.3. However,

P! is constructed by deleting the row entries for all the interior fine grid nodes in Pzal.
This works because interpolation for the fine grid boundary nodes is based on the coarse
grid boundary nodes. The construction of the scaling matrices o9% and o is done by
looping through the elements/edges and sending element/edge contributions (area/length
divided by the number of element/edge vertices) to the associated vertices. However, the

. . . gal
actual operator used in the prolongation process is P, .

Given the modification for the restriction operator, we consider the following splitting

for the residual

TE = rial + rbe (2.54)
such that a restriction for the residual can be written as

bra1 = REUr)™ + RYerpe (2.55)

However, restriction at the boundary poses a special problem. In general, it is not possible
to ensure that bg11 = 0 if 7, = 0 unless the restriction operators are specially designed to

satisfy this condition. The proposed solution to this issue is to lump rial with r,’éc on the
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boundary nodes according to:
M = RE (" + 1) (2.56)

This has been found to work well in practice.

2.5 Dirichlet Boundary Modification

This figure was broken... original no longer exists.

Figure 2.7: Dirichlet Boundary Modification for Py

The prolongation operator needs to be modified in the presence of Dirichlet boundary
conditions where the correction to the fine grid solution is zero [46]. For a given fine grid
node adjacent to a Dirichlet boundary, any matrix coefficient for this node in P, which
corresponds to a dependency on a coarse grid node that lies on the Dirichlet boundary, is
set to zero. This may be easily exemplified by Fig. 2.7. Let us consider fine grid node A

such that the standard prolongation operator defined for this node is:

a

Ukt

b

A1 1 1 1 Ukt (2.57)

k 1 4 ud :
k+1

e
Ukt

The presence of the Dirichlet boundary requires a modification of the prolongation since

there is no coarse grid correction for nodes on this boundary i.e ug, , = uz 1= uz 41 =0



58 CHAPTER 2. AMG: SYMMETRIC ELLIPTIC OPERATORS
Hence, we redefine the prolongation for the fine grid node A as:

Ug iy

A _ 1 1 “2+1

=10 101 k (2.58)
Ugt1

e
Up11

such that the modified prolongation is employed in the GCA construction of the coarse
grid equations. This has been found to work well in practice and is required for block
systems of equations where Dirichlet boundary conditions may be imposed on a subset
of the unknown vector block such as no-slip boundary conditions in discretizations of the

Navier-Stokes equations.

2.6 Anisotropic Problems

The convergence rate of the standard multigrid algorithm is severely degraded when
anisotropic effects are present. The introduction of anisotropy may be done either through
grid stretching, which is important in convection-diffusion problems where boundary layers
are present, or through variable coefficients in the governing differential equation. The
breakdown of the multigrid algorithm is even more severe for AMG where the coarse space
operators are constructed through algebraic means. Improper formulations which may exist
in the interpolation operators are manifested more strongly in these coarse space operators
than Geometric Multigrid where the coarse space operators are rediscretized independently
of the fine space.

The main problem associated with anisotropy is due to the decoupling of the error
modes into preferential directions. Using Fourier analysis applied to the anisotropic diffusion
equation, Wesseling [46] shows that many of the popular smoothers break down in the
presence of anisotropy.

Anisotropy can be dealt with through modification of the smoother to perform implicit
sweeps along the preferential directions [70,71,86] as well as the coarse space semi-coarsening
algorithm [6,71,72,87] where the aim of the coarse space construction is the reduction of
mesh anisotropy. The elemental agglomeration algorithm described above is designed to au-

tomatically include semi-coarsening when the fine grid geometry is supplied and an example
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Figure 2.8: Semi-coarsening in anisotropic mesh region

of the coarsening technique is shown in Fig. 2.8. Morano et al [72] present experimental
results for the Laplace equation for several anisotropic cases with high aspect ratio cells

when semi-coarsening is applied.

2.7 Results

We consider the Poisson problem (Eq. 2.1) where

Viu = -1 in Q =10,17, (2.59)
u = 0 on I'p, (2.60)

The discretization is performed by triangulating the square grid (@ = ]0,1[%) with a set
of N (= n X n) uniformly distributed points. We use three different fine grid sizes and
compare the multigrid convergence rate for a two grid agglomeration problem. In all cases,
we use a V(2,1) cycle and terminate the algorithm when the Ly norm of the residual is less

than 107'7. Table 2.2 depicts the obtained convergence rates for two different smoothers.



60 CHAPTER 2. AMG: SYMMETRIC ELLIPTIC OPERATORS

The average multigrid convergence rate is defined as

= (||||f~z||||>i (261)

where n is the number of multigrid cycles while the asymptotic convergence rate € is defined

as the average convergence rate computed over the last 5 multigrid cycles.
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Figure 2.9: Agglomeration Multigrid Convergence History for Poisson Problem: Isotropic Mesh

Smoother w | Average Convergence € | Asymptotic Convergence e
21x21 Jacobi 0.8 0.194 0.236
Gauf3-Seidel | 1.0 0.073 0.096
41x41 Jacobi 0.8 0.197 0.210
GauB-Seidel | 1.0 0.075 0.105
81x81 Jacobi 0.8 0.206 0.211
GauB-Seidel | 1.0 0.071 0.100

Table 2.2: Agglomeration Multigrid Results for Poisson Problem: Isotropic Mesh

The ordering of the nodes for both smoothers as well as the sweep pattern for the
GauB-Seidel smoother is such that for a given node at {(,5) : {l..ny} x {1l..ny}}, the

lexicographical ordering is given by {ord(i,j) = j + 4 X ny} i.e sweeps in the y-direction
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with increasing x-direction. The numerical results in Fig. 2.9 and Table 2.2 show that the
proposed AMG convergence rate is uniform with respect to h and also satisfies the Gauf-
Seidel theoretical convergence rate of € < 0.1 [16] for the Poisson problem discretized on

isotropic meshes.
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Figure 2.10: Agglomeration Multigrid Convergence History for Poisson Problem: Anisotropic Mesh

ds Smoother | w | € w/o semi-coarsening | € w/ semi-coarsening
1 Jacobi 0.8 0.211 0.211
GauB-Seidel | 1.0 0.100 0.100
2 Jacobi 0.8 0.352 0.315
GauB-Seidel | 1.0 0.105 0.100
4 Jacobi 0.8 0.647 0.642
GauB-Seidel | 1.0 0.345 0.339
100 Jacobi 0.8 0.979 0.672
GauBl-Seidel | 1.0 0.949 0.408

Table 2.3: Agglomeration Multigrid Results for Poisson Problem: Anisotropic Mesh

Anisotropic results based on grid stretching are shown in Fig. 2.10 and Table 2.3 for
the same domain = ]0,1[2. Comparisons are made for the multigrid convergence rate

with and without semi-coarsening. The stretched grid is created by uniformly generating
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n, points in the x-direction with spacing Az. The points in the y-direction are generated
using a geometric growth algorithm with an initial spacing of %—f, where d is the initial
aspect ratio, and a growth factor of 1.1 until Ay ~ Az, after which uniform spacing is used
as shown in Fig. 2.8. For the test cases, n, was chosen to be 81 and a comparison of the
convergence rate for d; = 1, 2, 4 and 100 is made.

The results show an appreciable degradation in the multigrid convergence rates for
these point implicit schemes even with the inclusion of semi-coarsening. The ideal solution
to obtain better convergence rates would be use a line implicit smoother which will be

introduced in the next chapter.



Chapter 3

AMG: Convection-Diffusion Operators

The direct extension of standard multigrid algorithms as well as the algorithms described in
Chap. 2 to convection-diffusion operators has been shown to result in a degradation in the
convergence performance [46,76]. This is especially true for convection dominated operators
which introduce features that violate certain assumptions these algorithms are based on.

The classic implementation of AMG by Ruge and Stiiben [44] assumes that the underly-
ing matrix belongs to the class of M-matrices that are characterized by diagonal dominance
as well as symmetry which may no longer hold in the presence of strong convection. Chang
et al [45] have extended the method of Ruge and Stiiben to include generalized matrices.
However, some of the results shown for Finite Difference approximations to the convection-
diffusion equation and the anisotropic diffusion equation show that mesh independent con-
vergence rates are not obtained (in some cases, the algorithm actually diverged).

Convergence analysis for smoothers [46,88-90] shows that point iterative schemes typ-
ically have poor convergence properties when applied to Finite Difference approximations
of strongly convective equations. The convergence rate may be improved by the addition of
damping, however for some iterative schemes such as point Jacobi, no amount of damping
will make it convergent

This chapter focuses on application of the multigrid algorithm to the linear convection-
diffusion equation, especially in the high Peclet number limit. The linear convection-
diffusion equation represents a simplification of the target objective of this thesis which
is the multigrid solution of the high Reynolds number Navier-Stokes equations. In this

chapter we consider the modification of the proposed AMG algorithm to a stabilized Fi-
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nite Element discretization of the linear convection-diffusion equation. The stability of the
linear iterative smoothers, when applied to strongly convective flows, is considered and is
modified with the implementation of a multistage scheme. The poor convergence rates of
the point implicit smoothers for strongly convective flows eventually results in the choice
of a line implicit smoother. Finally, the application of multigrid to stabilized numerical
schemes raises several issues regarding the representation of the stabilization and boundary
condition terms on the coarse spaces. The modified multigrid algorithm is applied to sta-
bilized Finite Element discretizations of convection-diffusion problems and the results are

analyzed.

3.1 Model Problem

The model problem considered is the two dimensional stationary linear convection diffusion

problem represented by the differential equation:
V- (V®) - V- (u(z,y)V®) = f in €, (3.1)

where Q is a bounded domain in IR? with boundary I' which is made up of a Dirichlet
boundary I'p and a Neumann boundary I'y = I'\I'p. V = (u,v) is a prescribed diver-
gence free velocity field, the coefficient u(x,y) is a strictly positive diffusivity (or viscosity)

coefficient and f is a source function. Let us consider the partition of I" into {I'",I'"} where

I~ = {(z,y) €':V-n< 0} (inflow boundary) (3.2)
rt = I\l (outflow boundary) (3.3)

and also consider the following boundary subsets:

Iy = Ip(\I* (3:4)
ry = Iy[(T* (3.5)



3.1. MODEL PROBLEM 65

We simplify the boundary conditions by assuming that I'™ C I'p such that Eq. 3.1 is subject
to the boundary conditions:

® = g¢gp onI'p, (3.6)
(—=®V +uV®)-n = gy on I'f, (3.7)
The behavior of Eq. 3.1 is governed by the Peclet number defined by:

UL
7

Pe (3.8)
which represents the relative importance of advection to diffusion where U is some reference
speed and L is a characteristic length of the problem. In the advective limit Pe — oo,
Eqg. 3.1 is a hyperbolic equation which is characterized by the transport of information
along characteristic lines. In this case, the solution may be discontinuous with jumps across
the characteristic lines. Also, boundary conditions may only be specified on the inflow

boundary such that the problem reduces to:

V.(V®) = f inQ, (3.9)
® = gp on I}, (3.10)

Hence, discontinuous jumps in the solution may occur if the boundary data gp is discontin-
uous. The introduction of diffusion results in the solution being continuous over the entire
domain such that any jumps will spread out around the characteristic line over a region of
width O(1/+/Pe). Tt is well known that the application of the classical Galerkin Finite Ele-
ment method to the advection-dominated convection-diffusion equation lacks stability [91].
This results in solutions which are polluted with spurious oscillations due to unresolved
internal and boundary layers. Oscillation-free solutions may be obtained by the application
of upwind differencing to the convective terms, however upwind differences are first order
and produce overly diffusive solutions. Hence, we consider the Streamline Upwind/Petrov
Galerkin (SUPG) method introduced by Brooks and Hughes [92] which is a stabilized Finite
Element formulation that is a consistent weighted residual method. This method attempts
to introduce upwinding with no crosswind diffusion while maintaining a higher order dis-
cretization [93,94]. A generalization of the SUPG method is the Galerkin/Least Squares
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(GLS) method [95] which is equivalent to the SUPG method for purely hyperbolic operators
and/or for piecewise linear elements. Though quite similar to SUPG, the analysis of GLS

is simpler.

Introducing the variational form of Eq. 3.1, the discrete problem reduces to finding
®;, € S such that:

B(®h,wh)gar + B(®h, wn)gis + B(®h, wh)se = 0, Yy, € V" (3.11)

where the forms B(:,-)ga, B(+,)g1s and B(:, )y account for the Galerkin, GLS stabilization,

and boundary condition terms respectively. These are defined as

B(®p, wp)gu = /Q(—cbh\? NVwp + VB, - Vo, — whf) a0
el

B(®h,wh)gs = Z/e (V'th — pVuwy, —f) Te - (V'V@z — pV2%, —f) a2
e=1

B(®p, wp)pe = / wh(d)\?) -ndl’ — / wp(pVe) -ndl = / wpgn dT'
T'n I'n I'n
where the coefficient 7. is the GLS stabilization parameter which is positive and represents
an intrinsic time scale. Local element Peclet number (Pej) and length scale (he) dependency
for 7, [96] is important in order to provide accuracy and proper stability especially in prob-
lems where severe cell stretching is required for computational efficiency in the resolution

of internal/boundary layers. The local element Peclet number Pey, is given by

V| h
pe, _ [VILe

(3.12)
Carette [97] gives a review of several designs for the definition of the elemental length
scale h, for linear triangular elements. In general, these definitions fall into two broad
classes which are geometric and projection based methods. The geometric methods consider
the geometry of the element and try to determine some suitable length scale for h, while
projection methods consider the projected length of the triangle onto a line parallel to the
local velocity field. We make use of the definition by Mizukami [98] which corresponds to
the maximum of the intersection between the triangle and a line parallel to the local velocity

field as shown in Fig. 3.1.
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This figure was broken... original no longer exists.

Figure 3.1: Illustration of Linear Triangle Length Scale h,

The stability parameter needs to be selected to satisfy the following conditions [97]:

he )
Te — 0 Peh >> ]_ 3.13
(uvn (3.13)
h2
e = O (f) Pep < 1 (3.14)

For the scalar convection-diffusion equation, the definition for 7, has usually been done in

a heuristic fashion such that 7, takes the general form:

Te = 75O (Pey,) (3.15)

where 7S is the convective limit for 7, given by Eq. 3.13 and ( is a function of the local

Peclet number Pey,. In order for 7, to satisfy the conditions laid out by Eq. 3.13 and Eq. 3.14,

the asymptotic behavior for 7, is governed by:

(=1 as Pep — o0 (3.16)
¢ — CPe, as Pe,—0 (3.17)

where C is a constant. In the absence of convection, Pe;, = 0 which shows that stabilization
is not required for purely diffusive flows. Analysis of the GLS discretization of the one
dimensional linear scalar convection-diffusion model problem with constant flow, diffusivity,

absence of source and uniform mesh using piecewise linear elements [99], shows that nodally
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exact solutions may be obtained with an optimal definition for :

he .

Topt = WCOPt(a) (318)

Gope(@) = coth(a) -~ (3.19)
heUl

a = 2% (3.20)

where « is the local element Peclet number. Following this example, Shakib [96] proposes

some simpler forms for 7.. We make use of one such form such that:

- Peh

C(Pep) = m (3.21)

The construction of 7, now follows. For a triangle T, as shown in Fig. 3.2, we introduce
the affine mapping x = x(¢), between the master triangle 7., in the parametric space
¢ =1[¢n7, and T, € Q in the mapped space x = [z,y]7. The explicit form for the affine

mapping is given by:

§ _ 1 ] (223 —w3y2) L b
U 24¢ | (z3y1 — 21y3) 24,

where A, is the element area given by

(Y2 —y3) (73 —x2) ] { T } (3.22)

(ys —y1) (21— 72) Yy

0 0 1

A, = o T2 Y2 W 0 (3-23)

z3—z1 y3—y1 O

Let

1,1_111-|-112-l-113 6—U1+02+U3

3 3
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This figure was broken... original no longer exists.

Figure 3.2: Master Element and Mapping Function

T = Teyn—YeTny
Bi = (ymu—z,0)/T,
By = (z60—-vyeu)/J,
By = —B1—DB,

where (@, 7) is the average of the velocity defined at the three element vertices and J is the

Jacobian of the reverse mapping. The parameter 7, is now defined by

3
D(B1, By, B;) =
(B1-B2.B3) = 0BT 1B, ¥ 1Ba)
_ U
T - U1+I«372+ 3
Pep, = (U.0)2 (3.24)
7
e = D% (3.25)

V9 + Pe;,2

For the choice of the nodal basis functions and linear P; interpolation polynomials in S"
and V", Eq. 3.11 represents a sparse linear system of equations which can also be written
simply as

Ap®p =bp
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3.2 Multistaging

The application of linear iterative schemes such as point Jacobi to discretizations of hy-
perbolic or almost-hyperbolic partial differential equations has been known to fail due to
the lack of stability of the smoothing algorithm. Consider the basic iterative scheme (as
outlined in Chap. 2) defined by Eq. 3.26:

Pt = @ + M, (b, — Ap®Y) (3.26)

where ®} is the current solution estimate at iteration n. Application of Theorem 2.1 to the
scheme implies that the eigenvalues of the iteration matrix —M;lAh have to lie in a region
in the complex plane defined by

lz+1] <1 (3.27)

Wesseling [46] has shown that the application of the basic iterative scheme given by Eq. 3.26,
to an upwind Finite Difference approximation of the pure convection problem results in a
non-robust smoother for the point Jacobi and point GauB-Seidel schemes. This is a well
known problem especially regarding the application of these point relaxation schemes to
higher order discretizations which causes eigenvalues of the iteration matrix to fall outside
the stability region of the basic iterative scheme. A possible solution for this is to increase
the stability region of the smoother by the introduction of a multistaging scheme. Multistage
methods were developed by Jameson [24] for the solution of the Euler equations which is
a hyperbolic system of equations and have been applied with great success to a variety of
applications [24,100,101]. An N-stage multistage formulation of the basic iterative scheme

may be implemented as follows. Let:
0 n
q)l(l) = o
o) = o) + My (b - An)))

oV = o) + oM, (b - A2}

ortt = gV (3.28)
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where «; are the multistage coefficients. Standard Runge-Kutta definitions give

(3.29)

although optimized coefficients may be found [25,101-104]. For the rest of this thesis, the
optimized multistage coefficients employed are those by Lynn [104] for Roe’s k = 0 scheme.
These coefficients have been optimized for the damping of the high frequency modes for
locally preconditioned discretizations of the full Euler or Navier-Stokes spatial operator.

Table 3.1 shows the numerical values employed for the 3-stage and 5-stage schemes for both

full and semi-coarsening.

3 stage (full) | 3 stage (semi) | 5 stage (full) | 5 stage (semi)
o 0.2075 0.2239 0.09621 0.08699
s 0.5915 0.5653 0.2073 0.1892
as 1 1 0.3549 0.3263
oy 0.6223 0.5558
(0733 1 1

Table 3.1: Optimized multistage coefficients for full and semi-coarsening by Lynn [104]

Given one step with the full scheme described by Eq. 3.28, the multistage error ampli-
fication factor 1, which is equivalent to Eq. 2.26 may be defined by:
ent = Py(z)e) (3.30)

where e} is the solution error defined by Eq. 2.14, z = —M,:lAh and ¥ is the polynomial
matrix defined by:

N
Py(z) = I—}—ch-zj (3.31)
=1
v
cj = H Qs (3.32)

s=N+1—j
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Hence, for the multistage formulation to be convergent:
. n _
lim |7 (2)]| = 0 (3.33)
Theorem 3.1 The multistage method Eq. 3.28 will converge for any initial guess @% iff

p(Yn(z) <1 (3.34)

Theorem 3.1 implies that the spectral radius of the matrix z must lie within the stabil-
ity region defined by |¢n(z)| < 1. Fig. 3.3 shows the stability regions for the optimized

multistage schemes as well as standard Runge-Kutta multistage schemes for comparison.

T T
RK 1 stage
—— RK5 stage
— — Opt. 5 stage (full)
— . Opt. 5 stage (semi) [

RK 1 stage
— RK 3 stage
— — Opt. 3 stage (full)

L L L L L L L L L L . L L L L L L L L L
-6 -5 -4 -3 -2 -1 0 1 2 3 -6 -5 -4 -3 -2 -1 0 1 2 3
Re Re

(a) 3 stage (b) 5 stage

Figure 3.3: Stability Contours

3.3 Multigrid Smoother for Convection-Diffusion Operators

The efficiency of the multigrid algorithm lies in the synergy of the various multigrid compo-
nents, which can be encapsulated in the smoother and the coarse spaces. The decomposition
of the error is made with the idea that the smoother on each space is responsible for the

elimination of a portion of the error. Convergence analysis of smoothers such as point Ja-
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cobi which possess excellent damping properties for elliptic operators has been shown to
exhibit poor convergence rates when applied to strongly convective systems [46,88]. These
systems are characterized by the transport of information along characteristic directions
which causes the error modes to decouple into preferential directions. Point relaxation
schemes result in preferential error smoothing along these directions [49] with a subsequent

deterioration in the multigrid convergence rate.

We propose a solution to the outlined issues by a modification to the algorithms given in
Chap. 2. In highly stretched grid regions and strongly convective regions, the convection-
diffusion model problem is characterized by strong alignment. Hence, we opt to use an
implicit line relaxation scheme as the smoother where the implicit lines are constructed
to follow directions of strong influence. In strongly convective problems, the directions
of strong influence align with the characteristic directions. This can lead to exact solvers
under the right conditions due to the propagation of advected information along these

characteristic directions.

The line smoother developed here for unstructured grids is similar to the geometry
based line implicit scheme described by Mavriplis [6,71,105]. In Mavriplis’ scheme, the
smoother is a line implicit smoother in regions of highly stretched elements and in the
isotropic regions of the grid, the smoother reverts to a point implicit smoother. While this
represents an improvement, the use of a point implicit solver in the isotropic grid region
which is convection dominated does not fully address the multigrid convergence rate issues.
The proposed line implicit smoother is designed to take into account, the error directional
decoupling issues induced by anisotropic meshes as well as the hyperbolic characteristics of

the governing equation.

Wesseling [46] gives a Fourier analysis for some line implicit smoothers applied to Finite
Difference approximations of the linear convection-diffusion equation and shows that these
are superior smoothers to point implicit schemes. Fig. 3.4 shows an example of the implicit
line construction for a 2D GLS discretization of the linear convection-diffusion equation

with an imposed velocity field of V = (—y, x).

The use of a line relaxation scheme leads to a natural splitting of the matrix into
tridiagonal sub-matrices which may be solved in O(N) time. The elemental agglomeration
procedure as well as the construction of the interpolation operators and the coarse space

operators remain as previously described.
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Figure 3.4: Implicit Line System

3.4 Implicit Line Construction

The implicit line construction process is based on the idea of linking strongly coupled nodes.

To measure nodal coupling, we use a matrix based concept which we term coupling measure.

Definition 4 The coupling measure between two connected vertices is a local quantification

of the connectivity/influence between these vertices.

Typically, this is based on the matrix stencil but other measures such as a projection of the
flow velocity on the mesh graph edges or streamlines may be used. This becomes even more
complicated in the case of block systems of equations which arise in discretizations of the
Navier-Stokes equations. In any case, given some local quantification of the local coupling
between any two nodes, we may construct a coupling matrix. For the model problem, we
simply choose the discrete matrix in Eq. 3.11 as the coupling matrix. Based on the scalar

coupling matrix (c; ;) chosen, let the set of points, denoted by S;, connected to a node be

S; = {j 75 1 Cij 7é 0} (335)
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We define the coupling measure between any two connected vertices (i, j) by

Cij
|¢jiil
Bi = m {k: ke S}

In convection dominated flows or upwind-type methods, strong coupling tends to be one-
sided which necessitates the two way consideration of Eq. 3.36. We refer to [46, 106] for
other methods regarding the detection of strong coupling.

Line construction is done in a two pass process which involves the construction of in-
dividual lines and then a merging of lines to reduce the line count. The construction of a
line begins by choosing a seed node. For a given line, it should ideally be such that any
member node of the line can be chosen as a seed, such that tracing out the line from the
seed node in both directions creates the line. This leads to the concept of forward and
backward mode line construction. In order to describe the algorithm properly, we require

one more definition which we term line tridiagonality.

Definition 5 Line tridiagonality is a matriz based connectivity property. A line which has
no nodes that are coupled to more than two other nodes in the line is said to satisfy this
property. This ensures that the sub-matriz associated with the line is a true tridiagonal

matriz.

In the construction of the implicit lines, overlap of the lines is permitted. We now present

the algorithm in detail:
Procedure 4 (Forward Mode Line Construction)
Step 0: Set overlap counter to zero, create tag vector for the nodes and untag all nodes.

Step 1: Tag the current node and compute coupling measure for all the nodes connected to

the current node.

Step 2: Compute a coupling measure threshold value which is defined as a fraction (typi-

cally 0.75) of the mazimum coupling measure of all coupled nodes.

Step 3: Scan the coupled nodes and choose the one which
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(a) Has the largest coupling measure greater than the threshold and

(b) Is untagged and

(c) Is not already in the current line and
)

(d) Preserves tridiagonality.

Step 4: If the chosen node already exists in another line and is not an extremity of that
line, increment overlap counter. If counter reaches predetermined limit, terminate

line.

Step 5: If the chosen node already exists in another line and is an extremity of that line,
terminate the algorithm and merge the current line with the other line only if tridiag-

onality is preserved.

Step 6: Repeat Step 1 with the chosen node as the current node until no nodes satisfy the
criteria in Step 3 or Step 4 or 5 is triggered.

The forward mode line construction acts as an integral part of the backward mode line

construction. The algorithm for the backward mode line construction is now presented:
Procedure 5 (Backward Mode Line Construction)
Step 0: Create tag vector for the nodes and untag all nodes.

Step 1: Tag the current node and for each untagged node connected to the current node,

perform one iteration of the forward mode algorithm.

Step 2: From all the coupled nodes which would have chosen the current node as the next
node in Step 1, pick the one with the strongest coupling. Repeat Step 1 with the

chosen node as the current node until no nodes satisfy the criterion in Step 2.

Using these two components of line construction, the full algorithm for the line construction

is now given by:
Procedure 6 (Implicit Line Construction)
Step 1: Obtain seed node which does not belong to any line.

Step 2: Using seed node, perform partial line construction using the forward and backward

mode procedures and merge the two pieces into one contiguous line.
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Step 3: Repeat Step 1 until there are no more seed nodes.

Step 4: Perform line merging. Consider the node extremities of each line and scan for
all coupled nodes to these extreme nodes. If any of these coupled nodes is also an
extremity of another line, compute the coupling measure between these two nodes. If
the coupling measure is greater than a threshold value, merge the two lines provided

that tridiagonality is preserved.

The overlap between the lines is kept to a minimum for two reasons. The first is to
reduce the amount of work by the relaxation. The second is to prevent possible amplification
of local modes due to solving a vertex equation multiple times. In order to alleviate such
amplifications, we can parametrically control the amount of overlap in the line construction.

However for the rest of the thesis, all results presented will be based on no overlap.

3.5 Fourier Analysis of Implicit Line Smoother

A simplified Fourier stability analysis of the implicit line smoother as applied to a convective-
diffusive model problem is now presented. We consider the linear scalar convection-diffusion
model (Eq. 3.37) with no body force, constant diffusivity and an imposed velocity field of
V = (Vcos A,V sinA). The discretization is done using the Galerkin Least Squares (GLS)
formulation on the grid shown in Fig. 3.5.

V-Vu = uVu (3.37)

We now consider periodic boundary conditions

which enables us to perform a Fourier decomposition of the exact solution. The GLS
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This figure was broken... original no longer exists.

Figure 3.5: Scalar convection-diffusion model domain

variational form is given by:

Tel

; /e (V [cos AwfcZ + sin Awg] — i [wﬁx + wgy]) T (V [cos Aug + sinAuZ] — [uzw + uZy]) ds2

+/Q (th [cos Aul + sin AUZ] + p [w;‘uﬁ + w’;%’;]) d2 =0 (3.38)

where
ny Oy
u"(x,y) = D) Njj(x,y)ul (3-39)
i=1 j=1
Ny Ily
wh (X, y) = Z Z Nij (X, Y)VVL1 (340)
i=1 j=1

We consider the shape functions Njj(x,y) to be piecewise bilinear interpolants in x and y
such that

Njj(x,y) = F(x)G(y)
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For the stencil shown in Fig. 3.6,

T—xi 1 .

F(x) = Ar Regions 1 & 3 (3.41)
L2 Regions 2 & 4
Y—Yj—1 s

Gly) = A—;j Regions 1 & 2 (3.42)
% Regions 3 & 4

This figure was broken... original no longer exists.

Figure 3.6:

Computational 9 point stencil for Fourier Analysis of Implicit Line
Smoother

Substitution into Eq. 3.38 yields

0 = iz“’h] {/Q i Z (VNij [cosAanm” + sinAaJ;m"D uf;mdg}

=1 j=1 m=1n=1 €z Y
ng Ty ng Ny ON. BN
h 2 2A 1] mn h 0 4
+ ;;ww{/m;;([uﬂv cos ]—895 B )umnd } (3.43)
ng Ny ng Ny
N;; ON,
+ ZZ%’Z / ZZ([quTVQSinQA]a i 9 m")u’;,mdQ
=1 j=1 Q m=1n=1 ay ay
ng My ng Ny
ONij ONpy  ONyj ON,
h 2 2 1) mn ij mn h
+ ;;wij {AE;([TV sin A cos A ( 9z Oy + 3y s ))umndﬁ}
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This is of the form

ng Ny
ZZw%sz(ﬁh) =0 ﬁh:{ufj:izl,...,nw;jzl,...,ny}
i=1 j=1
= Gij(u") = 0 VuwbeR{i=1,...,n,—1; j=1,...,n,—1}

Evaluation of the integrals lead to the 9-point stencil matrix

[A] =1 [Q]+11 Rl + 4 [Q]" +12[R]" + 2 [Z] + 2 [Z]" (3.44)
where VA A
1 COS
_ 4
q1 12 (3 5)
VAzsin A
_ 4
q2 1 (3.46)
Ay 2 2
=< A 4
"= A, (1 +7V?cos® A) (3.47)
r9 = Az (u+ TV?sin® A) (3.48)
6Ay '
2gin A cos A
o = TV sinAcosA (3.49)
4
2y = 7V2sin A cos A (3.50)
4
-1 0 1
Q=] -4 0 4 (3.51)
-1 0 1
-1 2 -1
R]=| -4 8 —4 (3.52)

-1 2 -1
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1 -2 1
Z]=| -2 4 -2 (3.53)
1 -2 1

We now extract three non-dimensional groups from Equations 3.45 - 3.48

Ay

- 2 54

5= 3 (3.54)
Vr

N o= L .

M (3.55)

pe, = /AT (3.56)
7

where Eq. 3.54 represents the mesh aspect ratio, Eq. 3.55 gives a measure of the convec-
tion/diffusion dominance i.e 8 — 0 in the pure diffusion limit and X — 1 in the convective
limit (for A = 0°), while Eq. 3.56 gives the local mesh Peclet number (also for A = 0°). The

non-dimensional group X may be further analyzed by considering 7 such that:

h Peh

= V\/g + (Peh)2

For the determination of he, let us consider Fig. 3.7. Misalignment of the flow angle A

(3.57)

This figure was broken... original no longer exists.

Figure 3.7: Determination of characteristic length h,

with the mesh as well as the mesh aspect ratio (§) results in a dependence of h, with both

A and §. We now take into account, the two following cases of flow misalignment :
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Case 1: A < tan 1 3Y (= tan1(d))

Az
Az
h, = 3.58
¢ cos A (3.58)
Az Peh
=7 = 3.59
T VcosA /9 4 Pey? (3:59)
Peh
=N = (3.60)
cos A\/9 + Pep,?
1A _
Case 2: A > tan™' 32 (= tan~'(¢))
Ay
he = .61
¢ sin A (3.61)
Ay Peh
= = 3.62
7 VsinA /9 + Pe,? (3:62)
) Peh
= N = - 3.63
sinA /9 4 Pey,? (263)
Since the non-dimensional group X = W(4,Pey, A), we are left with the parameter set

(6,Pep, A) for numerical studies. We now consider the splitting of the stencil matrix as
applied to the line implicit smoother such that [A] = [M] — [N]. Depending on the stencil
coeflicients, the line creation algorithm will result in one of the two splitting stencils for the

damped line Gau-Seidel smoother:

0 0 0
[M], :% X X X (3.64)
X X X
X X 0
M], = Llx x o (3.65)
X X 0
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and
) 0 0 0
M], = » X X X (3.66)
0 0 O
) 0 X 0
M], = ” 0 X 0 (3.67)
0 X 0

for the damped Jacobi smoother.
Fourier Footprint
According to Eq. 2.26, the application of the basic iterative scheme results in a solution

error at iteration n + 1 that satisfies

et = Sem

where S = M~!N. Tt is now assumed that the operator S has a complete set of eigenfunc-
tions or local modes denoted by ¥(0,,60,),{0s,60,} € ©, with © some discrete index set such
that

S(Gz,ey)\I’(Oz,ey) = )x(@m,ey)‘I’(Oz,ey) (3.68)

and A(0;,6,) is the eigenvalue belonging to ¥ (6, 6,) where {0,,6,} are the Fourier angles.
Let us now consider a discrete Fourier representation of the exact solution. Let I, =
{0,1,...,ny — 1} and I, = {0,1,...,n, — 1}. Then, every u” : {I, I,} — IR can be written

as

My +Pe  My+Py
uh(jzajy) = Z Z ckmkylp(gzaey) (369)

kz=—mg ky=—my

where the Fourier eigenmodes, ¥ (0, 0,), are defined as

U (0,0,) = eUsbetivhy) (3.70)
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and
n; :
pi=1m; = 5~ 1 for nj even i€ {z,y} (3.71)
n; — 1

pi =0,m; = for n; odd. i€ {z,y} (3.72)

For simplicity, it is assumed that n, and n, are odd. The Fourier angles as defined in
Eqg. 3.69 are

6, — 2mky ko €I,
Ng
2k
6, = Y k I,.
y my y € 1y

The smooth and rough Fourier modes may now be defined by considering a partitioning of
the grid wave numbers (©) into smooth (0;) and rough (©,) components. In 2D, we may
define

2 -1 -1
O=1{0:0=(0,6,),00= 0 p,= M=l M=l _ouy (W)
Na 2 2
such that
®©=0,u0,, 6,n6,=10 (3.74)

Depending on the coarsening algorithm, we have the following partitions:

Full Coarsening: Standard coarsening in both directions as shown in Fig. 3.8(a) gives

2
m™ T
O, = On H(—g’g) (3.75)
a=1

o, = ©\0, (3.76)

Semi Coarsening: Semi-coarsening in the y-direction as shown in Fig. 3.8(b) gives

0, = On{[-max(-=,I) (3.77)
o, = 06\0, (3.78)
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Broken figure Broken figure
(a) Semi- (b) Full
coarsening coarsening

Figure 3.8: Smooth (0;) and rough (0,, greyed) wavenumber sets in two dimension

The local mode smoothing factor or amplification factor p is now defined as
p =sup{|A(0)|: 0 € ©,} (3.79)
In order to compute p, the eigenvalue problem

ST = AU
=NU = MV

has to be solved. Based on the stencil matrix, substitution of the eigenmodes ¥ gives

26 N, k)eilif ko)
25k M(j, k)eil0etkby)’
(kD)0 ikly cilk=1)0, )N {gik+1)00 ikl oi(k—1)00 )T

_ (ih+100y ¢ikby oi(h—1)0, YN {eik+1)0s | ¢ik0s_eilk—1)0 )T (3.81)

— {eiay, 1’ e_iay }N{ezew’ 1’ e_iaz }T (3 82)
{eiay, 1, e—10y }M{eiem’ 1, e~z }T :

A0a,0,) = 00,0, € {—7,...,7} (3.80)

Hence, for the scheme to be a smoother, p < 1. In the context of a multistage scheme,
Theorem 3.1 shows that the smoothing factor is determined by the amplification polynomial
YN (2(0z,0y)) where z(0;,0,) is the eigenvalue of the matrix —M ~*A. The operator S and
—M~!A share the same set of eigenfunctions such that
{eilk+1)0y ¢ik0y ¢i(k=1)0y ) A {eilk+1)0z ik0n gilk—1)0z )T
2(02,0y) = — {eik+1)8y ¢ikty ci(k=1)0y Y M {ei(k+1)0c  ¢ik0s i(k—1)0 )T (3.83)
{eiay, 1, e 10y }A{ewm’ 1, e~z }T
{eiey’ 1, e— 0y }M{eiem’ 1, e~ 10z }T

(3.84)
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Hence, the multistage smoothing factor is defined by

p(9,Pep, A,w) = sup{|Yn(2(0z,6y))| : {0z,60y} € O} (3.85)
0 |Pep | A R | pg (w=1.0) | Matrix Splitting
11109 | 0° |0.316 0.50 Horizontal

1] 10° | 10° | 0.321 0.49 Horizontal

1] 10° | 20° | 0.336 0.48 Horizontal
1]10% ] 0° |0.999 0.56 Horizontal
11]10% | 10° ] 1.015 0.49 Horizontal

1] 10% | 20° | 1.064 0.49 Horizontal

1] 10% | 0° | 1.000 0.56 Horizontal

1] 10°% | 10° | 1.015 0.49 Horizontal

1] 10% | 20° | 1.064 0.49 Horizontal

Table 3.2: Fourier Smoothing Factor: Full coarsening and 3-stage scheme with optimized multistage
coefficients

0 |Pep| A I pc (w=1.0) | Matrix Splitting
1072 | 10° | 0° | 0.316 0.55 Vertical
10~2 | 10° | 10° | 0.018 0.55 Vertical
102 | 10° | 20° | 0.009 0.55 Vertical
1072 | 102 | 0° | 0.999 0.55 Vertical
1072 | 10% | 10° | 0.058 0.54 Vertical
1072 | 10% | 20° | 0.029 0.54 Vertical
1072 | 10% | 0° | 1.000 0.55 Horizontal
102 | 10% | 10° | 0.058 0.52 Vertical
102 | 10% | 20° | 0.029 0.53 Vertical

Table 3.3: Fourier Smoothing Factor: Semi-coarsening and 3-stage scheme with optimized multi-
stage coefficients

We consider the 3-stage line GauB-Seidel smoother for different system parameters
as shown in Table 3.2 and Table 3.3 where the smoothing factor for the line Gauf-Seidel
smoother is denoted by pg. Table 3.2 represents a mesh aspect ratio of 1 so that full

coarsening is applied. Table 3.3, however represents a mesh aspect ratio of 100 which
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introduces strong mesh-induced anisotropic effects and as such, semi-coarsening is applied.

RK 1 stage
RK 3 stage
Lo e — Opt. 3 stage (full)

(a) Per,=10°A = 0°

(b) Pep=10% A = 20°

Figure 3.9: Fourier footprints for line Gauf3-Seidel smoother using full coarsening (6=1)

RK 1 stage
— - RK 3stage
— Opt. 3 stage (full)

(a) Pep=10°,A = 0°

RK 1 stage
K 3 stage
Lo e — Opt. 3 stage (full)

(b) Pe,=10% A = 20°

Figure 3.10: Fourier footprints for line Gau-Seidel smoother using semi-coarsening (§=1072)

The last column in Table 3.2 and Table 3.3 denotes the type of line that is created by

the line creation algorithm based on the magnitude of the coefficients in the [A] matrix
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stencil. The resulting plots of the Fourier footprint over the Fourier space for some of the

different problems are shown in Fig. 3.9 and Fig. 3.10.

The multistage amplification factors for the implicit line schemes show good damping
properties for these schemes in general, even in the presence of flow misalignment. In all
cases, the implicit Gau3-Seidel scheme is stable and in most cases, is stable for a single stage
formulation with light or no damping. The anisotropic mesh results depicted in Table 3.3
show a fairly consistent trend. The strong anisotropy induced by the mesh results in all the
lines being created vertically. The exception to this is the case where Pe, = 105, A = 0°
which resulted in horizontal lines. Introduction of flow misalignment as well as higher local

mesh Peclet number have little effect on the amplification factors.

The conclusion of the Fourier analysis performed is that the implicit line Gauf}-Seidel
smoother in conjunction with a multistaging scheme is a viable option especially in the

anisotropic mesh regions.

3.6 Consistency Scaling Issues for Stabilized Methods

Elemental agglomeration brings up special issues when AMG is applied to convection-
diffusion operators which are discretized using stabilized methods such as SUPG or GLS.
Let us consider the matrix equation (Eq. 2.22) where Ay is some matrix resulting from a
stabilized method such that

Ap = AP L AT (3.86)

where A} is the component containing the stabilization parameter and A};ase is the base
stiffness matrix (Galerkin + boundary terms for FEM). Artificial dissipation schemes [107]
and stabilization schemes for convection-diffusion operators [93-95] operate by the addition
of a stabilization term of the form 7V?u, where 7 ~ O(h). As discussed earlier, nodal
agglomeration techniques which use injection based interpolation operators result in con-
sistent coarse space convective terms but fail for the constant-coefficient diffusive terms.
However, elemental agglomeration results in both consistent convective and diffusive terms
on the coarse spaces. Following the analysis of Appendix B, consider a Laplacian operator
with an O(h) coefficient:
d*u

hes (3.87)
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Discretization of this term on the 1D grid as shown in Appendix B yields

Uip1 — 2U; + Uj—1

h

(3.88)

such that a rediscretization on a coarse grid with spacing H = 2h would result in the coarse

grid term
Ury1 — 2Ur + Ur—1
2h

If both the restriction and prolongation operators are based on injection, as is the case in

(3.89)

nodal agglomeration, we may multiply the left hand side of Eq. B.5 by A to obtain the
discrete coarse grid term:
Ur41 — 2Ur +ur—1 @

~ H
2h dz?

(3.90)

Qg

This is consistent with a rediscretization on the coarse grid. We now perform a similar
analysis with a restriction operator based on injection and a prolongation based on linear
interpolation. We multiply the left hand side of Eq. B.6 by A to obtain the discrete coarse

grid term:
Ury1 — 20+ a1 H @
4h 2 da?

(3.91)
Qg

which is inconsistent with a rediscretization of the stabilization on the coarse grid. This
implies that there is an improper scaling of the stabilization parameter on the coarse grid
due to the h-dependence of the coefficient. This provides an interesting duality between
nodal agglomeration which fails to discretize the constant coefficient diffusive terms but, as
a result of this inaccuracy, properly scales stabilization contributions, whereas for elemental
agglomeration the opposite is true. In order to address this stabilization issue, we introduce
a length scaling matrix o . The matrix is split according to Eq. 3.86 and the coarse grid

matrices are computed using the GCA formulation

A1 = RLAP®P, 4+ oR,A"P, (3.92)
= AP+ AL, (3.93)

where o is a diagonal scaling matrix which accounts for h-dependency in A”. This matrix is

currently implemented by computing a characteristic area for each node based on the nodal
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control volume and taking the square root of this area. The currently implemented scaling
procedure is only fully appropriate for a full coarsening scheme with isotropic elements.
A more appropriate version for semi-coarsening with anisotropic elements has not been
developed yet.

The effect of T stabilization scaling is tested by plotting the eigenspectrum of the system
matrix Ay and the coarse space matrix A; with and without scaling. The test case consid-
ered is the linear convection diffusion equation discretized over a square domain Q =]0, 1[2
(Fig. 3.4(a)) with a prescribed velocity field U = (-y,x) and Peclet number of 10°. An eigen-
spectrum decomposition of the fine grid matrix and the first coarse grid matrix is shown
in Fig. 3.11, with and without 7 scaling. The convection equation is a hyperbolic equation
with imaginary eigenvalues. However, the numerical discretization introduces dissipation
which is manifested in the real part of the eigenvalues of the discrete system. The eigenval-
ues A for a Finite Difference approximation of the stabilization term are such that A ~ %

from which we may expect the eigenvalues \ for the FEM discretization to follow:

A~ /Q(%> asy (3.94)

~ h (3.95)

For an approximate 4:1 full coarsening ratio of the coarse grid such that % ~ 2, we expect
the real portion of the coarse grid matrix eigenvalues to scale similarly. This behavior
is observed in Fig. 3.11(c) where stabilization scaling is performed. Fig. 3.11(b), which
represents the coarse grid matrix obtained without stabilization scaling, does not preserve
this property. In fact, it may be observed that it appears to scale the imaginary parts of

the eigenvalues with h without scaling the real parts.
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(b) Coarse grid matrix A; w/o rescaling (c) Coarse grid matrix A; w/ rescaling

Figure 3.11: Comparison of scalar convection-diffusion equation eigenspectrum w/ and w/o T
scaling for Pe = 1e6
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3.7 Results: Elliptic Operator (revisited)

As observed in Chap. 2, the convergence of the proposed multigrid algorithm degrades
appreciably when applied to the Poisson problem discretized on a stretched grid. This
degradation becomes worse with increasing grid anisotropy and can be partly ameliorated
through semi-coarsening. Unfortunately, the directional decoupling of the error modes due
to the grid stretching is such that semi-coarsening may not be enough as illustrated in
Table 2.3. An effective solution to this is a combination of semi-coarsening and directional
smoothing [6,71].

We revisit the anisotropic grid results of Chap. 2 and apply the modified multigrid
algorithm using the developed line Gau3-Seidel implicit smoother to the anisotropic grid
discretization of the Poisson problem (Eq. 2.59), on the same domain © = ]0,1[? and for
the same choice of initial aspect ratio §;. The asymptotic multigrid convergence rates € are
shown in Table 3.4 for the point implicit and line implicit smoothers using semi-coarsening.

As can be observed, grid independent convergence rates are achieved.

ds || w | € (Point Implicit) | e (Line Implicit)
1 1.0 0.100 0.054

2 1.0 0.100 0.067

4 1.0 0.339 0.072
100 || 1.0 0.408 0.059

Table 3.4: Multigrid results for Poisson problem on anisotropic mesh using semi-coarsening: Com-
parison of convergence rates for point and line Gau3-Seidel smoothers

3.8 Results: Convection-Diffusion Operator

We consider the linear convection diffusion equation (Eq. 3.1) over a square domain defined
by © =]0,1[? (Fig. 3.12) and prescribed velocity field U = (-y,x). The forcing function f

is set to zero, the Neumann outflow boundary on the upper boundary is gy = 0 and the
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Dirichlet boundary on the other boundaries is

5.0(z — 0.2), for 02 < z < 04, y =0

)L for 04 < < 0.6, y = 0

=Y 1-5&-06), for 06 < « < 08 y = 0
0, otherwise.

This particular set of conditions is chosen to simulate a boundary layer flow with the nominal
Peclet number
_ Up-Lp 1

” - (3.96)

Pe

This figure was broken... original no longer exists.

Figure 3.12: Computational domain for scalar convection diffusion boundary layer prob-
lem

The discretized domain is adapted on the x = 0 boundary to capture the boundary
layer as shown in Fig. 3.4(a). All presented results are based on a V(1,1) multigrid cycle
using the line GauB-Seidel smoother and the solver is terminated when the RMS absolute
error in the residual is less than 107!3. The preconditioning matrix for the proposed line
smoother was stable without any multistaging, hence, all the results presented are based on

a single stage formulation. The relaxation factor w chosen for all the test cases was 0.95.
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T
— ngrid=1

ngrid=2
— - ngrid=3
— - ngrid=4
— ngrid=5 H
ngrid=6
— - ngrid=7

RMS Residual

0 10 20 30 40 50 60 70 80 90 100
# cycles

Figure 3.13: Boundary Layer Grid Level Dependency: 60399 points; Pe = 1e6

T
—— 3849 points
— — 15763 points
60399 points

RMS Residual

1
0 5 10 15 20 25 30 35 40 45 50
# cycles

Figure 3.14: Boundary Layer Mesh Size Dependency: Pe = 1e6
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Multigrid Level Dependency:

The dependence of the convergence rate on the number of coarse spaces is shown in
Fig. 3.13. The fine mesh has 60,399 vertices and 119,714 elements and a total of 6 coarse
grids were constructed (7 including the fine grid). In the asymptotic limit, the convergence
rate is the same for all the curves and beyond the two-grid case, the curves fall onto the

same line.

Mesh Size Dependency:

The dependence of the convergence rate on the mesh size is shown in Fig. 3.14. Three
meshes with increasing mesh sizes of 3,849, 15,763 and 60,399 points were used. Good
convergence properties are observed with some departure for the largest mesh. This can
probably be attributed to the fact that the meshes were not generated by refinement as
well as the simplification for the stabilization parameter 7 which was employed. This may

result in too little/much stabilization in the boundary layer region.

Peclet Number Dependency:

The dependence of the convergence rate on the Peclet number is shown in Fig. 3.15(a)
and Fig. 3.15(b) for a range of Reynolds numbers from 102 to 10°. Figures 3.15(a) and
3.15(b) were generated on a set of fine meshes with 15763 and 60399 vertices respectively
which represents an approximate halving of the mesh spacing. In both cases, we find a
similar asymptotic convergence rate. Even more important is the fact that the algorithm
works well for such a wide range of Peclet numbers while maintaining a fairly constant

bound on the number of iterations required for convergence.

The average convergence rates (€) and asymptotic convergence rates (¢) for the different

test cases are summarized in Table 3.5.
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Grid Size | Pe | Average Convergence € | Asymptotic Convergence ¢
3849 102 0.31 0.29
15763 102 0.47 0.50
60399 102 0.67 0.69
3849 10% 0.53 0.57
15763 10* 0.52 0.55
60399 10% 0.55 0.58
3849 108 0.52 0.54
15763 108 0.54 0.54
60399 108 0.65 0.63

Table 3.5: Agglomeration Multigrid Results for scalar convection-diffusion problem

97



98

CHAPTER 3. AMG: CONVECTION-DIFFUSION OPERATORS



Chapter 4

Euler Applications

The Euler equations describe the flow of an inviscid fluid and may be considered to be
the limit of the Navier-Stokes equations as the Reynolds number goes to infinity. The
Navier-Stokes equations contains the full set of physical processes which occur in fluid flows
but for many problems, viscosity may be neglected. In attached flows where viscosity is
important, this importance is emphasized in a thin region near solid boundaries such that
the remaining flow is convection-dominated. Hence, the Euler equations provide a good

testbed for multigrid algorithms developed for the Navier-Stokes equations.

Standard multigrid methods have been applied to the Euler equations with varying suc-
cess [23,24,35,56] due to inherent properties of the Euler equations. The Euler equations
are a non-linear, non-elliptic system of equations which do not satisfy any of the underlying
assumptions of these standard multigrid algorithms that were designed based on elliptic
operators. Brandt has summarized the current progress and outlined the barriers to achiev-
ing ideal multigrid convergence rates for the equations of fluid dynamics [30]. Using local
mode analysis, Brandt [64] shows that for a p-th order Finite Difference approximation
of the constant-coefficient advection-diffusion equation, the convergence rate of standard
multigrid algorithms asymptotically approaches (1 —27P) in the limit of vanishing diffusiv-
ity coefficient. This is based on the argument that the coarse grid only provides a fraction
(1—27P) of the required correction for the smooth error components which limits the conver-
gence rate of the multigrid process. Brandt proposed that in order to obtain ideal multigrid
convergence rates for subsonic, inviscid flows, the discretization must be able to effectively

distinguish between the elliptic and hyperbolic factors of the governing differential opera-

99
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tor. By splitting the system into advective and elliptic components, the convergence rate
of the full system should be limited by the convergence rate of the slower of the two sub-
systems. This leads to Brandt introducing the distributive relaxation scheme. Typically,
multigrid techniques developed using this principle are based on space marching of the
advective terms while the elliptic terms are treated with multigrid. Using this approach,
Brandt and Yavneh [65] have shown ideal multigrid convergence rates for the incompressible
Navier-Stokes equations for a simple geometry and a Cartesian grid, using a staggered-grid
discretization of the equations. A closely related approach was presented by Ta’asan [108]
for the compressible Euler equations using a set of canonical variables which partitions the
Euler equations into elliptic and hyperbolic components. Ideal multigrid convergence rates
are demonstrated for two dimensional subsonic flows using body fitted grids. An extension
of the distributive relaxation scheme by Brandt for the incompressible Navier-Stokes equa-
tions applied to high Reynolds number wakes and boundary layers was done by Thomas et
al [29]. This was subsequently extended to the compressible Navier-Stokes equations [66].

Roberts et al [28] present an alternative to distributive relaxation and to Ta’asan’s
canonical variable decomposition for the steady, incompressible Euler equations. This is
based on a generalization of the approach of Sidilkover and Ascher [109] which applies
a projection operator to the system of equations such that a Poisson equation for the
pressure may be constructed. Ideal multigrid convergence rates were demonstrated for
internal flows for both structured grids using Finite Difference and unstructured grids using
a Finite Volume discretization. However, application of this algorithm to airfoil flows led
to difficulties near stagnation points which were not present in internal flows. An extension
of the algorithm was made in [110] for airfoil flows by the introduction of an artificial
dissipation term which stabilizes the momentum equations in stagnation regions.

The pressure Poisson method may be extended to compressible flows, however it is not
conservative and is not suitable for flows with shocks. Also, the extension to viscous flows is
limited to the incompressible Navier-Stokes equations. Sidilkover obtained a discretization
of the compressible flow equations that overcomes these limitations based on a multidi-
mensional upwind scheme [111,112] which is shown to be factorizable into advective and
elliptic components. Roberts et al demonstrate ideal multigrid convergence rates based on
a generalization of Sidilkover’s factorizable scheme in internal flows for a range of Mach
numbers from low subsonic to supercritical [113]. This is done using a Finite Differencing

scheme on curvilinear, body-fitted grids.
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In our approach to multigrid for the Euler equations, we make use of the principles
developed in Chap. 3 for the scalar convection-diffusion equations. The fundamental idea is
the construction of a line implicit smoother which effectively removes the hyperbolic error
components, while still smoothing the elliptic errors. In this sense, the line implicit smoother
is equivalent to the space marching used by Brandt et al for the hyperbolic components
while the multigrid coarse spaces are used to treat the elliptic components. This chapter
focuses on the extension and application of the proposed multigrid algorithm to the Euler
equations. In this chapter we consider the extension of the proposed AMG algorithm as
applied to a stabilized Finite Element discretization of the Euler equations. As analyzed in
Chap. 3, the application of multigrid to stabilized schemes raises several issues regarding
the representation of the stabilization terms on the coarse spaces. This is further analyzed
for the Euler equations and will be shown to have important consequences for the implicit

line smoother.

4.1 FEM Discretization

The discretization used for the Euler equations is based on the Finite Element code provided
by Wong [114] which we shall now proceed to describe. Let us consider the time dependent

2D compressible Euler equations in conservative form

U’t + F1,$1 + F2,$2 = 0, (41)
where
p pu1 pu2
2
u={J ™ = pui +p R m;luz (4.2)
pu2 pu1U puy +p
pE u1(pE + p) uz(pE + p)

such that p is the density; u = {uy,us}” is the velocity vector; E is the specific total energy
and p is the pressure. The system of equations is closed through the equation of state,
p = (y — 1)pe, where e = E — |u|?/2 is the internal energy and + is the ratio of specific
heats which is assumed to be constant. The conservative form of the above equation allows

shock waves to be captured as weak solutions of the governing equations which avoids
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difficulties in the use of shock fitting techniques for arbitrary geometries. We may now
non-dimensionalize the above variables using reference values for density (p*), velocity (u*)
and length (L) via

p _ u; FE T; u*t

_ . _ P — _ . -
=—, U=—1=12, =——, E= , Ti=—,1=1,2 and t= .
P p* i u* p p*U*2 u*2 i L L

From this point, we will drop the overbars which denote the non-dimensionalized variables.

Given the reference speed of sound ¢*, we may now define the reference Mach number:

M= (4.3)

c*

Equation (4.1) can be written in quasi-linear form as
U,;+ A1U7$1 + AQU,$2 =0 (4.4)

where the inviscid Jacobian matrices A; = F;y, 4 = 1,2, are non-symmetric but have
real eigenvalues and a complete set of eigenvectors. Equation (4.4) is symmetrized by the
introduction of entropy variables V [115-117], such that the change U = U(V) applied to

(4.1) gives the transformed system
U(V)+F1(V)a +Fa(V)z =0 (4.5)
or equivalently in symmetric quasi-linear form as
AV + AV, + AV, =0 (4.6)

where Ag = Uy is symmetric positive definite, and Az = AAg = F;v, @ = 1,2, are
symmetric.

For a hyperbolic system defined by
u;+ fi(u)y, =0 (4.7)

Barth [116] outlines two fundamental theorems regarding the symmetrization of systems

via entropy functions:
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Theorem 4.1 (Godunov [118]) If a hyperbolic system (Eq. 4.7) is symmetrized via change
of variables, then there exists a generalized entropy pair {U(u), F*(u)} : R — IR such that

Uy+ F <0 (4.8)

Theorem 4.2 (Mock [119]) If a hyperbolic system (Eq. 4.7) is equipped with a generalized
entropy pair {U(u), F*(u)} : R? — IR, then the system is symmetrized under the change of
variables

vi=U, (4.9)

)

An explicit formulation of the flux Jacobians is given by

vl = F" (4.10)

,u
such that an inner product of Eq. 4.7 and the entropy variable yields
vT(u,t + f;l) = U’t + F:Zzz =0 (4..11)

for smooth solutions.

Following Harten [117], we introduce a scalar entropy function U(U) = —pg(s), where s

is the non-dimensional entropy s = In(p/p”). The required change of variables is obtained

by taking
e(y—g/9') — |uf*/2
/!
v=ny =2 “ . (4.12)
3 e Ug
-1

The conditions ¢’ > 0 and g” /¢’ < ¥~ !, ensure that U(U) is a convex function and therefore
Ag 1= V u = Hyu, and Ay, are symmetric positive definite. For the Euler equations, if

we chose g(s) = % then V takes the form:

D
E+1
1—2 —
V=i | (4.13)
g

1
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The fluxes F; and Fy expressed as functions of V, are now homogeneous functions of degree

qg= —%. Let us now consider the variational formulation for the steady state problem.

The problem is defined in a domain © with boundary I' by

FI(V),a:l —|—F2(V),m2 =0 in Q, (414)
A,V = A g on I'\[, (4.15)
u-n = 0 on Ty (4.16)

where g is boundary defined data and the domain boundary is made up of an imperme-
able solid wall T',, and a computational far field boundary 'y = I'\I'y,. In (4.15, 4.16),
n = [n1,n2]7 is the outward unit normal vector to I', and A, =A,Ap, A, = Aing + Agnes.
Finally, A,j = A, Ay where A, denotes the negative definite part of A,. Let the spa-
tial domain €2, be discretized into non-overlapping elements T, such that Q = (J7,, and
T.NTo =0, e # ¢'. We consider the space of functions V}, defined over the discretization

and consisting of the continuous functions which are piecewise linear over each element
Vi ={W |W € (C°(Q))*, W|r, € (P1(T0))*, VT, € Q}.

The discrete GLS formulation can then be written as:

Find V}, € V" such that:
r(V) = B(Vi, W)ga + B(Vi, W)gis + B(Vp, W) =0, VW € VP (4.17)

where the forms B(-, ") ga, B(-,)g1s and B(-, -)pc account for the Galerkin, GLS stabilization,

and boundary condition terms respectively, and are defined as

B(Vi W)ga = /Q (“Woay - F1(Vi) = W, - Fo(Vi) d, (4.18)

B(Vi W)y, = /Q (FL(W) + Fo(W)} - 7 (F1(Vy) + Fo(Vi)}d,  (4.19)

B(Vp, W) = W -Fs(Vy,gin) ds. + W -F¥“(Vp,n) ds. (4.20)
I\T, Ta

where 7 is the stabilization matrix which must be symmetric, positive definite, have di-

mensions of time and scale linearly with the element size [94]. Standard definitions for =
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have been derived which work well in general practice [91,116] . However, these choices
have inappropriate low Mach number behavior [114] such that there is a degradation in the
solution with decreasing accuracy as the Mach number is reduced. The low Mach number
T stabilization matrix as described by Wong et al [114] is employed to complete the GLS
algorithm.

For the Euler equations, the numerical flux function F,, on the impermeable wall bound-
ary, is simply [0, pn1,pno,0]”. The numerical flux function on the far field boundary Fy,
is defined by

_ 1 _ 1 06 < r— _
Fyr(Vir Viiim) = S(Ba(V7) 4 Fal(V) — L|AR(VE“ (Vi V) (U(V)) ~ U(V;)).
Here, |A,, (V)| = A (V) — A=(V}) is the absolute value of A,, evaluated at Vj, and
V,}f"e(V;, V), ), is the Roe average [120], between the states V,*l' and V.

4.2 AMG Extension to the Euler Equations

Eq. 4.17 is a non-linear system of equations to which the linear multigrid formulation no
longer applies. For the solution of non-linear equations, either generalized non-linear multi-
grid formulations can be defined for the non-linear problem [24,76] or the linear multigrid
algorithms can be applied to a linearization of the problem in a Newton solution con-
text [50,51]. A popular non-linear multigrid scheme is the Full Approximation Storage
(FAS) scheme developed by Brandt [76,121]. Non-linear multigrid methods require a re-
evaluation of the full non-linear residual at each iteration on all grid levels but do not require
construction and storage of a Jacobian matrix as in Newton methods. This provides an ad-
vantage in terms of memory savings but may be costly on a cpu-time efficiency basis when
the non-linear residual is expensive to evaluate. Also, non-linear methods may fail due to
non-existence of a solution to the physical problem when rediscretized on the coarse mesh.

Newton solution methods for non-linear problems which implement linear multigrid
solvers can also fail when the initial guess does not lie in the domain of convergence for the
non-linear problem. This however, may be overcome by the use of a quasi-Newton method
which implements pseudo-time stepping. It has been shown by Mavriplis [9] that in the
asymptotic convergence region, where solution updates are small and the effects of non-

linearities decrease, both the non-linear multigrid algorithm as well as the Newton scheme
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converge at the same rate per multigrid cycle provided that equivalent iteration strategies
are employed for both. This however is only valid for an exact Newton linearization for
the Jacobian, which is usually violated in practice where a first order discretization for the
Jacobian is employed and a higher-order discretization for the residual is implemented. In
the current context of this thesis however, we implement the Newton solution strategy with
an exact linearization for the flux Jacobian matrix. This is possible due to the compactness
of the GLS Finite Element discretization which results in a nearest neighbor stencil for the

non-linear residuals.

4.2.1 Newton Scheme

For the extension of the previously described linear multigrid scheme to the Euler equations,

we consider the Newton scheme applied to the time dependent form of Eq. 4.17:
B(Vy, W) +1(Vy) =0, VW € V! (4.21)
where B(V}, W), accounts for the time dependent term and is defined by:
B(Vy, W /AOW% dQ (4.22)

If we consider a simple first order discretization for the time derivative term, then the

Newton scheme for solution advancement may be written as:

[A; +J]AV? = —r (4.23)
Vith = AV} +VE (4.24)

where J is the exact Jacobian of the non-linear spatial residual and A; is the mass matrix:

A= oo / AgW dQ (4.25)
or(Vp)

4.2

J v, (4.26)

The time step At™ is chosen to be the maximum time step allowed by the Courant-Friedrichs-
Lewy (CFL) condition for an explicit first order scheme [122] modified by a function of the
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iteration number n:

Atcrr
A" = — 4.27
"= ) 20

where f(1) = 1 and lim, ,o f(n) = 0 which ensures that the pure Newton scheme is

recovered. The mass matrix A; may be retained for a number of iterations to ensure
that the system is out of the initial non-linear startup phase after which it is turned off. In
practice however, it is found that this procedure is usually not required for smooth solutions

of the Euler equations or for small enough grid sizes.

Algorithm 3 Non-linear solution procedure for linear m-level multigrid
repeat
Form residual r, and A8 AbP¢ A8 matrices.
Set grid level Qp—o.
while sizeof(grid level k) > specified size do

Create implicit lines based on A%al
Create agglomerated coarse grid Q.
Create interpolation operators P%al, Rial, RPC
Create coarse grid matrices A% | Abc . A"
end while
Create A, = A8® + A8 1 A8 ang compute LU factorization of A,,
if |r| > machine tolerance then
Solve linear system using multigrid to specified tolerance
Update solution
end if
until |r| < machine tolerance

Eq. 4.23 now represents a large sparse block matrix system to which the linear multigrid
algorithm can be applied. A modification of the Newton algorithm is required to prevent
updates (AV7}) which would produce infeasible solutions such as negative density. This
is done by implementing a damping procedure that limits individual components of the
update vector. The solution algorithm for the non-linear system of equations may now be
formally described by Algorithm 3

4.2.2 Implicit Line Creation Extension

The line creation algorithm for the line implicit smoother as described in Chap. 2 requires a

scalar coupling matrix which represents the relative coupling between the nodal equations.
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For a block matrix system where each matrix coefficient is a local block matrix, a suitable

scalar for the corresponding coupling matrix coefficient is unclear. For the Euler equations,

we have used two formulations for this coupling matrix.

Algebraic Reconstruction:

The first formulation is an attempt to reconstruct an entropy-based stationary linear
convection equation by exploiting the symmetric formulation of the Euler equations. As
discussed, the given choice of the scalar entropy function U(U) results in the fluxes F1(V)
and F2(V) being homogeneous functions of degree ¢ = —7— Using linear algebra, it can
be shown that

dF;

v V-dFi Q= {1,2} (4.28)

such that
= -]
EELEN]
- éfli ;d(i/ (dmz) (4.31)
o () ()

We may now construct the stationary convection equation for the scalar entropy function
using Eq. 4.11 such that:

da:i =V da:z-
- (q— 1) Vv (daa) M (433)

This represents a scaled inner product with respect to the Jacobian of the governing PDE.
Using this idea, we attempt to reconstruct a discrete FEM formulation of Eq. 4.33 based on
the discrete variational weak form of the Euler equations. The scalar matrix derived from

this reconstruction process is chosen to be the weighting matrix for the line construction
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algorithm and is defined by:
ciy = {VI} 3] (v3) (4.34)

where J9% is the Jacobian of the Galerkin term B(-,)gq. Any homogeneous differential
equation consisting of derivatives only is satisfied by the constant function. This implies

that a linearization c; ; of any discretization of the problem must satisfy the relation
Zci,j =0 (4.35)
J
It is observed that in general, Eq. 4.35 is only satisfied at convergence.

Rediscretization:

The second formulation for the weighting matrix is based on a GLS rediscretization
of the stationary linear convection equation (Eq. 3.9) using the velocity field V = (u1,us)
from the current estimate of the velocity field computed during the Newton solution scheme.
The line creation coupling matrix is defined based on the Galerkin terms from the resulting
discretization.

The coarse space definition of the coupling matrix is based on the GCA formulation.

Given the weighting matrix ci, the coarse space definition for cg; is given by
cry1 = RiepPy (4.36)

The quality of the implicit lines created by the two algorithms may be compared in Fig. 4.1
for the converged solution of the Euler equations. The problem is the flow around a NACA
0012 airfoil at a zero angle of attack and a freestream Mach number of 0.1. Fig. 4.1(c) shows
the implicit lines created using the algebraic reconstruction while Fig. 4.1(d) shows the
implicit lines created using a rediscretization at convergence. In both cases, no noticeable

difference in the convergence rate was observed.

4.2.3 Interpolation Operator Extension

The extension of AMG to systems of equations where more than one function is being
approximated does not present a clear choice for the definition of the interpolation operators.
Cleary et al [123] and Ruge et al [44] discuss some of the associated issues. In [123],
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(b) Solution
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(d) Lines: Rediscretization
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Figure 4.1: Implicit lines construction using the reconstruction and rediscretization schemes for
inviscid flow over a NACA 0012 at Mach 0.1
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the authors make use of a function approach where separate interpolation operators are
defined for the functions. This corresponds to the unknown approach described by Ruge
et al [44]. In our approach, we make use of the point approach described in [44] where the
multigrid algorithm is applied in a block manner such that all variables corresponding to
the same point are interpolated together. This implies the assumption that the partitioning
of the error components associated with each variable into rough and smooth components
is identical (Eq. 2.19).

4.3 Consistency Scaling Issues for the Stabilized Euler Equations

As discussed earlier in Chap. 3, the application of AMG to stabilized FEM formulations
implies that a rescaling of the coarse space representation of the discrete operator must be
performed to ensure the consistency of the coarse space operator. Fig. 4.2 show the effect
of 7 scaling on a channel flow problem for the compressible Euler equations. The bump is
a sine-squared bump of thickness 0.1, the inlet Mach number is 0.5 and the results show
the eigenspectrum of the iteration matrix —M 1A where A is the residual Jacobian matrix

after 3 Newton steps and M is the Jacobi line implicit preconditioning matrix.

The effect of the stabilization scaling for a sequence of coarse grids is shown in Fig. 4.2.
The stabilization scaling is clearly necessary to bound the eigenvalues on the coarser grids so
that the line relaxation scheme behaves in the same manner on all the grid levels. Without
the scaling, the deterioration of the spectral radius of the iteration matrix becomes rapidly
worse with increasing coarse grid levels and the only choice left is to choose small damping

factors in the multi-stage scheme resulting in poor convergence for the smoother.

4.4 Results

In order to demonstrate the effectiveness of the proposed multigrid scheme for the compress-
ible Euler equations, we will consider two different test cases and conduct a grid dependency

and Mach number dependency study.



112 CHAPTER 4. EULER APPLICATIONS

o
1.00 2+ 4
0.75 1k ol - ]

:
050 £ ol ! |

- I

\

025 *
§ af |

0.00 § | N
0.00 0.75 150 225 300 L 4
S |
-3 —2‘5 -‘2 —1‘5 —i -0‘5 ‘D 0.5
Re
(a) Fine Grid and Agglomerated Coarse Grid (b) Fine Grid

(e) Coarse Grid 2: w/o Scaling (f) Coarse Grid 2: w/ Scaling

Figure 4.2: 7 scaling effect on line Jacobi iteration matrix eigenspectrum for channel problem at
freestream Mach number M = 0.1
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This figure was broken... original no longer exists.

Figure 4.3: Channel Flow Geometry for Euler Equations

4.4.1 Channel Flow

The first case consists of a channel flow as shown in Fig. 4.3 where the shape of the bump
on the lower wall is a sine-squared bump with a thickness ratio of 0.05. The domain is
discretized into a structured grid by using a uniform grid spacing in the z-direction and
evenly dividing the channel height at any given z-location. The resulting grid is then
triangulated. The implicit line smoother considered is a damped 3-stage symmetric line
GauB-Seidel smoother with a relaxation factor of w = 0.7. The multistage coeflicients

chosen are the optimized 3-stage coefficients in Table 3.1.

Figure 4.4: Mach Number Contours for M = 0.1 Compressible Euler 241 x 81 Bump Problem

On each grid, a V(2,1) multigrid cycle is implemented and due to the smoothness of the
solution, no initial time damping (Eq. 4.23) is required. Table 4.1 shows the asymptotic
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convergence rate e of the line solver for a number of fine grid sizes and Mach numbers. The
agglomeration algorithm results in full coarsening such that the choice for the number of
coarse grids results in the same number of elements and vertices on the coarsest grid. As

can be observed from Table 4.1, very good convergence rates are achieved.

Fine Grid Size || # of coarse grids | ¢ M =0.1 | e M = 0.5
31 x 11 1 0.04 0.06
61 x 21 2 0.04 0.06
121 x 41 3 0.04 0.07
241 x 81 4 0.06 0.08

Table 4.1: Compressible Euler Bump Results

4.4.2 Airfoil Flow

The second test case consists of external flow around a NACA 0012 airfoil at angle of
attack of @ = 0° and o = 3° as shown in Fig. 4.5. The discretization of the fine grid mesh
is completely unstructured. The implicit line smoother considered is also a damped n-stage
symmetric line Gaufi-Seidel smoother with a relaxation factor of w = 0.9 and the same
multistage coefficients as chosen in the channel flow problem. Both a 3-stage and a 5-stage
scheme for this test case was chosen in order to compare the convergence rates for both
schemes and as well as to make a fair comparison later on with the Navier-Stokes test cases
which utilize a 5-stage scheme. The multistage coefficients chosen are the optimized 3-stage
and 5-stage coefficients in Table 3.1. On each fine grid problem, a V(2,1) multigrid cycle is
implemented and no initial time damping (Eq. 4.23) is also required.

The termination condition for the linear multigrid solver is chosen to be when the linear
RMS residual is the square of the non-linear residual while the termination condition for
the non-linear Newton method is when the RMS value of the non-linear residual is less
than 10~'%. This ensures that Newton quadratic convergence is achieved without always
requiring a linear multigrid solution to machine zero.

Table 4.2 shows the asymptotic convergence rate € for a number of fine grid sizes and
Mach numbers as well as the total element complexity (TEC) and total vertex complexity

(TVC) over all the grids. Given the number of vertices n} and elements nf per grid level,



4.4. RESULTS 115
VAVAVAY .9, ivitos KORK]
NN B VAVAVAN N Ay el Ay
/NI RIS % VO RS RRIERRIRK RSN,
vk )
R = 3]
%5 5%{""& S 43%‘13%
SERE 20 v~ SRSSRRREE LBRLK
OB AvAYAVAV AVAVANY SSSRE S
h‘vﬁr‘ mmmm;4&§f¢¢3$ﬁ‘hy4hﬁmyﬂﬂﬂ gég:}%“ 44‘%%%%%§§5§A
T AVAV A YAVAVA S AVATN o e
e R P AV P oA 4 G
NIANANINEKAFOAANANNAA KA O]
vavs Ly
N VAV AN AV AT A A AVAY,y, Y AV AAVAVA Y W S A St ke
A A P A AT AXa iy A AT S s e
Figure 4.5: Unstructured Mesh for NACA 0012 Foil
g
these complexities for an m-grid (total of fine + coarse) problem are calculated as
T™VC = — (4.37)
o
k=0
TEC = — 4.38
I;) nt (4.38)
Fine Grid || Coarse €M=0.1 €EM=0.5 €EM=0.5
Size Grids | TVC | TEC (a=10°) (a=10°) (=39
3 Stage | 5 stage | 3 Stage | 5 stage | 3 Stage | 5 stage
2607 2 1.58 | 1.34 0.26 0.19 0.24 0.18 0.28 0.18
5258 3 1.64 | 1.36 0.31 0.22 0.34 0.24 0.25 0.17
10273 4 1.67 | 1.36 0.28 0.17 0.25 0.24 0.24 0.17
20621 5 1.64 | 1.36 0.33 0.26 0.34 0.21 0.23 0.21
Table 4.2: Asymptotic linear multigrid convergence rates for compressible Euler flow over a NACA
0012 airfoil
The number of coarse grids chosen was such that the number of vertices on the coarsest

grid is less than 500. As can be observed from Table 4.2, excellent and relatively mesh

independent convergence rates are achieved. Fig. 4.7 shows the non-linear New

ton and
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linear multigrid solver residual history for the compressible Euler computation on the 20,621

node fine grid for a freestream Mach number of 0.5 and a 5-stage multistage scheme.

Figure 4.6: Mach Number contours for freestream M = 0.1 compressible Euler flow over a NACA

0012 airfoil at zero angle of attack
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Figure 4.7: Non-linear Newton outer loop and linear multigrid convergence histories for compress-
ible Euler flow over a NACA 0012 airfoil with 20,621 fine grid nodes at Mach 0.5 and zero angle of

attack using a 5-stage scheme

As a point of comparison, Fig. 4.8 shows the convergence history for the inviscid com-

putation of a compressible flow by Pierce [1] over a NACA 0012 airfoil at freestream Mach

number M = 0.5 and angle of attack @ = 3°. The discretization scheme is a conservative cell-
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Figure 4.8: Multigrid results by Pierce et al[1] for inviscid flow over NACA 0012 airfoil at freestream
Mach number M = 0.5, a = 3° on a 160x32 O-mesh using scalar, diagonal and block-Jacobi pre-
conditioning

centered semi-discrete Finite Volume scheme for structured grids which uses a characteristic
based matrix dissipation. A full-coarsening FAS multigrid solution scheme is implemented
using a W(1,0) cycle and 5-stage multistage formulation. Fig. 4.8(a) shows the grid used for
the inviscid calculation and Fig. 4.8(b) shows the multigrid convergence history using point
implicit scalar, diagonal and block-Jacobi preconditioning. The best achievable convergence
rate for this problem is around 0.8 while Mavriplis reports rates of around 0.75 [124]. For
the same conditions, the rate achieved by the current code using a W(1,0) cycle, a 5-stage
multistage scheme, a relaxation factor of 1.0 and regular sweeps i.e no symmetric sweeps as

were reported in Table 4.2 is 0.55.
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Chapter 5

Navier Stokes Applications

The severity of the problems associated with discrete stiffness as well as directional decou-
pling for inviscid computations is not as pronounced as in viscous calculations. The use of
standard multigrid algorithms with full coarsening and point implicit smoothers results in
a significant deterioration in the multigrid convergence rates which worsens with increasing
anisotropy [39]. Much of the recent research into the construction of robust multigrid algo-
rithms for the Navier-Stokes equations has been done within the context of Preconditioned
Multigrid Methods [13,25,26,70,125] using semi-coarsening. Pierce shows that the use of a
Jacobi-preconditioning smoother for structured discretizations of the turbulent compress-
ible Navier-Stokes equations with J-coarsening, where the grid is only coarsened in the J
(viscous) direction, leads to an improvement in the convergence rate over standard multigrid
algorithms employing scalar preconditioning [39]. Allmaras [25] and Venkatakrishnan [26]
also compare the convergence rates, using several preconditioners, for the turbulent Navier-
Stokes equations. The results demonstrate that line preconditioning is a viable scheme. In
the context of unstructured meshes, Mavriplis [6,71,105] has implemented a semi-coarsening
scheme based on a nodal agglomeration technique and an implicit line relaxation scheme,
and has demonstrated multigrid convergence rates similar to those obtained by Pierce [39]

in a structured mesh context.

In this chapter, we consider the application of the proposed AMG algorithm to a sta-
bilized Finite Element discretization of the Navier-Stokes equations and numerical studies

are performed to determine the behavior of the algorithm for airfoil flow problems.
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5.1 FEM Discretization

The discretization for the Navier-Stokes equation is also based on the Finite Element code
provided by Wong et al and is an extension of the inviscid FEM code as described in Sec. 4.1.

Let us consider the time dependent 2D compressible Navier-Stokes equations in conservative

form
Ui +Fi1+Fop=F; +F5,, (5.1)
where
p
U= "™ (5.2)
pu2
pE
pu1 pu2
2
ujy +p U1 U
F=y M , Fy= ~ (5.3)
pu1U2 puy +p
u1(pE + p) uz(pE + p)
and
0 0
T11 T21
F’ll] — , Fg =
T12 T22
U1T11 + U2T12 + q1 U1To1 + U2T22 + g2

such that F; are the inviscid fluxes; F} are the viscous fluxes; p is the density; u = {uy, ug}t
is the velocity vector; E is the specific total energy and p is the pressure. The system of
equations is closed through the equation of state, p = (y — 1)pe, where e = E —|u|?/2 is the
internal energy. Here <y is the ratio of specific heats and u is the absolute viscosity, both

of which are assumed to be constant. We may now non-dimensionalize the above variables
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using reference values for density (p*), velocity (u*), length (L) and viscosity (u*) via

_ . p _ U; _ p _ E
P= uz:_i,z_la2a P= """ E = 27
p U p*u U
o _ oz u*t
M:E7 mZ:f’,z:l,Q, and t= 7

rmo 0w 2p (0w | Oup
= Redzy 3Re \O0xz1 Oxo

7’12=’f21=i %+%
Re (9.T2 8:51

om0z 2 p (0w | Oup
227 Redzo 3Re \0z1 O9Oz2

11 0T 11 oT
q1 = —%ﬁua—xl, q2 = —gﬁﬂa—m-
where the overbars denoting the non-dimensional variables have been dropped. There are
two resulting non-dimensional parameters which are the Reynolds number Re, and the
Prandt]l number Pr, defined as:

X, 0k

L

Re = pu*
7

Pr — ,U'CP
K

where C), is the specific heat at constant pressure and & is the heat conductivity coefficient,

both assumed constant. Equation (5.1) can be written in linearized form as
U+ AU +AUp = (KiiUj)1 + (Ki2Up) 1 + (K21U 1) 2 + (K22U 2) 2, (5.4)

where the inviscid Jacobian matrices A; = F; y, ¢« = 1,2, are unsymmetric but have real
eigenvalues and a complete set of eigenvectors and K;; = F;’,Uj are the viscous flux Jaco-
bians. Equation (5.4) is symmetrized by the introduction of entropy variables V [115-117],
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such that the change U = U(V) applied to (5.1) gives the transformed system
U(V): +F1(V)1 +Fao(V) 2 =F{(V)1 + F5(V)2, (5.5)
or equivalently in symmetric quasi-linear form as
AoV +A Vi +A Vo= (K Vi) + (KieVa)i+ (K Vi)e+ (KeeVa)a, (5.6)

where Ag = Uy is symmetric positive definite, and A, = AA = Fiv, 1= 1,2, are
symmetric. Following the discussion on the Euler equations discretization in Sec. 4.1, we
introduce a scalar entropy function H(U) = —pg(s), where s is the non-dimensional entropy

s = In(p/p”). For the Navier-Stokes equations, if we chose g(s) = 727 then V takes the

form:
ytl=s _ pE
v—1 p
puy
— P
V= A (5.7)
P
_Pp
P

such that the matrix K . -
_ K K

g o | B B

K> Koo

is symmetric as well as positive semi-definite.

Let us now consider the variational formulation for the steady state problem. The

problem is defined in a domain Q with boundary I" by

F, (V)’l + FQ(V)’Q = lel(V)’l + Fg(V); in €, (58)
AV = Arg on T'\Ty, (5.9)
F'n = f on [y (5.10)

where the domain boundary is made up of an impermeable solid wall I';,, and a compu-
tational far field boundary T'\T,. In (5.9, 5.10), n = [n1,no]” is the outward unit normal
vector to I', and A, = A, Ag, A, = Ain; + Agns. Finally, A; = A Ap, and A,
denotes the negative definite part of A,. Let the spatial domain 2, be discretized into
non-overlapping elements T, such that Q = (JT., and T, Te = 0, e # €. We consider
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the space of functions V},, defined over the discretization and consisting of the continuous

functions which are piecewise linear over each element
Vi ={W |W € (C°(Q)*, W|r, € (Pi(T))*, VT, € Q}.

The GLS algorithm can then be written as:
Find V), € V" such that for all W € V",

I'(Vh,W) = B(Vh,W)gal + B(‘/-}L,VV)glS + B(Vh,W)bc =0, (5.11)

where the forms B(-, ") a1, B(-,-)g1s and B(-, -)s account for the Galerkin, GLS stabilization,

and boundary condition terms respectively, and are defined as

B(Vi W)ga = /Q (“W1 - (F—F")1(Vs) - W - (F — F")5(Vy) d2, (5.12)
BVA Wi = [ {(F—F);(W) + (F = F)o(W)}- 7 {(F = F")1(V) + (F — F")o(V,,)5s3)
B(Vp, W) = e W . (Fy +F")(Vy,g;m)ds. + g W - FY(Vy,f;n) ds. (5.14)

where 7 is the stabilization matrix which must be symmetric, positive definite, have dimen-
sions of time and scale linearly with the element size. The current implementation in the

code for 7 is based on the following modification for viscous simulations:

rl=r g, ! (5.15)
where 7; is the inviscid stabilization matrix defined in [114] and 7, is a viscous modification
defined as

7o ' =2(Ku + Ka)/he’. (5.16)

where he is chosen to be the length of the shortest edge of the element.

For the Navier-Stokes equations, no-slip Dirichlet boundary conditions replace the bound-
ary integral over the solid wall. The numerical flux function on the far field boundary F yy,
is defined by

Fjy(Vir, Viiim) = 5 (Fa(Vi) + (V) — 3 lAn(VE<(Vir, VO U(VY) — U(V;)).
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Here, |A, (V)| = A (V) — A (V}) is the absolute value of A,, evaluated at Vj, and
VHee(ViF V), is the Roe average [120], between the states V;I and V.

5.2 Limitations of Current FEM Implementation

Some limitations regarding the application of the multigrid algorithm for Navier-Stokes
simulations exist based on the current FEM formulation. First of all, Eq. 5.15 is an ad-
hoc viscous modification by Wong et al of a previously described inviscid stabilization
matrix [114] and it appears to have the wrong limiting behavior with the Reynolds number.
The effect of this is that an incorrect amount of stabilization is applied especially in the
boundary layer region. An eigenspectrum decomposition of the iteration matrix —M 1A
as defined in Sec. 3.2 will show that there is a rapid growth in the eigenvalues which
can not be easily bounded in the stability region of the iterative scheme. This behavior
becomes increasingly pronounced for larger grid sizes and cell stretching ratios. However, an
implementation of a viscous stabilization matrix which scales properly with local Reynolds
number has been done by Shakib et al [91,96,126].

Currently, turbulence modeling has not been implemented in the FEM formulation.
Research into the implementation of Reynolds Averaged Navier-Stokes (RANS) within a
Finite Element context has been rather limited to date. However, Hauke et al [127] report
a RANS formulation augmented with a turbulent transport equation for stabilized FEM
formulations. Also, implementations of Large Eddy Simulation (LES) turbulence modeling
within a GLS/FEM context has been done by Jansen [128] for unstructured grids and
parallelized [129-131].

In addition, a shock capturing scheme for discontinuities has not been incorporated into
the current GLS/FEM formulation of the discrete equations. However, Barth [116] describes
a discontinuity capturing operator for stabilized GLS/FEM by Galeao et al [132]. Hughes
et al [93,133] also describe a discontinuity capturing operator for stabilized GLS/FEM.

For these reasons, the Reynolds and Mach number at which any test case may be run

is limited to the subsonic, laminar regime.
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5.3 AMG Extension to the Navier-Stokes Equations

The extension of the proposed AMG algorithm to the Navier-Stokes equations closely fol-
lows the Euler equations extension as described in Sec. 4.2. The solution strategy employed
for the non-linear system of equations is the damped Newton scheme described in Sec. 4.2.1
where an exact linearization for the Jacobian matrix is performed. The only difference
between the application of the proposed AMG algorithm to the Navier-Stokes and Fuler
equations is in the definition of the implicit line creation coupling matrix and the imple-

mentation of the no-slip Dirichlet boundary condition.

5.3.1 Implicit Line Creation Extension

The definition of the implicit line creation coupling matrix for the Navier-Stokes equations
can no longer be made using the algebraic construction technique described in Sec. 4.2.2
for the Euler equations, based on the choice of the scalar entropy function H(U). The
fluxes are no longer homogeneous in V such that the simplified form of the coupling matrix
coefficients, FEq. 4.34, is not valid. Application of the algebraic reconstruction technique to
the viscous equations results in implicit lines which follow streamlines in the boundary layer
regions during the initial convergence phase. This is followed by the eventual formation of
lines which are normal to the solid wall boundary at convergence. This region is typically
characterized by highly anisotropic cells which means that there exist error modes that will
be strongly aligned normal to the solid wall boundary. The use of implicit lines which are
aligned with the streamlines results in a significant degradation of the convergence rate of
the smoother.

Due to this phenomenon, we choose to rediscretize the stationary linear convection-
diffusion equation Eq. 3.1 using the velocity field V = (uy,us) from the current solution
estimate. The value for the diffusion coefficient is chosen a-priori such that the implicit
lines in the boundary layer regions which are normal to the solid boundaries cover the full

extent of the boundary layer.

5.3.2 Dirichlet Boundary Condition Extension

The imposition of a no-slip velocity condition at a solid wall boundary means that the

interpolation operators as well as the momentum equations need to be modified on the



126 CHAPTER 5. NAVIER STOKES APPLICATIONS

Dirichlet boundaries as outlined in Sec. 2.5. On the solid walls, the two momentum equations

are replaced by the Dirichlet conditions

up = 0 (5.17)
Uy = 0 (518)

The modification of the prolongation operator is done by expanding the scalar operator so
that each entry in the matrix is replaced by a local 4 x 1 vector where each entry is set to

the original scalar value. The second and third rows are then simply zeroed out.

5.4 Results

In this chapter, the proposed multigrid algorithm is applied to laminar airfoil flow. The
test case chosen is flow around a NACA 0005 airfoil at angle of attack of o = 0° and o = 3°
as shown in Fig. 5.1 where the largest cell aspect ratio is of the order of 500.

In order to expand the stability region, the relaxation scheme considered is a damped
5-stage symmetric line Gaufl-Seidel smoother with a relaxation factor of w = 0.5. The
multistage coefficients chosen are the optimized 5-stage coefficients by Lynn [104] for Roe’s
k = 0 scheme and semi-coarsening as listed in Table 3.1. On each grid, a V(2,1) multigrid
cycle is implemented and in all the test cases, time damping was required to advance the
solution out of the initial non-linear stage due to the unstable growth of the iteration matrix
eigenvalues. Hence, the presented results are based on the algorithm behavior in the Newton
quadratic convergence region.

As with the Euler test cases, the termination condition for the linear multigrid solver
is chosen to be when the linear RMS residual is the square of the non-linear residual while
the termination condition for the non-linear Newton method is when the RMS value of the
non-linear residual is less that 10~ . This ensures that Newton quadratic convergence is
achieved without always requiring a linear multigrid solution to machine zero. The number
of coarse grids chosen for these test cases was such that stability of the iterative scheme is
maintained on the coarsest grids. The stabilization rescaling described in Sec. 3.6 assumes
that the elements are reasonably isotropic such that a well defined length scale may be
obtained. The high mesh anisotropy in the boundary layer region results in an inexact

stabilization scaling which is manifested in the instability of the iterative scheme on the
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Figure 5.1: Unstructured Mesh for NACA 0005 Foil

coarsest meshes as the number of coarse grids is increased. Table 5.1 shows the asymptotic
convergence rate € as well as the total element complexity (TEC) and total vertex complexity
(TVC) as described in Sec. 4.4.2 over all the grids for a sequence of independently generated
fine grid sizes and Mach numbers at a Reynolds number of 5000. As can be observed from

Table 5.1, excellent convergence rates are achieved.

Fine Grid || Coarse €EM=0.1 EM=0.5 EM=0.5
Size Grids | TVC | TEC | (¢ =0°%) | (a =10°) | (a=3°)
8872 2 1.64 | 1.37 0.16 0.37 0.21
18416 3 1.88 | 1.44 0.25 0.37 0.57
36388 4 1.67 | 1.37 0.35 0.35 0.45

Table 5.1: Asymptotic linear multigrid convergence rates for compressible Navier-Stokes flow over
a NACA 0005 airfoil at Re=5000
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Fig. 5.2 shows the non-linear Newton and linear multigrid solver residual history for the
compressible Navier-Stokes computation on the 36,388 node fine grid for a freestream Mach
number of 0.5, zero angle of attack and a 5-stage multistage scheme. For this particular
case, the pseudo-time stepping scheme described in Sec. 4.2.1 is implemented with an ex-
ponentially deceasing CFL number as described by Eq. 4.27. After 35 non-linear Newton
iterations, the time damping term is removed with a corresponding jump in the residual as
shown in Fig. 5.2 followed by Newton convergence.

The convergence rates for the lifting (o = 3°) airfoil case shows some degradation and
this may be explained by the interaction of the flow misalignment and the stabilization
scaling for semi-coarsening with anisotropic elements. The inexact stabilization scaling
results in an inappropriate amount of stabilization which is manifested in a degradation of
the two-grid convergence rate on the two coarsest grids, with subsequent pollution of the

total multigrid convergence rate.
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Figure 5.2: Non-linear Newton outer loop and linear multigrid convergence histories for compress-
ible Navier-Stokes flow over a NACA 0005 airfoil at Mach 0.5 and zero angle of attack with 36,388
fine grid nodes and Reynolds number of 5000 using a 5-stage scheme

As a point of comparison, Fig. 5.3 shows the convergence history for the viscous com-
putation of a compressible flow by Pierce [1] over a NACA 0012 airfoil at freestream Mach
number M = 0.5, angle of attack @ = 0° and Reynolds number of 5000. The discretization
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Figure 5.3: Multigrid results by Pierce et al[1] for viscous flow over NACA 0012 airfoil at freestream
Mach number M = 0.5, a = 0° and Reynolds number of 5000 on a 320x64 O-mesh using scalar,
diagonal and block-Jacobi pre-conditioning

scheme is a conservative cell-centered semi-discrete Finite Volume scheme for structured
grids which uses a characteristic based matrix dissipation. A J-coarsening FAS multigrid
solution scheme is implemented using a W(1,0) cycle and 5-stage multistage formulation.
Fig. 5.3(a) shows the grid used for the viscous calculation and Fig. 5.3(b) shows the multigrid
convergence history using point implicit scalar, diagonal and block-Jacobi preconditioning.
The best achievable convergence rate for this problem is around 0.91. For the same con-
ditions, the rate achieved by the current code using a W(1,0) cycle, a 5-stage multistage
scheme, a relaxation factor of 0.7 and regular sweeps i.e no symmetric sweeps as were
reported in Table 5.1 is 0.81.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, a multigrid formulation has been proposed, analyzed and implemented for
both Euler and Navier-Stokes applications for stabilized Finite Element discretizations. The
success of the formulation is based on a proper choice of the multigrid components with
respect to the characteristics of the underlying operator. As an alternative to recent re-
search into hyperbolic/elliptic characteristic splitting of the discretization, the proposed
formulation uses the relaxation scheme to reduce the hyperbolic error components and the

multigrid coarse space in dealing with the elliptic components.

The contributions of this thesis are summarized as below:

e Fast solution of the Euler and Navier-Stokes equations. A method for the
fast solution of the Kuler and Navier-Stokes equations on unstructured meshes with
the promise of handling more realistic flows has been developed. A key point in the
development of this scheme is the utilization of a Finite Element discretization which
results in a compact stencil. This permits the exact derivative for the flux Jacobians
resulting in efficient and grid independent multigrid convergence using a proper choice

of simple multigrid components.

e Application of AMG to stabilized FEM formulations of the Euler and

Navier-Stokes equations. The coarse space operators are constructed in an alge-
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braic fashion using the Galerkin Coarse Grid Approximation which allows the coarse
grid equations to be constructed quickly without rediscretization. A consistent weight-
ing rescaling of the coarse grid equations is performed with particular attention paid
to the boundary conditions. Analysis of the application of Algebraic Multigrid to
stabilized discretizations of the two-dimensional flow equations showed that a length
weighted modification of stabilization terms on the coarse spaces is required to ensure
stability of the multigrid algorithm. Numerical studies of the proposed multigrid for-
mulation for scalar elliptic operators, scalar convection-diffusion operators as well as
the Euler and Navier-Stokes equations have exhibited significant improvements in the
multigrid convergence rates when compared to other similar multigrid formulations.
The convergence rates exhibited by the proposed multigrid algorithm for Euler and
Navier-Stokes are relatively mesh independent and show asymptotic convergence as

the number of coarse grids is increased.

e Implementation of a semi-coarsening elemental agglomeration scheme to
hyperbolic/parabolic systems on unstructured meshes. The construction of
the multigrid coarse spaces is based on an elemental agglomeration algorithm which
allows for fast, automated coarse space construction as well as higher order multigrid
interpolation operators. The coarse space construction is based on a semi-coarsening
scheme which is mesh dependent and has been shown to be superior to full coarsen-
ing schemes for even the simplest elliptic problems. The agglomerated coarse space
elements are generalized polygons which nullifies the need for a possibly expensive

and/or complicated retriangulation.

e Development of an improved coarse space interpolant. The efficiency of the
coarse space error corrections depends on the accuracy of the coarse space interpolants
for the discrete problem. The multigrid interpolation operators are constructed using
an extension of Chan et al [38] such that linear interpolation based on edge length

weighting produces a superior interpolant.

e Development of a generalized line implicit smoother for unstructured meshes.
The proposed multigrid relaxation scheme is a line implicit relaxation scheme where
the lines are constructed to follow the direction of strongest influence which, under

the right conditions, can lead to exact solvers. The developed smoother is a significant
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improvement over similar smoothers [6,71,105] especially for viscous computations.

A Fourier analysis of the smoother shows good predicted convergence rates.

6.2 Future Work

The current results in this thesis represent a proof of concept for the central idea of assigning
the tasks of the multigrid components in dealing with the characteristic subsystems of the

flow equations. Suggestions for further research include:

1. Further development of FEM formulation for more realistic applications.
Further development of the current Finite Element formulation is required to handle
more realistic flows. Currently, applications with discontinuities such as shocks can-
not be handled properly due to the lack of a good shock capturing scheme, especially
with higher order elements. Also, the current viscous formulation for the stabilization
matrix in the GLS/FEM discretization does not appear to have the proper limiting
behavior with Reynolds number. A reformulation which has the proper scaling prop-
erties should allow more practical applications at higher Reynolds numbers. Finally,
practical applications at higher Reynolds numbers are precluded without the inclusion
of a turbulence model. Of interest would be the behavior of the proposed multigrid
algorithm in the presence of a turbulence model. Possible issues which may arise are
related to the additional introduced stiffness as well as the degree of coupling with
the flow equations. It is also not clear if an energy stable formulation for a turbulence

model in entropy variables exists.

2. Implementation of the FAS/FMG multigrid formulation. Many of the issues
relating to the consistency of the coarse grid equations arise from the fact that in the
context of the linear multigrid formulation, the coarse grid equations are constructed
algebraically such that special attention via rescaling becomes necessary. A recon-
struction of the non-linear equations within an FAS formulation on the coarse spaces
would remove the need for rescaling as well as the need for the initial time damping
scheme as described in Sec. 4.2.1. This however is not without associated problems
such as how to perform a rediscretization when the coarse space elements are not
standard finite elements. Also present is the issue regarding implicit line construction

since the line creation algorithm is based on a linearization of the non-linear equations.
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This could potentially lead to extra overhead with regards to storage and compute
time. In the current linear multigrid context, the implementation of a Full Multigrid
(FMG) formulation [46] would help in dealing with the initial non-linear behavior of
the system.

. Higher order finite elements. The use of quadratic or higher order finite elements

for more accurate solutions would be desirable. However, it is not clear how this
might be implemented with the context of the current multigrid formulation. In such
a case, chaining elements within a line as opposed to vertices may offer a better
approach. One idea is to switch the discretization to a Discontinuous Galerkin/Least
Squares (DGLS) formulation which leads to a natural description of the elements as
separable entities that can be linked up in a line. The strong influence basis for the line
creation could then be based on some formulation using the flux continuity between

the elements.

. Extension to three dimensions. The basic concepts in the proposed algorithm are

extendible to three dimensions and any issues that arise should largely be implemen-

tation ones.

. Parallelization of the multigrid algorithm. To address large scale applications, a

parallel implementation of the multigrid scheme would be required. This need is most
critical for 3-D applications. It should however be noted that parallel implementations
of line implicit solvers as well as the Gauf}-Seidel scheme are not trivial, especially in

an unstructured grid context.



Appendix A

Multigrid Preconditioning Matrix

The linear algorithm described in Algorithm 1 may be viewed as a preconditioner for which
an iteration matrix may be constructed. This can be shown fairly easily for the V-cycle
multigrid cycle. We consider the general V(v1,12) cycle for the two-level method but sim-
plify it by assuming that we have only one pre-smoothing and one post-smoothing i.e a
V(1,1) cycle. Let A represent the fine grid matrix and A; represent the coarse grid ma-

trix. For an initial guess u(® = 0:
1. Symmetric pre-smoothing: u(!) = STy
2. Coarse grid correction:

(a) Restrict residual:
q© = Ro(I — A¢ST)bg
(b) Coarse grid solve:
¢V = AT Ro(I - A¢ST)bo
(c) Fine grid correction:

= [S§ +PoAT Ro(I — A¢ST)bo
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3. Post-smoothing:

o3 = Mﬁz}; b= 4@ 4 So(bo — Aou(2))
= [So+ 8§ —S0A0S] + (I - SpAq)PoAT Ro(I - AeS{)]by

The multigrid iteration matix S,,;, now takes the form:
Smg = (I—SoAq)(I—-PoAT RoA)(I—SjAy) (A.1)

For the extension to multiple levels and variable number of pre- and post-smoothing sweeps,

we refer to [18].



Appendix B

Nodal Agglomeration

It may be easily shown for a 1D Laplacian operator, uniform coarsening using a nodal

agglomeration results in a scaling error.

This figure was broken... original no longer exists.

Figure B.1: 1D two-grid multigrid example

Following the analysis of Mavriplis [36], let us consider a discretization of the Poisson

problem
—=f (B.1)
on the 1D grid as shown in Fig. B.1. This yields

Ujp1 — 2U; + Uj—1

= .y (B:2)
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If the coarse grid is created by agglomeration of neighboring pairs of cells as shown in
Fig. B.1, the restriction operator based on injection corresponds to a simple summation of

the + — 1 and 7 residuals. The prolongation operator based on injection gives

Uj—g = Uj—1 = Ur—1
Ui = Uil = UJ (B3)
Uit2 = Ui43 = U4l

where the overbar indicates the coarse grid values. The discrete coarse grid operator at I is
obtained by the Galerkin Coarse Grid Approximation (GCA):

RAPu = Rf (B.4)

which yields

Ur—1 — 2Ur + Uryq
= B.

This is inconsistent with a rediscretization on the coarse grid which would yield

Up—1 — 20y + Uy
4h?

=f (B.6)

If we now perform a similar analysis with a restriction operator based on injection and a

prolongation based on linear interpolation, the prolongation operator gives

3 1
Ui—1 = Z“I—l + ZUI
1 3
u;, = —Ur_ —U B.7
i 1 -1+ 1 I ( )
3_ 1
Uit = ZUI + ZUH—I

Construction of the discrete coarse grid operator at point I now yields Eq. B.6. Hence, the

choice of low-order interpolants results in a scaling factor of 2 for the Laplacian operator.

Let the coarse grid matrix constructed by nodal and elemental agglomeration be Ay,

and A g respectively. From the analysis above,

Ay =2Ap
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If we now consider the multigrid iteration matrix (Eq. A.1) for these two methods, we obtain

Sy = (I-SA)I-PA,'RA)I-STA) (B.8)
S = (I-SA)I-PAL'RA)I-STA) (B.9)
r? 1
The instantaneous convergence rate for the multigrid cycle at cycle n+1 is € = I Il I . We
may now compare the relative convergence rates for these two methods:
ev _ llAllSvIfA™Y]
€p Al ISEll A~
il
1S5l
_ IT—8A)|[T-PAG'RA)| ||(T-S"A)]|
I(T-SA)|[|X-PAG'RA)| (I~ STA)|
_ |I-PAG'RA)|
|I-PAL'RA)|
_1- | PAG'R]| A
1- || PA'R|A]
1- ]| PASR] JA|
1- || PAS'R| A
Let C; = H PAEIRH and Cy = ||A]|. Since the multigrid methods are assumed to be

convergent, the condition C1C < 1 is satisfied. We then have:

v _ 1-300
€R N 1—0102

1 [ CC
= 14- (X2
+2<1—0102>

> 1
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