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This work presents an adaptive framework that realizes the true potential of a higher-
order discretization of the Reynolds-averaged Navier-Stokes (RANS) equations. The frame-
work is based on an output-based error estimate and explicit degree of freedom control.
Adaptation works toward the generation of meshes that equidistribute local errors and
provide anisotropic resolution aligned with solution features in arbitrary orientations. Nu-
merical experiments reveal that uniform refinement limits the performance of higher-order
methods when applied to aerodynamic flows with low regularity. However, when com-
bined with aggressive anisotropic refinement of singular features, higher-order methods
can significantly improve computational affordability of RANS simulations in the engineer-
ing environment. The benefit of the higher spatial accuracy is exhibited for a wide range of
applications, including subsonic, transonic, and supersonic flows. The higher-order meshes
are generated using the elasticity and the cut-cell techniques, and the competitiveness of
the cut-cell method in terms of accuracy per degree of freedom is demonstrated.

I. Introduction

For decades, the potential of higher-order discretizations as a means to improve computational efficiency
for aerodynamics simulations has been discussed. Higher-order discretizations have become a widely accepted
tool for applications with high fidelity demands, such as acoustic simulations and Large Eddy Simulations.
However, the solvers used for steady state aerodynamics simulations in industry largely remain at most
second order accurate. A common perception for the use of a higher-order discretizations in steady state
aerodynamics simulations is that the benefit of high spatial accuracy can only be realized for high-cost, high-
fidelity simulations that are unaffordable in the current engineering environment. This is particularly true
for the Reynolds-averaged Navier-Stokes (RANS) simulations, in which the inaccuracies in the turbulence
model is thought to diminish the value of such costly simulations. This work demonstrates that, with
aggressive mesh refinements, the benefit of higher-order discretization can be achieved at much lower cost.
The mesh adaptation extends the envelope of applications of higher-order methods to those encountered in
the engineering environment by improving the computational affordability of RANS simulations.

Mesh adaptation that aggressively refines relevant features in the flow is the key to realizing the benefit
of higher order discretizations at lower cost. When uniform mesh refinement is applied to aerodynamic
flows, the accuracy is often limited by the solution regularity rather than the discretization order. However,
when the mesh is aggressively graded toward singular features, the benefit of the high order discretization is
recovered. The anisotropic refinement of boundary layers, shocks, and wakes are also the key to efficiently
resolve these features. Constructing the optimal mesh that accounts for solution regularity and anisotropy
is a formidable task even for a meshing expert, especially for high order discretizations, which are more
sensitive to suboptimal mesh grading and for which experience is limited.

In order to meet the stringent requirements placed to generate optimal meshes for high order discretiza-
tions, this work relies on an autonomous error estimation and adaptation strategy. In particular, an output-
based adaptation method based on the Dual-Weighted Residual1,2 (DWR) is used to estimate the error
in an engineering quantity of interest, such as lift and drag, and to identify the regions to refine. Then,
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a Riemannian metric based adaptation strategy with an explicit degree of freedom (dof) control, inspired
by the work on the continuous-discrete mesh duality,3 is used to drive toward the dof-optimal mesh. The
previous applications of output-based adaptation include predictions of lift and drag for two-dimensional and
three-dimensional flows,4–6 sonic boom propagations,7,8 and forces on re-entry vehicles.9 The information
flow of the adaptive algorithm used in this work is summarized in Figure 1, and the key components of the
algorithm are described in Section II and III.

Problem
definition

- Discretization (II.A)
- Non-linear solver (II.B)

Error estimation (II.C) Solution

Mesh generation (III.D)
- Elasticity
- Cut-cell

Adaptation
- Fixed fraction marking (III.A)
- Anisotropy detection (III.B)
- Dof control (III.C)

Figure 1. The information flow for the adaptive algorithm. The numbers in parenthesis correspond to the section
numbers.

Section IV details the key findings and demonstrates the capability of the adaptive algorithm. First,
deficiency of uniform refinement applied to higher-order discretizations is quantified for inviscid and vis-
cous flows, and the ability of adaptive refinement to recover optimal convergence rate is verified. Then,
the high-order discretization, when combined with adaptation, is shown to be superior to second-order dis-
cretization for subsonic, transonic, and supersonic RANS problems even at the drag level of as high as 10
counts—the error level at which the discretization error is deemed more dominant than modeling error. The
competitiveness of the cut-cell meshes in terms of solution efficiency, accuracy per degree of freedom, is also
demonstrated. Finally, the ability of the fixed-dof adaptation to efficiently perform a deign parameter sweep
is demonstrated for a transonic, high-lift airfoil.

II. Solution Strategy

II.A. Discretization

All flow equations considered in this work are steady-state conservation laws of the form,

∇ · Fi(u)−∇ · Fv(u,∇u) = S(u,∇u),

where u is the state, Fi is the inviscid flux, Fv is the viscous flux, and S is the source term characterizing a
particular governing equation. The conservation law is discretized using a high-order discontinuous Galerkin
(DG) finite element method, resulting in the weak form : Find uh,p ∈ Vh,p such that

Rh,p(uh,p, vh,p) = 0 ∀vh,p ∈ Vh,p, (1)

where Vh,p is the space of discontinuous, p-th order piecewise polynomial functions. For elliptic problems
with a smooth solution, the solution uh,p asymptotically converges at the rate of hp+1 measured in the L2

norm, i.e. the discretization is p+ 1 order accurate in space. The inviscid flux of the Navier-Stokes equation
is discretized using Roe’s approximate Riemann solver,10 and the viscous flux uses the second discretization
of Bassi and Rebay.11 This work uses the RANS equations with the Spalart-Allmaras (SA) turbulence
model12 in the fully turbulent mode. In order to improve the robustness of the solver, the modifications
to the original SA model proposed by Oliver and Darmofal13,14 are incorporated. Multiple references have
previously applied the DG discretizations to the RANS equations.15–20

Shock capturing is performed using the PDE-based artificial viscosity model from Barter and Darmofal.21

In this model, a shock indicator that measures the local regularity of the solution is used as the forcing term
of an elliptic PDE, which in turn generates a smooth artificial viscosity field. The artificial viscosity PDE,
which augment the original conservation law, is given by

∂ε

∂t
=

∂

∂xi

(
C2

τ
(M−1)ij

∂ε

∂xj

)
+

1

τ

[
h̄

p
λmax(u)SK(u)− ε

]
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where ε is the artificial viscosity, τ = hmin/ (C1pλmax(u)) is the time scale based on the maximum wave speed
and the element size, M is the smooth Riemannian metric tensor field, h̄ = (det(M))−1/(2d) is the average
length scale based on the element volume, and SK is the shock indicator based on the jump in a scalar
quantity across element face. Unlike Barter’s original equation that used axis aligned bounding boxes to
measure the local element sizes, a Riemannian metric tensor is used in this work to measure the local length
scale for the PDE. The new formulation provides consistent propagation of artificial viscosity independent
of the coordinate system and enables sharper shock capturing on highly anisotropic elements with arbitrary
orientations.

II.B. Non-linear Solver

Upon selecting suitable basis functions for the approximation space Vh,p, the problem of solving Eq. (1)
becomes a discrete, root-finding problem. The solution is obtained using a non-linear solver based on pseudo-
time continuation where the unsteady terms of the governing equations are retained. Solving the system of
equations in pseudo-time improves the robustness of the solver, particularly through initial transients. A
first-order backward Euler method is used for time integration. Given a discrete solution, Un, the solution
after one time step, Un+1, is given by solving

Rt(U
n+1) ≡ 1

∆t
M(Un+1 − Un) +Rs(U

n+1) = 0, (2)

where Rt(U) is the unsteady residual and Rs(U) is the spatial residual. The m-th entry of Rs(U) is the
residual evaluated against the m-th basis function, i.e. [Rs(U)]m = Rh,p(uh,p, φ(m)). A single step of
Newton’s method is used to approximately solve (2) at each time step,22

Un+1 − Un ≈ ∆U ≡ −
(

1

∆t
M +

∂Rs
∂U

∣∣∣∣
Un

)−1

Rs(U
n), (3)

where the current time step, ∆t, is based on a CFL number. In this work local time stepping is used such
that the time step on each element is

∆tκ = CFL
hκ
λκ
,

where hκ is a measure of element size and λκ is the maximum convective wave speed over the element.
Computation of the state update, ∆U , requires the solution of a linear system. The linear system in this
work is solved with restarted GMRES.23 In order to improve the convergence of the GMRES algorithm, the
linear system is preconditioned with an in-place block-ILU(0) factorization24 with minimum discarded fill
ordering and a coarse p = 0 multigrid correction.25

The solution process is advanced in time until ‖Rs(Un) ‖2 is less than a specified tolerance. In the
solution procedure, the CFL number is updated at each time step based on a physicality check and a line
search over the unsteady residual, Rt(U). The line search is included to increase the reliability of the solution
procedure by requiring a decrease of the unsteady residual with each solution update as

η = 1, Ũ = Un + η∆U

while
(
‖Rt(Ũ) ‖ > ‖Rt(Un) ‖ && (η > ηmin)

)
η ← η

2
, Ũ = Un + η∆U

Physicality Check and Line Search CFL Change Solution Update

(∆ρ,∆ρe < 10%) && (η = 1) CFL← 2 · CFL full update

(∆ρ,∆ρe > 100%) || (η < ηmin) CFL← CFL/10 no update

otherwise CFL unchanged partial update

Table 1. Summary of solution update limiting for the non-linear solver.

The physicality check requires that both the density and internal energy, ρe = ρE − 1
2ρ(u2 + v2), are

limited to changes of less than 10%. Table 1 summarizes the limiting applied to the CFL number.
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II.C. Error Estimation

Once the solution to Eq. (1) is obtained, the quality of the solution is assessed through the error estimation
process. The dual-weighted residual (DWR) method26,27 is used to estimate the error in a scalar output,
J (u), and to localize the error to drive adaptation. In the DWR framework, the residual of the flow equation
(primal equation) is weighted by the error in the dual solution, which measures the sensitivity of the output
to local perturbations. The perturbations, in this case, are the discretization error of the primal problem.
The DWR method enables estimation of the error in an output quantity of engineering interest, such as lift
and drag, and identification of important regions for computing the output accurately. A review of recent
developments in DWR error estimators for aerospace applications is provided by Fidkowski and Darmofal
and the references therein.28 The local error indicator used in this work is of the form

ηK =
1

2

[∣∣∣Rh,p(uh,p, ψ̃h,p+1|K)
∣∣∣+
∣∣∣Rψh,p[ũh,p+1](ũh,p+1|K , ψh,p)

∣∣∣] (4)

where uh,p ∈ Vh,p is the solution satisfying the primal flow equation, Eq. (1), and ψh,p ∈ Vh,p is the adjoint
solution satisfying the adjoint equation

Rψh,p[uh,p](vh,p, ψh,p) ≡ J
′
h,p[uh,p](vh,p)−R′h,p[uh,p](vh,p, ψh,p) = 0 ∀vh,p ∈ Vh,p, (5)

where J ′[uh,p](vh,p) and R′[uh,p](vh,p, ψh,p) are the Fréchet derivative of the output functional and the
residual semilinear form, respectively, evaluated about uh,p in the direction of vh,p. The truth surrogate
solution ũh,p+1 is sought from the p + 1 order piecewise-polynomial space, which is obtained by solving
Eq. (1) approximately on Vh,p+1 using 10 iterations of Newton smoothing. The authors have found that
a simpler block smoothing scheme13 sometimes results in an unreliable error estimation for problems with
shocks and separation. As the objective was to enable robust and automated adaptation, the additional cost
of Newton smoothing was deemed justifiable. The dual surrogate solution, ψh,p+1 ∈ Vh,p+1, is obtained by
solving Eq. (5) linearized about ũh,p+1 exactly. The error in the output of interest is estimated by summing
the local error contributions, i.e.

J (u)− Jh,p(uh,p) ≈
∑
K∈Th

ηK .

III. Adaptation Strategy

The objective of mesh adaptation is to generate a mesh that realizes the smallest output error for a given
cost. In this work, the output error is estimated using the DWR framework discussed in Section II.C and
the degrees of freedom is used as a cost metric. In order to efficiently resolve features such as shocks, wakes,
and boundary layers with arbitrary orientations, Riemannian metric based anisotropic adaptation is used in
this work.

III.A. Fixed-Fraction Marking

In order to drive adaptation based on the local error estimate Eq. (4), a fixed-fraction adaptation strategy is
adopted to the context of unstructured, metric-based adaptation. The objective of adaptation is to create a
metric request field, Mr, that equidistribute the elemental error indicator, ηK , throughout the domain. To
this end, the top fr fraction of the elements with the largest error are marked for refinements and the top
fc fraction of the elements with the smallest error are marked for coarsening. The requested element size,
Ar, is specified by

Ar = αrAc

where Ac is the current element size, and αr is the refinement rate which is set based on whether the element
is marked for refinement, coarsening, or no change. Note that the fixed-fraction adaptation strategy is only
used to determine the area of the element; the shape of element is determined by the anisotropy detection
mechanism described in Section III.B. For this work, the parameters are set to fr = fc = 0.2 and αr = 1/4
and 2 for refinement and coarsening, respectively.

The distinguishing feature of the fixed-fraction marking strategy used in this work compared to traditional
fixed-fraction adaptation based on hierarchical subdivision of elements is that the refinement request is not
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directly connected to an increase in the degrees of freedom, i.e. the cost. As described in Section III.C, the
final requested metric is scaled such that the discrete mesh would have a desired degrees of freedom. Thus,
the fixed-fraction strategy should be thought of as a means to redistribute element sizes and to equidistribute
local errors. The continuous scaling of degrees of freedom is enabled because the metric-based adaptation
permits continuous variation of element size; this is contrary to the traditional hierarchical fixed-fraction
method, in which the local subdivisions only permit discrete change in the element size.

III.B. Anisotropy Detection

In order to efficiently resolve shocks, boundary layers, and wakes encountered in the aerodynamics appli-
cations, the element orientation and stretching must be adapted to the anisotropic features in the flow.
The anisotropy detection used in this work is based on the work by Venditti and Darmofal,29 which was
extended to higher-order methods by Fidkowski and Darmofal.30 The framework attempts to minimize the
interpolation error of the solution by first aligning the dominant principal direction of the Riemannian metric

tensor with the direction of the maximum p + 1 derivative of the Mach number, M
(p+1)
max . Then, the length

scale in the second principal direction is selected to equidistribute the interpolation error in the principal
directions. Assuming the Mach number converges at the rate of r, the principal lengths, {h1, h2}, implied
by the anisotropy request metric tensor, Mani, should have the property(

h2(Mani)

h1(Mani)

)r
=
M

(p+1)
max

M
(p+1)
⊥

where M
(p+1)
⊥ is the derivative of the Mach number in the direction orthogonal to M

(p+1)
max . Without loss

of generality, Mani is specified to have a determinant of unity. The choice of the Mach number as the
scalar quantity representing the solution behavior follows from the previous works.29,31 While the choice is
somewhat arbitrary, the authors have found it works well for the flows with shocks, wakes, and boundary
layers in practice. The convergence rate, r, is nominally set to p+ 1; however, the rate is reduced to r = 1
when the shock indicator is on, and the derivative quantities used in the formulation are replaced by the first

derivatives, M
(1)
max and M

(1)
⊥ . The p+ 1 derivative of the Mach number is obtained from the truth surrogate

solution of the DWR; this is another reason for performing the 10 Newton smoothing to obtain a robust
p+ 1 approximate of the true solution.

III.C. Metric Request Construction and Explicit Degree of Freedom Control

Using the area request Ar and the anisotropy metricMani, the anisotropic metric requestMr is constructed
as

Mr = A−2/dim
r Mani.

However, even with the more robust truth surrogate reconstruction, both the error estimate and the
anisotropy detection sometimes suffer from the noises in the surrogate solutions, particularly on coarse
meshes encountered in the earlier stages of adaptation. In order to remedy the problem, the changes in the
element size and shape are limited from one adaptation iteration to another. More specifically, the requested
metric tensor is limited such that length change in any direction is limited by a given factor, i.e.√

eTMr̃e√
eTMce

∈ [∆r,∆c] ∀e ∈ Rdim

where Mr̃ is the limited requested metric tensor and the admissible changes for refinement and coarsening
are set to ∆r = 1/4 and ∆c = 2, respectively.

Finally, the requested Riemannian metric is scaled to achieve the desired degrees of freedom, which is a
measure for the cost of obtaining a solution. In the view of the discrete-continuous mesh duality proposed
by Loseille and Alauzet,3 the degrees of freedom of a mesh conforming to a Riemannian metric field,Mr̃, is
approximated by

dof(Mr̃) =

∫
Ω

Cp,K
√

det(Mr̃)dx
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where Cp,K is the constant depending on the solution order and the element shape. For example, for a p-th
order polynomial simplex element in two dimension, Cp,K = (2/

√
3)(p+ 1)(p+ 2). The final dof-controlled

metric field is

Mr,final =

(
doftarget

dof(Mr̃)

)2/dim

Mr̃.

The metric scaling algorithm provides an explicit control of degrees of freedom independent of the number
of adaptation cycles. The ability to perform multiple adaptation iterations at a fixed degrees of freedom
serves two important features to our adaptation strategy.

As will be shown in the results section, achieving the optimality for a higher-order discretization requires
significant grading of the mesh toward singularities; the dof-control mechanism allows the fixed-fraction
marking strategy to produce this grading through a series of adaptation steps while maintaining degrees of
freedom. This, in turn, enables generation of dof-“optimal” meshes, in which the local errors are equidis-
tributed. Note that the “optimal” mesh generated in this manner does not necessarily minimize the error
for a given degree of freedom, as the equidistribution of the local errors is a necessary but not sufficient
condition for the true optimality. In particular, while the size distribution is optimized in the proposed
procedure, the shapes of the elements may not be optimized when the Mach number does not serve as the
best representation of the local primal and adjoint solution behaviors. Nevertheless, the Mach number based
anisotropy detection appears to work well for aerodynamics applications, and the mesh obtained after several
fixed-dof adaptation iterations is referred to as the “optimal” mesh in the result section. We also note that
the fixed-dof adaptation results in a generation of a family of “optimal” meshes, all having similar metric
distributions but slightly different triangulations. The family of meshes arise from the non-uniqueness of the
meshes that realize a given metric field.3 In the result section, we

Second, the explicit degrees of freedom control is useful for performing parameter sweeps, e.g. construct-
ing a lift curve slope or a drag polar. In this case, the explicit control allows the adaptation for a given
parameter to start from an optimized mesh for the flow with a close parameter and maintain a particular
degree of freedom count.

III.D. Higher-Order Mesh Generation

From the final dof-controlled metric field, an anisotropic mesh is generated using a metric-conforming mesh
generator. All meshes used in this work were generated using BAMG,32 which generates linear anisotropic
mesh (i.e. straight edged elements). However, the linear mesh is unsuitable for higher-order discretizations,
and the mesh must be modified to capture higher-order geometry information of curved surfaces. Simply
curving the elements on the boundary is not a valid option for highly anisotropic meshes used to resolve
boundary layers, as the surface may push through the opposing face as shown in Figure 2. This work uses
two methods to overcome the problem : elastically-curved meshes and cut-cell meshes.

III.D.1. Elastically-Curved Meshes

The first option is to globally curve a linear boundary conforming mesh by elasticity.13,33,34 In this method,
the mesh is thought of as an elastic material, and the entire mesh is deformed as the boundary is moved to
conform to the curved surface. This method requires a mesh generator that can generate a linear, anisotropic,
boundary-conforming mesh, which is a difficult task in three dimensions. However, elastically-curved meshes
offer benefits in terms of solution efficiency when compared to cut-cell meshes, as shown in the result section.

III.D.2. Cut-Cell Meshes

The second mesh generation technique used is a simplex cut-cell method first presented by Fidkowski and
Darmofal30 and extended by Modisette and Darmofal.35 In this method, a linear, anisotropic background
mesh is intersected with the geometry, producing “cut”elements on the geometry surface. The cut-cell method
does not require a boundary conforming mesh, significantly simplifying the mesh generation process. This
is particularly important for autonomous mesh generation for three-dimensional, complex geometry, where
the true benefit of the adaptive method would be realized.

In terms of accuracy per degree of freedom, the cut-cell meshes are not as efficient as the elastically-
curved meshes. As the cut-cell mesh uses linear background elements, degrees of freedom are wasted near
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Valid linear mesh

Curving only
boundary surface

Curving
with

elasticity
Cut-cell

intersection

Invalid curved mesh

Figure 2. Diagram of the options for higher-order mesh generation.

curved geometry compared to elastically-curved meshes. However, this paper demonstrates that the solution
efficiency loss in using the cut-cell meshes is relatively small, and the ease of mesh generation makes it a
competitive method.

IV. Results

IV.A. Comparison of Uniform and Adaptive Refinement

IV.A.1. NACA0012 Subsonic Euler : M∞ = 0.5, α = 2.0◦

In order to demonstrate the importance of adaptive refinement for higher-order methods applied to aero-
dynamics applications, the error convergence behaviors of uniform and adaptive refinements are compared.
The first problem considered is M∞ = 0.5 Euler flow over a NACA0012 airfoil at α = 2◦. To perform the
comparison, adaptive refinement is first performed at fixed degrees of freedom of 2,500 and 5,000, generating
“optimal” meshes for these two degrees of freedom. Then, for uniform refinement, each element is divided
into four elements and the solution is obtained on the refined mesh having 10,000 and 20,000 degrees of
freedom, respectively. The adaptive refinement results are obtained by continuing the adaptation procedure
at 10,000 and 20,000 degrees of freedom. The test is performed for p = 1 (2nd order accurate) and p = 3
(4th order accurate) polynomials to assess the impact of adaptation for different discretization orders.

The result of the comparison is shown in Figure 3(a). The figure shows that adaptation has a larger
impact for the p = 3 discretization than for the p = 1 discretization. In fact, the p = 3 discretization is less
efficient than the p = 1 discretization in the absence of adaptive refinement. The suboptimal convergence
rate of uniform refinement is due to the presence of a corner singularity at the trailing edge, which results
in the convergence rate being limited by the regularity of the solution rather than the interpolation order.
However, with a proper mesh grading, the optimal convergence rate of E ∼ (dof)p ∼ h2p for the output
quantity can be recovered.

Figure 4 shows the error indicator distribution near the trailing edge singularity for the p = 3, dof =
20, 000 meshes obtained after a uniform refinement and adaptive refinements. After a step of uniform
refinement, the error contribution of the trailing edge element is several orders of magnitude larger than
that for the other elements, indicating the mesh is suboptimal. The adaptive refinement targets the corner
elements dominating the error, and produces a strongly graded mesh that nearly equidistribute the error.
The diameter of the trailing edge element is less than 8 × 10−5c for the adapted mesh. In comparison, the
p = 1 adaptation having the same number of elements produces trailing edge elements of h ≈ 5×10−3c. Thus,
the higher-order discretization requires a stronger grading toward the corner singularity to equidistribute the
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(a) NACA0012 subsonic Euler
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(b) RAE2822 subsonic RANS-SA

Figure 3. Comparison of the error convergence for uniform and adaptive refinements for the subsonic NACA0012 Euler
flow (M∞ = 0.5, α = 2.0◦) and the subsonic RAE2822 RANS-SA flow (M∞ = 0.3, Rec = 6.5× 106, α = 2.31◦).

error. In addition, the higher-order discretization is more sensitive to suboptimal h distribution as the error
scales as a higher power of h. Thus, h-adaptation is indispensable to achieve the full benefit of higher-order
discretizations in the presence of corner singularities encountered in Euler flows.

(a) uniform refinement (b) adaptive refinement

Figure 4. Comparison of the trailing edge mesh gradings of the p = 3, dof = 20, 000 meshes obtained from uniform
and adaptive refinements of the p = 3, dof = 5, 000 optimized mesh for the subsonic NACA0012 Euler flow (M∞ = 0.5,
α = 2.0◦). The color scale is in log10(E).

IV.A.2. RAE2822 Subsonic RANS-SA : M∞ = 0.3, Rec = 6.5× 106, α = 2.31◦

The second problem considered is M∞ = 0.3, Rec = 6.5 × 106 turbulent flow over an RAE2822 airfoil at
α = 2.31◦. The RANS-SA equations are solved in the fully turbulent mode. Similar to the previous case,
adaptation is first performed at 20,000 and 40,000 degrees of freedom to generate “optimal” meshes, and
then uniform and adaptive refinements are started from those meshes.

The error convergence result is shown in Figure 3(b). Similar to the previous case, the adaptive refinement
makes little difference for the p = 1 discretization. The convergence rate of the p = 3 discretization is limited
by the solution regularity when the mesh is uniformly refined; however, with the adaptive refinement, the
optimal convergence rate of E ∼ (dof)2p/dim for the output quantity is recovered. Also note that the “optimal”
p = 3 mesh achieves drag error of approximately 1 count using just 20,000 degrees of freedom (i.e. 2,000
elements), whereas the optimal p = 1 mesh requires 80,000 degrees of freedom to achieve the same fidelity.

In order to understand the region limiting the performance of uniform refinement, the error indicator
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distribution obtained after a step of uniform refinement from the 40,000 dof-optimized mesh is shown in
Figure 5. Due to the singularity in the SA equation on the outer edge of the boundary layer,14 elements in
the region are deemed to have high error. The adaptive refinement correctly identifies the region and makes
the necessary adjustment to remove these high error elements.

(a) uniform refinement (b) uniform refinement (zoom)

(c) adaptive refinement (d) adaptive refinement (zoom)

Figure 5. Comparison of the error indicator distributions of p = 3, dof = 160, 000 meshes obtained from uniform and
adaptive refinements of the p = 3, dof = 40, 000 optimized mesh for the subsonic RAE2822 RANS-SA flow (M∞ = 0.3,
Rec = 6.5× 106, α = 2.31◦). The color scale is in log10(E).

IV.B. High-Order Discretization of RANS-SA Flows:
Comparison of Boundary-Conforming and Cut-Cell Solution Efficiency

A consequence of using cut-cell meshes is a reduction in solution efficiency compared to elastically-curved
meshes. As Figure 6 demonstrates, for an anisotropic two-dimensional layer on curved boundary, the
elastically-curved mesh requires only two elements to resolve a length of δ. On the other hand, the cut-
cell mesh is limited by the linear background elements, and three to four elements are required to resolve the
same length. An increases in the degrees of freedom leads to the decrease in the local geometry curvature
relative to the p + 1 derivative of the solution. Thus, asymptotically, the solution efficiency losses of the
cut-cell meshes vanishes.

δ

(a) Elastically curved

δ

(b) Cut cell

Figure 6. Diagrams of elastically-curved and cut-cell meshes required to resolve an anisotropic layer of thickness δ.
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IV.B.1. RAE2822 Subsonic RANS-SA : M∞ = 0.3, Rec = 6.5× 106, α = 2.31◦

To demonstrate the difference in solution efficiency between cut-cell and elastically-curved meshes, the same
RANS-SA flow over an RAE2822 airfoil as section IV.A.2 is considered (M∞ = 0.3, Rec = 6.5 × 106,
α = 2.31◦). Figure 8 shows the convergence in the cd error estimate for “optimal” cut-cell and elastically-
curved meshes. The largest solution efficiency gap exists for the p = 3, dof = 20, 000 mesh. However, there
are only 2,000 elements in these meshes with high grading toward the boundary layers, so the accuracy gap
is understandable. It is important to note that the cut-cell meshes achieve a similar rate of convergence, and
the gap in solution efficiency decreases as the total number of degrees of freedom increases.

In terms of the solution fidelity, the higher-order discretizations (p = 2, 3) are clearly superior to the
second order discretization (p = 1) for high-fidelity simulation requiring the drag error of less than 1 count.
In fact, on the highly graded meshes, the higher-order discretization is more efficient at an error level of as
high as a few drag counts. Thus, if the singularity in the SA equation on the boundary layer edge is handled
appropriately, the benefit of higher spacial accuracy to resolve the boundary layer can be realized at lower
degrees of freedom.
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Figure 7. The drag coefficients for the subsonic RAE2822 RANS-SA flow (M∞ = 0.3, Rec = 6.5× 106, α = 2.31◦).
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Figure 8. The cd error estimate convergence for the subsonic RAE2822 RANS-SA flow (M∞ = 0.3, Rec = 6.5 × 106,
α = 2.31◦).

IV.B.2. RAE2822 Transonic RANS-SA : M∞ = 0.729, Rec = 6.5× 106, α = 2.31◦

This section demonstrates the benefit of higher-order discretizations even in the presence of shocks when
the mesh is aggressively graded toward the singular features. First, transonic flow over an RAE2822 airfoil,
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with the flow condition M∞ = 0.729, Rec = 6.5× 106, and α = 2.31◦, is considered. The output of interest
is drag.

The Mach number distribution and the drag-adapted mesh obtained using the p = 3, dof = 40, 000
discretization are shown in Figure 9. The mesh is graded aggressively toward the airfoil surface, the boundary
layer edge, and the shock. The refinement in the sonic pocket indicates the presence of the characteristics
in the adjoint equation emanating from the shock root and reflecting off the sonic line. The Mach contour
indicates that the combination of anisotropic grid refinement and the shock capturing algorithm enables
sharp shock capturing.

Figure 11(a) shows the convergence of the drag error indicator obtained using the p = 1, 2, and 3
discretizations. Even at the cd error level of as large as 10 drag counts, the p = 2 discretization is more
efficient than the p = 1 discretization. For a higher-fidelity solution, the p > 1 discretizations are clearly
more efficient. This is due to the significant reduction in the degrees of freedom required to capture the
boundary layer for a given tolerance when a higher-order approximation is employed. Thus, even though
the higher-order method does not improve the efficiency of resolving the shock, overall the method is more
efficient for transonic turbulent problems with thin boundary layers given the mesh is appropriately graded.
Note, similar to the subsonic RAE2822 case, the cut-cell meshes achieve a similar level of solution efficiency
as the elastically-curved meshes.

(a) Mach number (b) mesh

Figure 9. The Mach number distribution and the mesh for the transonic RAE2822 RANS-SA flow (M∞ = 0.729,
Rec = 6.5 × 106, α = 2.31◦) obtained using a p = 3, dof = 40, 000 discretization. The Mach contour lines are in 0.05
increments.
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Figure 10. The drag coefficients for the transonic RAE2822 RANS-SA flow (M∞ = 0.729, Rec = 6.5× 106, α = 2.31◦).
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Figure 11. The cd error estimate convergence for the transonic RAE2822 RANS-SA flow (M∞ = 0.729, Rec = 6.5× 106,
α = 2.31◦) and the supersonic NACA0006 RANS-SA flow (M∞ = 2.0, Rec = 2.0× 107, α = 2.5◦).

IV.B.3. NACA0006 Supersonic RANS-SA : M∞ = 2.0, Rec = 2.0× 107, α = 2.5◦

The second shock problem considered is a supersonic flow over a NACA0006 airfoil with the flow condition
M∞ = 2.0, Rec = 2.0 × 107, and α = 2.5◦. The output of interest is drag. The Mach number distribution
and the mesh obtained for the p = 2 discretization having 80,000 degrees of freedom is shown in Figure 12.
The aggressive refinement toward the singularities is evident from the mesh. The bow shock inside the
adjoint Mach cone emanating from the trailing edge is captured sharply using highly anisotropic elements.
The mesh resolution drops quickly outside of the adjoint Mach cone, as the solution outside of the cone is
irrelevant for the calculation of the drag. For the same reason, the shock originating from the trailing edge
is not targeted by the adaptation.

Figure 11(b) shows the convergence of the drag error estimate for the problem. Due to the irregularity of
the dominant feature in the flow, it is difficult to realize the benefit of p = 2 discretization using only 40,000
degrees of freedom (i.e. 6700 elements) even with the adaptive algorithm. However, for a higher-fidelity
simulation requiring the tolerance of less than 1 drag count, the p = 2 discretization is more efficient than
the p = 1 discretization due to the significant saving in resolving the boundary layer.

IV.C. Parameter Sweep using Fixed-Dof Adaptation

IV.C.1. Three-element MDA high-lift airfoil : M∞ = 0.2, Rec = 9× 106

To demonstrate the ability of the fixed-dof adaptation to efficiently perform a parameter sweep, the adapta-
tion strategy is used to construct the lift curve for the McDonnel Douglas Aerospace (MDA) three-element
airfoil (30P-30N).36 For this high-lift airfoil test case, the freestream Mach number and Reynolds number
are set to M∞ = 2.0 and Rec = 9×106, respectively, and the angle of attack is varied from 0.0◦ to 24.5◦. All
results are obtained using the RANS-SA equations in fully turbulent mode, discretized by p = 2 polynomials
at 90,000 degrees of freedom.

Figure 13(a) shows the lift curves obtained using a fixed grid and adaptive grids. The fixed grid used for
comparison is optimized for α = 8.1◦. The lift curve shows that the fixed grid closely matches the adaptive
result for 0◦ < α < 20◦; however, for α > 20◦, the lift calculation on the fixed grid becomes unreliable and
the cl is significantly underestimated. Figure 13(b) shows that the error indicator correctly identifies the
lack of confidence in the solution for the high angle of attack cases, producing the cl error estimate on the
order of 10. The local error estimate indicates that the elements on the upper surface of the slat dominates
the fixed grid cd errors for angles of attack above 20◦. On the other hand, when adaptive refinement is
performed for each angle of attack, the cl error estimate remains less than 0.01 for the entire range of angles
of attack considered despite the adaptive grid using the same degrees of freedom as the fixed grid.

Figure 14 shows the Mach number distribution obtained for the α = 23.28◦ flow on the fixed grid
optimized for the α = 8.1◦ and the grid adapted for the α = 23.28◦ flow. The Mach number distribution
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(a) Mach number (b) mesh

(c) Mach number leading edge zoom (×20) (d) mesh leading edge zoom (×20)

Figure 12. The Mach number distribution and the mesh for the supersonic NACA0006 RANS-SA flow (M∞ = 2.0,
Rec = 2.0 × 107, α = 2.5◦) obtained using a p = 2, dof = 80, 000 discretization. The Mach contour lines are in 0.1
increments.
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Figure 13. The lift curve and the cl error obtained using the fixed mesh and adaptive meshes for the three-element
MDA airfoil.
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indicates that the fixed grid lacks resolution on the front side of the leading edge slat, causing the extra
numerical dissipation to induce separation on the upper surface of the slat. The lack of acceleration is evident
from the absence of the sonic pocket on the slat. The adjoint captures the impact of the region to the rest
of the flow, which leads to the local error estimate being high in the region. With proper mesh resolution,
the adapted grid eliminates the numerical dissipation induced separation. The shock in the front side of the
slat is captured sharply by combination the shock capturing mechanism and aggressive refinement.

(a) fixed grid

(b) adapted grid

Figure 14. The Mach number distribution for the three-element MDA airfoil at α = 23.28◦ obtained on the 8.10◦

optimized mesh and the 23.28◦ optimized mesh. The Mach contour lines are in 0.05 increments.

Figure 15 shows the initial mesh and the adapted meshes for selected angles of attack. The different flow
features that the problem exhibits as the angle of attack varies are evident from the meshes. At lower angle
of attack, the flow separate from the bottom side of the slat, and the wake must be captured to account for
its influence on the main element. At α = 23.28, capturing the acceleration on the upper side and the shock
becomes important for accurate calculation of lift.

V. Conclusions

This paper presented an adaptation strategy that works toward generation of dof-optimal meshes using
an output-based error indicator with explicit control of degrees of freedom. Using the framework, “optimal”
meshes that can realize the benefit of a higher-order discretization at low degrees of freedom were generated.
The key features of these meshes were strong grading toward the singularities and anisotropic resolutions for
the boundary layers, wakes, and shocks. The numerical experiments demonstrated that uniform refinement is
insufficient to attain the benefits of high-order discretizations. With a proper mesh selection, the higher-order
methods are shown to be superior to lower-order methods for RANS-SA simulations of subsonic, transonic,
and supersonic flows. In addition, the results show that the advantage of the higher-order discretization can
be achieved at an error level of as high as 10 drag counts—the level at which the discretization error dominates
the modeling error. Furthermore, the cut-cell meshes are shown to be competitive to the elastically-curved
meshes in terms of solution efficiency, making the method an attractive choice for complex, three-dimensional
geometries. Finally, the potential of using the fixed degrees of freedom adaptation for design parameter
sweeps were demonstrated for high-lift, transonic flows.
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Figure 15. The initial and lift-adapted grids for the three-element MDA airfoil at selected angles of attack.
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