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Most structural analysis solvers provide much more accurate results when given a pure
quadrilateral (as apposed to triangle or mixed) mesh as input. A triangulation of a complex
trimmed surface can be always generated, so a complete quadrilateral mesh is possible by
subdividing each triangle into 3 quadrilaterals. This is accomplished by spitting each triangle
side and including the centroid of the triangle in the splitting. Though this produces a purely
quadrilateral watertight mesh, the quad shapes suffer from inheriting the shape of the original
triangle and the vertex irregularity is quite high. This paper describes a technique that recovers
regularity by performing iterative topological changes on the mesh and attempts to produce a
quad alignment that follows the geometrical features. The end result is a watertight surface
mesh of a BRep that is completely quadrilateral and almost fully regular which is suitable for
structural analysis and possibly other PDE solver schemes.

I. Quad Meshing
Quad meshes have a natural advantage over triangular meshes when representing the local geometry of a surface;

since there are two logically orthogonal directions (u and v) for the surface, quads can be designed to follow these
isoclines, producing meshes that reflect the underlying geometry. Generally, automatic quad meshing is achieved
through direct methods such as advancing front techniques [1–3] which generate quads from the beginning or indirect
methods which start with a triangular tessellation [4–6] that is subsequently converted into quads. This can be done
by appropriate triangle pairing based on a version of the Blossom Algorithm [7] which solves the perfect matching
problem (in this context, every triangle is paired to another) in minimal time. However, not every graph (triangular
mesh) has a perfect match so the resulting quadrangulation might leave several triangles which have to be subsequently
eliminated [4] in order to obtain a fully quadded mesh. Furthermore, there is still a cost associated with this algorithm
[8]. Alternatively, quads can be produced directly from a triangle split using its medians and inserting an extra vertex
at the centroid [9] (see Figure 1). Although this is a fast and effective technique, it produces a very irregular mesh
containing a high number of irregular vertices (vertices with valence , 4) but as it will be shown later, vertex regularity
can be recovered by performing local topological changes.

Vertex regularization consists of performing local changes around the quad configuration that result in an increase
of vertices with valence four (regular). Regular vertices are desirable since it allows for aligning quads, for example,
along the principal curvature directions of the surface or the isoclines. Examples of regularization techniques are
appropriate repositioning of irregular vertices (singularities) in order to remove helix-like structures [10]. Or the Quad
Mesh Simplification technique [11], based on poly-chords and the fundamental operation of quad collapsing or [12–16]
which combine several fundamental operations, namely: swapping, splitting and collapsing.

Automatic mesh generation usually involves a post-processing stage since sharp and flat elements with undesirable
aspect ratios may develop during the proccess. Usually, mesh quality is improved using an optimization scheme,
for example solving for the quad internal angles [17], orientation or sizing [18]. Alternatively, the problem can be
formulated as a Partial Differential Equation (PDE) problem using variations of the Laplacian [17, 19, 20] and the
elliptic operator [21].

The methodology presented here for generating suitable quad meshes starts with a triangular tessellation followed by
a splitting procedure [9] that produces a valid fully quadded mesh. The resulting mesh undergoes through a series of
topological modifications that enable a significant reduction in the total number of irregular vertices while maintaining
mesh validity. This is accomplished by detecting and readjusting distorted elements throughout the regularization
process. In general, validity checking is performed in physical space while insertions, collapses and vertex movement is
performed in the [u, v] space of the underlying surface.
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Fig. 1 Qudrangulation process using the
Catmull and Clark [9] techinique. Each tri-
angle is split into three quads by inserting a
new vertex (barycenter) and three new sides
(medians). The thicker lines (light green)
show the original triangles and the high-
lighted vertices indicate high/low valences.

(1) Original (2) Local Operations (3) Vertex Translation

(4) Vertex Repositioning (5) Optimized
Regular Vertex Recovery

Process Quads Irregular Vertices
(1) 156 85
(2) 165 18
(3) 128 0

Fig. 2 Algorithm pipeline from mesh generation to optimization.

II. Pre-Processing: Mesh Generation and Regularization
We begin by briefly describing how to obtain a fully quadded mesh from a triangular tessellation using the Catmull

and Clark [9] algorithm: given a triangular tessellation, for each triangle, we split the sides using the medians and
insert another vertex at the barycenter (centroid). Then, as shown in Figure 1, three new quads are produced by
linking the barycenter to the location where the median intersects each side. Although implementing this technique
is straightforward and effective, the resulting mesh contains many irregular vertices (valence , 4): those that were
originally there plus the new barycentric vertices which all have valence three (see Figure 1). This usually leads to
undesirable meshes displaying very sharp or flat elements so it is necessary to introduce a regularization process that
recovers as many regular vertices as possible.

In order to motivate the discussion, in Figure 2 we have produced an idealized mesh (an untrimmed surface with
equal numbers of vertices on opposing patch sides) and show the whole mesh manipulation pipeline. The first step
(local operations) which is discussed in Section II.A consists of applying systematically the basic element operations of
swapping, collapsing and splitting and combinations of the same such as swap-collapse or double splitting. This process
is followed by a vertex translation, which moves irregular vertices along the mesh allowing quads from far regions to
interact with each other. Once there are no more possible operations (or the mesh is fully regular), we apply an iterative
scheme for redistributing the vertices in order to provide a suitable mesh. This is discussed in Section II.B and finally, in
III.A we present the challenges associated with a curvature driven optimization process.

A. Mesh Regularization
Here we present the element operations in detail and show examples of compositions of basic operations that allow

for recovering regular vertices within a neighborhood (not all of them necessarily connected). We will use vi to denote
quad vertices, val(vi) their valences and a (a, b) pair means a vertex pair of valences a and b respectively. Finally, the
group (a, b, c, d) denote the valences of an ordered quad.

- Swapping: this process allows for exchanging high and low valences by changing the vertex pair forming the
common side of any two adjacent quads. If (v1, v2) was the pair forming the common side which has now become
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Before Swap Collapse Split
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3

3

5
35

3

After
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4
4 4 4

44

34

Fig. 3 The three basic vertex operations performed during regularization showing how valences exchange
between quads. The numbers on the vertices denote the valence (regular vertices have valence four).

(v3, v4), then:
val(vi) = val(vi) − 1, i = 1, 2 and val(vj) = val(vj) + 1, j = 3, 4. (1)

Hence, as shown in Figure 3, the perfect swap occurs for a (5, 5) and (3, 3) pair, producing two regular quads (all
vertices of valence four). In practice, we don’t require them to be perfect since, for example, swapping a (5 − 5)
edge for a (3 − 4) edge results in a (4 − 4) and (4 − 5) pairs, thus increasing the topological regularity.

- Collapsing: eliminating a quad by merging two of its opposite vertices (see Figure 3). Given a quad with valences
(v1, v2, v3, v4), collapsing (v1) to (v3) results in:

val(vi) = val(vi) − 1, i = 2, 4 and val(v13) = val(v1) + val(v3) − 2. (2)

Therefore, the ideal collapse occurs for a quad with valences (3, 5, 3, 5) respectively (val(v2) = val(v4) = 5 − 1
and val(v13) = 3 + 3 − 2 = 4). Like for the previous case, this operation is suitable as long as there are three
irregular vertices.

- Splitting: inverse operation to collapsing and it is applied when high valence vertices are linked to low valence
vertices. Figure 3 shows a split which goes from three irregular vertices to one. In this case, the distance (in
quads) between the vertices dictate the final valence distribution as illustrated in Figure 4.

- Translation: unlike splitting or collapsing, swapping edges preserves the number of quads. Hence, we can use
this operation to move vertices along the mesh. For example, a (4, 5) pair swapped with a (3, 4) pair results in
(3, 4) and (4, 5) valences. The total irregular vertices has not changed but the position has. In Figure 5 we show
how this operation brings irregular vertices that were not connected closer to each other resulting in a regular
region after two consecutive swaps.

Option 1 Option 2

6

3

3 4

4

4
4

6

3 3 44

5

3

Fig. 4 Two splitting examples showing the role
played by the relative position of the vertices for
the final valence distribution. Option 1 results in
a perfect split since the vertices are three quads
away whereas in option 2, the split produced a
pair 3, 5 (vertices are two (four) quads away).
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Initial 1st Translation 2nd Translation

5

4

4 3

5

3

4

3 3

4
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4

4

4

4 4

4

4

Fig. 5 Translation of an irreg-
ular vertex pair (3, 5) upwards
along the mesh showing how af-
ter two movements, a suitable
swapwas found producing a reg-
ular region.

- Composition: The basic operations show that in order to improve the global mesh regularity, we need three or
more irregular vertices to exchange valences effectively. However, notice that the three operations rely on the fact
that these vertices are all contained within the neighborhood of a quad and in a precise configuration; suitable
collapses need a vertex distribution where opposite vertices have low-low and high-high valences respectively.
Swaps on the other hand, need the vertex pairs to be three vertex counts apart (clockwise or counter-clockwise). In
Figure 6 we show a vertex star centered at S with all its surrounding quads and vertices. Star groups are employed
during regularization to detect three or more irregular vertices within a region, not necessarily contained in a
single quad or a quad pair. In Figures 7, 8, 9, 10 and 11 we illustrate several examples of effective composition of
these operations that allow for improving the global mesh regularity.

q1

q2

q3

q4q5

S

v8

v6

v3

v7

v4

v2
v1 v5

v10

v9
Fig. 6 Vertex star centered at S highlighting its sur-
rounding quads and vertices. This data group allows
us to study possible combinations of element opera-
tions within a region. For example, the pair (S, v2)
cannot see vertex v6 from quad q1 but star S sees the
three irregular vertices so a double split (see Figure
10) can be performed.

Initial Swap Split

3 5

3
4

4 3 6

4
3

3 4

4

4

4
3

4

Fig. 7 Swap-split process using information from
three different quads. The swap increases tem-
porarily the number of irregular vertices but pro-
duces a scenario for optimal splitting, leaving one
single irregular vertex (valence three). This opera-
tion is also suitable if rather than swapping a (4, 4)
edge with a (5, 3) pair, we have a (5, 4), (5, 4) setup.

Initial Swap Collapse

3

5 4

4

5

4

4

4 3

5

5

4

4

4

4

4

5

Fig. 8 Swap-collapse composition using two irreg-
ular quads. After swapping, the top right quad is
almost fully irregular with opposite high valence
vertices. Collapsing leaves a single irregular ver-
tex of valence five. A similar result would follow if
rather than having the quad (4, 5, 4, 4) for collaps-
ing, we had a (4, 4, 3, 4) distribution.
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Initial 1st Collapse 2nd Collapse Initial 1st Collapse 2nd Collapse

3

44

5

4

5

4

5

45

3 4

44 5 3

5

54

4 4 4 5

3

4

5 4

54

Fig. 9 Two double collapses: the first case starts collapsing the lower quad (valences (4, 4, 5, 3)) producing a
(3,5) pair for the adjacent quad which now has valences (3, 5, 4, 5). Collapsing leaves a single valence five vertex.
The second case follows a similar methodology. Double collapses depend on the relative position of the irregular
vertices and are applied when there are triples (3, 5, 5) around two quads and has one (3, 5) link.

Initial 1st Split 2nd Split

3

5 5

V

4

4

3

6

V

4

4

4 4

4

V
Fig. 10 Double split process: the first split pro-
duces a valence (3, 6) link which can be further
split through V (three quads distance), reducing
the number of irregular vertices from three to
one (or zero if V was valence 3). This operation
is suitable as long as the 3, 5 pair around the cen-
tral vertex are at least one quad apart.

Initial 1st Swap 2nd Swap Initial 1st Swap 2nd Swap

5

43 5

4 4

34 5

5 4 4

44 4

4 5
5

4

3

4

5 4

4

3

4

5

5 4

44

4 44

54

Fig. 11 Double swap operation using adjacent quads (first) and diagonal quads (second) leaving the local
region with one (zero) irregular vertices. Double swaps between adjacent quads use triples (3, 5, 5) which are
two vertices counts apart. Diagonal swaps need a (3, 5) link and the other valence five vertex opposite to the
central vertex.
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B. Vertex Repositioning
During the regularization process, every step is controlled by a mesh validity check ensuring that all the quad

internal angles are within an admissible range and that there are no self-intersecting elements (see Figure 12, bottom).
For a given quad, we extract the surface normal plane at the centroid and project all its vertices onto the plane (this is
accomplished by getting the surface first derivatives at the point and performing a cross product). At each vertex, we
compute the angles and the quad area using information from the other three vertices. This is illustrated in Figure 12
(top). If (A, B,C,D) denote the quad ordered vertices, then angle at A is obtained by adding ∠DAC and ∠CAB. The
signed area is computed as the sum of the areas of the two triangles multiplied by their orientation (with respect the
normal direction). Invalid elements are detected when the sign of the triangles pair is different. In such cases, the quad
and its neighbors undergo a vertex repositioning process attempting to produce a valid region.

Vertex repositioning depends on the information around each vertex: the new coordinates are the weighted average
of all its linking vertices. For invalid elements, we look for the greatest angle and start moving that vertex. In general,
this process requires repositioning several vertices (in the neighborhood) in order to find a suitable valid region. Note
that the position movement is done in [u, v], so that no projections are required.

For example, a swap involves two quads and six vertices so the moving region in this case would be the sum of all
the vertex stars (see Figure 6). Figure 13 shows an example of the number of vertices that are involved in the process of
area validation during a side swap operation. Notice that after swapping the vertices (30 − 43) for (19 − 31), one of the
quads has a degenerate angle (> 180◦) and in order to produce a valid element, several vertices are required to move.
The actual computation of the vertex coordinates is described in Algorithm 1. In the event that invalid elements remain,
the topological operation is rejected and the mesh is restored from its previous valid configuration.

C ′

B′

D′

A′

B

C

Fig. 12 Top: Quad internal angles at the surface normal plane through the centroid showing the vertex
projection from the surface. Bottom: valid elements according to a user defined maximum and minimum angle
tolerance and two examples of invalid elements: internal angles > 180◦ and a self-intersecting polygon.

Algorithm 1 Weighted Average Vertex Repositioning
1: INPUT: Vertex ID (vID)
2: star ← buildStar (vID) . Surrounding vertices and quads (Figure 6)
3: u = v = Γ = 0
4: for j = 1 to star → links do
5: (s, t) ← sur f aceUVs (links ( j))
6: (arc) ← arcLength (vID, links( j))
7: u+ = arc · s; v+ = arc · t
8: Γ+ = arc
9: end for
10: u = u/Γ; v = u/Γ
11: updateUV (vID, u, v)
12: return
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Since the same vertices may undergo several element manipulations during regularization, the maximum (minimum)
angles should be relatively large (small). Otherwise, many steps are rejected leaving more irregular vertices than the
“optimal” number. In practice, we allow angles within the interval range (5◦, 175◦). However, this results in very
distorted elements. Hence, once the regularization is complete, we apply an iterative technique that attempts to drive the
quad internal angles as close to 90◦ as possible. This is described in Algorithm 2. In this case, since the input mesh is
valid and we are just trying to adjust the angles, the process stops once it cannot reduce the angle interval any further.

Fig. 13 Vertex repositioning during a side swap. The left image highlights the quads that will be swapped
(side 30 − 43 will become 19 − 31). The middle image shows how the swap produces an invalid element (angle at
30 is > 180◦) and in the last image we see how a valid mesh is recovered. All the labeled vertices where involved
in the process and moved (if necessary).

Algorithm 2 Mesh Vertex Redistribution
1: (θmin, θmax) ← ( 5, 175)
2: (βmin, βmax) ← ( 85, 95) . Target angles
3: incr = 1◦ . Angle increment
4: while validMesh = true do
5: count = 0
6: for q = 1 to totalQuads do
7: if validArea (q, θmin, θmax) = true then count + +
8: end if
9: end for
10: θmin + = incr; θmax − = incr;
11: if count = 0 || θmin = βmin || θmax = βmax then
12: validMesh = 0
13: end if
14: end while

In the middle set of images seen in Figure 14 we show two examples of applying the full vertex repositioning from
Algorithm 2 after mesh regularization. Both cases resulted in a fully regular mesh which seems unstructured. Besides
the negative visual effect, it also results in an unsuitable initial condition for any optimization process. On the other
hand, the rightmost images in Figure 14 show how the mesh quality (angle-wise) has improved as a result of the iterative
process described previously.
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Fig. 14 A cylinder and a twisted body showing the original mesh (left), the regularization (middle) and after
reallocating the vertices (right) using the methodology described in Algorithm 1.
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III. Validation
We applied the mesh regularization technique over an aircraft body and for two different types of wings: with

and without flaps. In Table 1 we show the results in terms of regular vertices for several tessellation spacings and
surfaces. Notice the number of irregular vertices relative to the mesh doesn’t grow with refinement. Also, the algorithm
performance is not effected as the geometry becomes more difficult. In every case, the initial number of irregular
vertices accounts for around 48% of the total vertices and after regularization we are left with around a 4%.

Cylinder Wing Fuselage

Before After Before After Before After

528 498 492 435 687 659
Quads 1648 1398 1213 1123 1203 1156

2943 2654 2976 2995 2553 2527

276 (47.8) 12 (2.2) 253 (48.6) 20 (4.3) 342 (48.3) 29 (4.3)
Irregular Vertices (%) 751 (49.8) 42 (2.9) 555 (47.7) 50 (4.3) 591 (48.3) 49 (4.2)

1325 (49.2) 68 (2.5) 1437 (47.8) 122 (4.0) 1244 (48.3) 121 (4.7)

Table 1 Mesh regularity before and after applying our regularization process (Section II.A) over three different
surfaces and for three mesh refinements showing the number of quads and irregular vertices. The latter are
displayed as totals and as a proportion of the total number of vertices.

It needs to be reiterated; the target for these quadrilateral meshes is structural analysis (specifically Built-up Element
Models), so these results should not be viewed through a CFD lens. In a real sense, the task at hand is more difficult; it
is harder to produce valid meshes for curved geometry when its applications require the element size to be coarser.

The initial triangulations used in Figures 14, 15, 17, 19 and 21 were generated by the tessellator in EGADS [22]. It
generates watertight triangulations of BReps by first discretizing the BRep Edges, then performing the trimmed surface
(BRep Face) triangulations. There is no notion of grading spacings because the tessellator is driven by being able to best
represent the geometry with the fewest number of vertices/triangles. The technique used simply bifurcates regions that
don’t meet the user input criteria, which can obviously display abrupt linear spacing changes on the order of 2 or more.
Other points include:

• The quadrilateral templating scheme described in [23] is disabled.
• Large interior angle deviations between neighboring triangles are allowed.
• Large triangle side spacing are also allowed generating triangulations that are far from equilateral.

Fig. 15 Awing profile seen fromabove (top) and below (bottom) showing the originalmesh, after regularization
and the final mesh after repositioning the vertices.

In Figure 15 we show a wing profile at its three stages: mesh generation, regularization and redistribution of vertices.
Remember that the vertices at the bounds of the BRep Face are fixed.
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Fig. 16 A wing profile with two flaps seen from above (first two) and below (right) before and after applying
the mesh regularization technique.

Figure 16 shows similar result but in this case, the wing has two flaps. The final meshes contain few irregular
vertices becoming suitable for structural analysis applications. The aircraft in Figure 17 shows the meshes at the initial
and final stage. Notice that the original mesh is highly irregular, especially on the fuselage. This is because the initial
EGADS triangulation is having difficulties resolving the large amount of curvature with the requested coarse spacing.
The end result is patches of denser triangles and anisotropic large triangles. Once the initial triangles are split into
quadrilaterals those from the anisotropic triangles can display rather acute angles.

Fig. 17 An aircraft (top) split in half showing both meshes: the original obtained with the triangle splitting
process and after applying the mesh regularization technique. The bottom images show the fuselage seen from
the side.

After regularization, we are left with only valences five or less, allowing for a better distribution along the surface.
This can be appreciated in the bottom images of Figure 17 where we show a side-view of the fuselage. Generally, a
single irregular vertex affects the quad alignment over a large portion of the mesh [16, 23], presenting extra difficulties
for any angle based optimization process. In the following, we discuss a curvature driven optimization approach and the
challenges associated with this problem.

A. Surface Curvature and Optimization Challenges
A high quality mesh produced from trimmed surfaces must respect both the trimming and the surface’s underlying

curvature. For a regular mesh, the natural quad structure suggests that sides should be aligned with the local curvature
lines. However, as it was shown in Figure 17, irregular vertices affect the alignment not only within its surrounding
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quads but within a larger region. This presents an important challenge when deciding a suitable objective function for a
curvature driven optimization process. In addition, as it will be shown later, the surface bounds play also a major role in
the final mesh geometry.

The EGADS [22] geometry kernel has the full geometry representation of each surface so we can directly evaluate
the curvatures at any surface point. For every regular vertex we construct the surface normal plane and project all its
linking vertices onto this plane. The quad alignment is driven by the side that is closest to either curvature direction and
it is used as pivot for assigning a target direction for each of the other three sides. This is illustrated in Figure 18. On the
other hand, since irregular vertices can’t align with the curvature lines (two directions = four sides) these vertices are
floating degrees of freedom and we only quantify the internal angles in order to prevent sharp or flat elements.

C ′

B′

D′

A′

®k1

®k2

Fig. 18 A regular vertex linked to the ver-
tices (A, B,C,D) showing its tangent plane
and the projected vertices (A′, B′,C ′,D′).
The darker angle denotes the side which is
closest to one of the principal curvature direc-
tions and from which we decide how to com-
pute the error with respect the other sides.

Element sizing on the other hand, should be set according to the curvature magnitude: zero curvature (flat) regions
should allow relatively large sizing whereas high curvature zones should employ smaller elements. The authors in
[2, 24] proposed an estimation of the side size based on the local curvature:

s =
1
κ

√
40

(
1 −
√

1 − 1.2ε
)
=

1
κ
g(ε), κ = curvature (3)

and the size of ε is decided based upon the allowed error for replacing the arc of the osculating circle centered at a
vertex by the chord length.

After applying this curvature driven optimization approach over fairly simple surfaces we have noticed that both
the surface boundary and prevailing irregular vertices limit the performance of the optimizer. In Figure 19 we show a
simple flat surface which was cut producing a tilted shape. The mesh was optimized based on a uniform sizing approach
(since it is flat there is no curvature to follow) and although the visual effect is very positive, the mesh alignment doesn’t
follow an orthogonal system. Hence, if it had been driven towards, for example the Cartesian axis, it would have
destroyed its uniformity. Consider now the twisted surface shown in Figure 14. In this case, even though the final mesh
is uniform, curvature lines are completely ignored. This is reflected in Figure 20 where we show the curvature lines at
every vertex overlapped with the uniform mesh. Finally, the performance of our scheme is strongly affected by the mesh
regularity. In Figure 21 we show a slice of a toroidal surface with a relatively fine mesh spacing in several stages: the
initial mesh, after regularization and vertex repositioning and after optimization. The final mesh still contains several
irregular vertices and after optimization, the quads orientation have not improved. This is highlighted in the rigthmost
image where we show an overlap of both meshes.

Fig. 19 A flat surface with a non orthogonal bound-
ary structure before and after mesh smoothing. The
final mesh is structured and has uniform sizing but
its internal angles are not in a 90◦ configuration.

IV. Conclusions and Ongoing Work
In this paper we have presented a mesh generation technique that produces almost regular quadrilateral meshes.

Using the triangle splitting approach from [9], we obtain a fully quadded mesh which then undergoes topological
changes in order to recover regularity. Our approach shows that in general, it is possible to reduce the number of
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Fig. 20 A twisted surface where the curvature
lines cross at the center and the natural alignment
is in contradictionwith the trimmed surface geom-
etry. The dark arrows denote the curvature lines
at each vertex and they are superimposed with the
original mesh (ligher lines) in order to highlight
the angle deviation.

Fig. 21 A slice of a toroidal surface shoing the following meshes: initial (1), after regularization and vertex
repositioning (2), optimized mesh (3) and an overlap of (2) and (3).

irregular vertices from around 50% to 5%. However, the technique employed for vertex valence exchange is not yet
optimal. The element operations use information within vertex stars (Figure 6) and although the scheme successfully
eliminates any irregular star made of three or more irregular vertices, it still leaves pairs of high-low valences which
could balance out but are not detected within this data group. In addition, the remaining irregular vertices should be
driven towards surface regions with high curvature changes where they won’t affect the mesh alignment and in some
cases, even improve it. The regularization process is followed by an iterative vertex repositioning method that attempts
to redistribute the mesh points. This process eliminates distorted elements arising when performing mesh manipulations.
However, this approach does not use orientation information from the surface geometry and therefore should be followed
by an optimization process. Our first attempt on driving the mesh towards the curvature lines showed that the surface
trim has a strong impact on the overall mesh quality (see Figures 19 and 20). In addition, as shown in Figure 21, the
remaining irregular vertices also limit the performance of the optimizer. In general, we have not yet found a suitable
objective function that produces satisfactory results over more complex geometries accounting for several irregular
vertices like those shown in Figures 15, 16 and 17. Future work will focus on optimization objective functions and
appropriate balancing of angle and sizing control while respecting the trimming (bounds that do not align with isoclines
or principal directions of curvature).
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