
Extension of local cavity operators
to 3d + t spacetime mesh adaptation

Philip Claude Caplan ∗, Robert Haimes †, David L. Darmofal ‡ and Marshall C. Galbraith §

Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

This work extends local cavity operators to generate anisotropic four-dimensional meshes,
consisting of pentatopes, for adaptive numerical simulations. The implementation details
needed to address the robustness requirements in both the geometry and topology of the de-
veloped mesh generation tool are first discussed. Strict requirements on the metadata needed
to track the boundary representation are imposed and the geometry hierarchy of a four-
dimensional tesseract is presented. Furthermore, the schedule of the local operators is dis-
cussed in detail along with a metric limiting procedure to emulate the small changes requested
of metric fields during an iteration of an adaptive numerical simulation. The 3d benchmark
cases of the Unstructured Grid Adaptation Working Group are first used to demonstrate the ca-
pability of the developed software. Finally, anisotropic meshes are generated from two analytic
metric fields in 4d; the corresponding edge length and quality histograms are discussed.

I. Introduction
The CFD Vision 2030 study suggests (1) high-order discretizations and (2) mesh adaptation are two technologies

needed to obtain accurate solutions to complex physical flows such that engineers can design next generation aircraft [1].
Robust mesh adaptation frameworks which target the accurate prediction of a prescribed quantity of interest (such as the
drag on an aircraft) have been successfully demonstrated on a variety of spatial problems in 2d and 3d.

In the quest for accurate predictions of unsteady outputs, a variety of approaches exist. First, uniform refinement
on a fixed spatial mesh and a fixed time step can be used to accurately compute the output of interest – see Fig. 1a.
Alternatively, time can be treated as an additional dimension and the entire spatiotemporal domain can be solved
to estimate the output of interest. It has been shown in 1d [2] that, for a feature with characteristic size δ, uniform
refinement in this spatiotemporal domain would require an order of O(δ−2) degrees of freedom (DOF) to achieve a
certain level of error in the output. Furthermore, a time-slab tensor-product adaptive method, as in Fig. 1b, [3, 4] permits
isotropic refinement around the characteristic feature and has been shown to reduce the number of DOF required to
O(δ−1). The advantage of the latter method is that unstructured meshes can be used in space while a simpler time-slab
approach can be used in the temporal direction. However, to truly obtain the most accurate prediction of the unsteady
output of interest with the minimal DOF count, Yano demonstrates that a fully unstructured approach – see Fig. 1c – can
reduce the DOF to O(1) [2].

To date, mesh adaptation has been applied to either spatial problems in 2d or 3d [5] or to spatiotemporal problems in
1d or 2d [2, 6, 7]. The goal of this paper is to provide the mesh generation tool to achieve fully unstructured spacetime
mesh adaptation for 3d spatial problems, thus providing a 4d anisotropic metric-conforming mesh generator.

Our method of choice for generating 4d metric-conforming meshes is inspired by the local cavity approach of
Loseille [8–10] and Coupez [11–13]. In fact, it appears Gruau is the first to discuss 4d meshes in the appendices of his
thesis [14], however, it should be noted that the results are for Euclidean metrics and were not demonstrated in the fully
anisotropic setting. The use of local cavity operators has been nonetheless very successful when applied to 3d mesh
adaptation and is further attractive because of recent demonstrations of its use in the parallel setting [8, 15].

This paper discusses the extension of local cavity operators to produce pentatopal (4-simplices) 4d metric-conforming
meshes. The developed approach is demonstrated on the Unstructured Grid Adaptation Working Group’s (UGAWG)
benchmark cases in 3d and finally on two anisotropic metric fields in 4d.

∗Graduate Student, Department of Aeronautics & Astronautics, AIAA Student Member
†Principal Research Engineer, Department of Aeronautics & Astronautics, AIAA Member
‡Professor, Department of Aeronautics & Astronautics, AIAA Member
§Research Engineer, Department of Aeronautics & Astronautics, AIAA Member

1

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

 AIAA Scitech 2019 Forum

 7-11 January 2019, San Diego, California

 10.2514/6.2019-1992

 Copyright © 2019 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

 AIAA SciTech Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2019-1992&domain=pdf&date_stamp=2019-01-06

x

t

;

∆x

∆t

δ

(a) Time-stepping approach
x

t

;

δ

(b) Tensor-product approach
x

t

;

δ

(c) Unstructured approach

Fig. 1 Time-stepping, tensor product and unstructured approaches to capture the propagation of an unsteady
feature moving from left to right in 1d + t.

A. Review of local cavity operators for anisotropic mesh adaptation
In contrast to global remeshing methods in which a new mesh is generated at each adaptation iteration, local methods

start with and operate on a valid geometry-conforming mesh upon the application of each mesh operator. The term
geometry-conforming is meant to imply that the tessellation of the geometric entities in the boundary representation are
homeomorphic to an input description of the geometry as in, say, a BRep geometry. Given an initial d-simplicial mesh
Th ⊂ R

d , a local operation on Th consists of the transformation:

T k+1
h = T k

h − C
k

(f) + Bk (p) (1)

where the superscripts represent the sequence of meshes at each application of operators Ck (f) and Bk (p). Ck (f)
denotes the set of cavity elements about a j-dimensional facet f ⊂ T k

h
which is further enlarged to ensure topological

and geometric validity and Bk (p) denotes the ball of point p. In particular, Bk (p) ≡ S(∂C
k

(f), p) where S(·, ·) is the
star operator of Coupez [11, 12]. Often f is chosen from the vertices or edges of T k

h
[13]. Superscripts will now be

dropped for brevity.
Coupez enlarges an initial set of cavity elements C(f) to include those simplices in Th which are in the closure

of the vertices of the original cavity N (C(f)). Loseille enlarges the initial cavity elements to enforce a visibility
criterion: the simplex formed by p ∪ g for g ∈ ∂C (p < g) should exhibit a strictly positive volume. Here, we prefer the
visibility check of Loseille but do not allow cavities to enlarge. Instead, edge swaps are used upon the rejection of the
operator to weave out of a restrictive topology causing the rejection; these are discussed in a later section. Table 1
lists the choice of cavity C and re-insertion vertex p for each mesh operator. For the coordinates of the split operator,
xs = x0 + s(x1 − x0), s ∈ [0, 1] which may need to be projected to the geometry. Likewise, the coordinates resulting
from the smoothing operator, x̃, may also need to be projected to the geometry. In this work, smoothing is achieved
using a procedure similar to that of Bossen & Heckbert [16].

The foundational material for metric-based mesh adaptation has been extensively discussed in the literature and is
omitted from the current text [17, 18] – we simply remark upon how length and quality are computed in the metric
space. The length of an edge under the Riemannian metric fieldM, denoted by `M (e), is computed by assuming a
Log-Euclidean interpolation of the metrics stored at the edge (e) endpoint vertices: m(e0), m(e1). Note in the following
that the length of edge e in a constant metric mp is denoted by `m(p) (e) = (xTe mpxe)1/2 for xe ≡ x(e1) − x(e0). The
quality of a d-simplex κ under the metric fieldM is computed to be consistent with the quality measure used by the
Unstructured Grid Adaptation Working Group (UGAWG) [19]:

`M (e) = `m(e0) (e)
r − 1
r log r

, r ≡
`m(e0) (e)
`m(e1) (e)

, qM (κ) = cd

(√mmax |κ |
) 2/d∑

e∈κ
`mmax (e)

, mmax = arg min
v∈N (κ)

m(v),

where cd is a constant which normalizes the quality such that the unit equilateral simplex has unit quality. Note that
c4 = 40

√
6/5 1

4 . The volume of the physical simplex is represented by |κ |. The goal of the mesh adaptation procedure is

2

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

to create a quasi-unit mesh. That is, all edge lengths in the output mesh should ideally be in the range [
√

2/2,
√

2] and
the quality of all simplices should be greater than β (often β = 0.8).

Table 1 Choice of cavities and re-insertion vertices (with associated coordinates) for local cavity operators.

operator j j-facet f cavity C vertex p(x)

collapse 1 edge e = (v0, v1) Th ∩ v0 v1(x1)
split 1 edge e = (v0, v1) Th ∩ e vs (xs)

edge swap 1 edge e = (v0, v1) Th ∩ e p(xp) ∈ N (C)
facet swap d − 1 simplex f Th ∩ f p(xp) ∈ N (C)

smooth 0 vertex v Th ∩ v v (̃x)

II. Dimension-independent implementation
The dimension-independent implementation of the local cavity operators is successfully achieved by treating mesh

operations in set notation with the c++ standard library. As mesh generation combines the mathematical disciplines
of geometry and topology, the subsequent subsections discuss the tools needed to develop a robust four-dimensional
mesh generator in terms of these two disciplines. In addition, the boundary representation metadata and local operator
scheduling are discussed.

A. Topological robustness
In the terminology of Coupez [11, 12], the mesh needs to be a valid mesh topology, in which every (d − 1)-facet of

a d-simplex is counted either once (boundary facet) or twice (interior facet). To ensure its topology is always valid, the
mesh is closed such that it is without boundary. Each application of a local operator should maintain a null boundary of
the mesh. Practically, this is checked by storing a cache (initially empty) of those (d − 1)-facets which occur only once
and is modified when updating the simplex-to-simplex neighbour relations needed to 1) efficiently enlarge cavities and
2) compute the boundary of a set of cavity elements.

In order to close a mesh, Coupez suggests connecting every boundary facet to some fictitious vertex (call this a
ghost vertex). However, this is not guaranteed to create a valid mesh topology. In fact, there needs to be a fictitious
vertex for every closed boundary of the input mesh. Since this work is only concerned with tesseract geometries (mesh
topologies with genus 0) it suffices to connect every boundary facet with a single ghost vertex. The topology of the
mesh thus consists of all the original simplices combined with the set of ghost simplices on the boundary. A simplex is
said to be a ghost if it contains the ghost vertex – this is important for performing geometry checks with local operators.

B. Geometric robustness
Critical to any mesh generator is a set of geometric predicates which eliminate the possibility of producing invalid

meshes during the mesh generation decision-making process. For local mesh operations (and often many other
applications), the computation of simplex volume needs to be exact. Triangle [20] and TetGen [21] respectively use
the orient2d and orient3d predicates [22]. Here, the orient4d predicate is implemented to compute the sign of the
volume of an input pentatope. The Predicate Construction Kit (PCK) [23] is used to alleviate the expertise needed in
tracking numerical roundoff errors [22]. The code used to compute volumes of pentatopes for performing visibility
checks upon application of each operator is listed in Alg. 1. The procedure computes nothing more than the determinant
of the Jacobian of a linear 4-simplex, however, we emphasize how simple the predicate is to implement thanks to Lévy’s
versatile framework.

3

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Algorithm 1 Exact volume calculation of a pentatope (in the language of PCK [23]) for performing visibility checks. A
filter is used to obtain a quicker solution when possible.

double orient4d(const double* p0 , const double* p1 , const double* p2 ,
const double* p3 , const double* p4)

{
// use the filter to determine if we can use the fast volume calculation
int s = orient4d_filter(p0,p1,p2,p3,p4);
if (s!=FPG_UNCERTAIN_VALUE)
return orient4dfast(p0,p1,p2,p3,p4);

const expansion& a11 = expansion_diff(p1[0] , p0[0]);
const expansion& a12 = expansion_diff(p2[0] , p0[0]);
const expansion& a13 = expansion_diff(p3[0] , p0[0]);
const expansion& a14 = expansion_diff(p4[0] , p0[0]);

const expansion& a21 = expansion_diff(p1[1] , p0[1]);
const expansion& a22 = expansion_diff(p2[1] , p0[1]);
const expansion& a23 = expansion_diff(p3[1] , p0[1]);
const expansion& a24 = expansion_diff(p4[1] , p0[1]);

const expansion& a31 = expansion_diff(p1[2] , p0[2]);
const expansion& a32 = expansion_diff(p2[2] , p0[2]);
const expansion& a33 = expansion_diff(p3[2] , p0[2]);
const expansion& a34 = expansion_diff(p4[2] , p0[2]);

const expansion& a41 = expansion_diff(p1[3] , p0[3]);
const expansion& a42 = expansion_diff(p2[3] , p0[3]);
const expansion& a43 = expansion_diff(p3[3] , p0[3]);
const expansion& a44 = expansion_diff(p4[3] , p0[3]);

// compute the determinant with exact arithmetic
const expansion& Delta = expansion_det4x4(a11 , a12 , a13 , a14 ,

a21 , a22 , a23 , a24 ,
a31 , a32 , a33 , a34 ,
a41 , a42 , a43 , a44);

if (Delta.sign()==ZERO) return 0.0;
return Delta.value();

}

C. Boundary representation
Adaptive numerical simulations require the set of facets discretizing the boundary representation of the domain.

In the terminology of EGADS [24], the output tessellation of the boundary Faces, Edges and Nodes (of some BRep
geometry, for example) must be homeomorphic to their associated geometric entities.

To retrieve the tessellations of the boundary entities, the vertices of the input mesh are strictly enforced to contain
information as to which geometry entity they lie on. In particular, the lowest topological dimensional entity is needed
and tracked during the application of a local operator. Given a j-dimensional simplicial facet f ⊂ Th with vertices f i
(0 ≤ i ≤ j) lying on geometry entities ei (0 ≤ i ≤ j), f is a facet of the geometry entity

e f = min(E), with E ≡ P0 ∩ P1 ∩ · · · ∩ Pj, (2)

where Pi denotes the set of all geometric entities higher in the topology hierarchy (the parents) than their associated
ei . The ordering < on the geometry entities sorts the entities by topological number. This ensures e f is the lowest
topological dimensional member of E. If E = ∅, then f is an interior facet of the mesh. Furthermore, if Th ∩ e f does
not contain a ghost simplex, then e f is not on the geometry. This is an important check when meshing a domain with
curved geometries.

4

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Tesseract geometry The geometry of the 4d domain studied in this work is the unit tesseract. Geometric entities
have been specialized for this simple geometry, but the hierarchy of these entities needs to be constructed. Within
the EGADS framework [24], this is done by specializing the ego structure for the bounding geometric entities of the
tesseract: Nodes, Edges, Squares and Cubes. The full hierarchy of the geometry is constructed by first labelling the
eight bounding hyperplanes onto the 16 Nodes and traversing, dimension-by-dimension, the facets of the corresponding
Cube until the Nodes are reached. Each facet is either constructed upon first visit, or referenced using a hash table, thus
ensuring uniqueness of the 16 Nodes, 32 Edges, 24 Squares and 8 Cubes bounding the tesseract. The algorithm for
building this hierarchy is inspired by our previous method for computing restricted Voronoi simplices [25]. In short, the
Node-bisector information is first used to visit each bounding Cube and extract the bounding Squares using theVRep
and HRep [25, 26]. Similarly, the bounding Edges of each Square are then extracted using the same Node-bisector
information as well as theVRep andHRep. The final geometry topology is checked to ensure the required incidence
relations are respected. The final tesseract Body references the eight bounding Cubes which are reproduced for the
interested reader in Appendix IV.

D. Validity checks
It is important to check both the visibility and the topological validity of each proposed local operator. If the

re-insertion vertex p with coordinates x is not visible to the boundary of the proposed cavity, then the operator is rejected.
Furthermore, collapses are rejected if a vertex v0 on geometry entity g0 is collapsed onto a vertex v1 on geometry
entity g1 for g0 < g1. That is, g0 is lower in the geometry hierarchy than g1. Edge splits are always accepted unless
the proposed insertion is on a geometry entity. In this case, the coordinates xs of the insertion vertex vs should be
projected onto the common geometry entity of the edge (v0, v1). Though cavity enlargement is disallowed for all other
operators, enlargement is allowed for insertions on curved geometry entities provided the enlargement does not cause
any vertex to be deleted in the process. Swaps are rejected if the re-inserted vertex p on geometry entity gp is higher in
the geometry hierarchy than the common entity of the edge being swapped. Smoothing is only rejected based on the
visibility criterion.

E. Operator scheduling
The local operator schedule is inspired by the work of Loseille [8, 9]. However, some very important changes were

made to ensure the best possible metric conformity is obtained in the final mesh.
For reference, Loseille proposes to first perform collapses and splits to create a unit mesh, followed by swaps and

smoothing to optimize the mesh. An important feature of Loseille’s work is to ensure that no short edges are created
during any edge split operation as this would require another pass of the collapse operator. Building upon this idea, we
find it important to interleave swaps within the collapse and split operators to weave out of restrictive (geometry- or
visibility-related) topological configurations.

The operator schedule, listed in Alg. 2, is composed of two main stages; each stage is divided into two sub-stages.
The first stage consists of targeting edges longer than 2 in the metric space whereas the second stage targets edge lengths
longer than

√
2. This was necessary to ensure the number of elements is not overshot in the adaptation process. The

division of the stages into sub-stages is motivated by the fact that restrictive topological configurations might cause
an operator to be rejected, therefore, it is important to allow a global pass of the swap operator to weave out of these
configurations before attempting another sub-stage of collapses and splits. In addition, the swap operator has been
directly interleaved within the split and collapse operators to immediately weave out of these restrictive configurations.
Before a swap is accepted, the inserted topology is checked to ensure the current lengths do not get worse with the
application of the swap. This ensures the edge length bounds can only improve during the mesh adaptation procedure.

The collapse portion of Stage 1a does not limit the maximum length created by the collapse operator, however,
subsequent stages do limit this maximum length so as to ensure an improvement in the length bounds. Passes on the
swap operator are divided into two target qualities (0.4 and 0.8) simply for performance reasons since there will be
much fewer simplices with low quality as the mesh converges. All sub-stages are performed recursively, i.e. until no
further operator in the sub-stage can be performed, except the pass on quality when qt > 0.8 since this may slow down
performance when few swaps are being performed anyway.

5

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Algorithm 2 Local operator schedule.
sub-stage comments

Stage 1a

collapse(lmax_lim = false) do not limit max length produced by collapses
insert(lt = 2) edge splits with target length > 2
swap_edges(qt = 0.4) swap edges touching any simplex with quality < 0.4
swap_edges(qt = 0.8) swap edges touching any simplex with quality < 0.8
smooth(max_iter = 10) perform 10 iterations of smoothing

Stage 1b

collapse(lmax_lim = true) limit the max length produced by collapses
insert(lt = 2) edge splits with target length > 2
swap_edges(qt = 0.4) swap edges touching any simplex with quality < 0.4
swap_edges(qt = 0.8) swap edges touching any simplex with quality < 0.8
smooth(max_iter = 10) perform 10 iterations of smoothing

Stage 2a

collapse(lmax_lim = true) limit the max length produced by collapses
insert(lt = sqrt(2)) edge splits with target length > sqrt(2)
swap_edges(qt = 0.4) swap edges touching any simplex with quality < 0.4
swap_edges(qt = 0.8) swap edges touching any simplex with quality < 0.8
smooth(max_iter = 10) perform 10 iterations of smoothing

Stage 2b

collapse(lmax_lim = true) limit the max length produced by collapses
insert(lt = sqrt(2)) edge splits with target length > sqrt(2)
swap_edges(qt = 0.4) swap edges touching any simplex with quality < 0.4
swap_edges(qt = 0.8) swap edges touching any simplex with quality < 0.8

F. Metric limiting
We assume the mesh adaptation algorithm will supply a metric field requesting small changes with respect to the

input mesh [2]. As such, the analytic metric fields of the following sections are first limited with respect to the implied
metric of the input mesh. This is achieved in two main stages. First, a continuous vertex-based implied metric of the
mesh,Mν , is calculated from the discontinuous simplex-based one,Mκ , by solving an optimization problem of the
vertex metrics:

M∗ν = arg min
Mν

(C(Mν) − C(Th))2 + *
,

∑
e

δ(e)d+
-

2

, where δ(e) =




`Mν
(e) −

√
2 , `Mν

(e) >
√

2 ,
√

2/2 − `Mν
(e) , `Mν

(e) <
√

2/2 ,
0 , else,

where d is the topological dimension of the mesh. This objective function drives the complexity of the implied metric
C(Mν) to the actual complexity C(Th) [17] with a penalty on the lengths of the edges (e) since all edge lengths under
the implied metric should be close to 1. Next, the analytic target metric field is evaluated at each vertex of the mesh,
yielding a discrete vertex-based target metricMt,ν . Each mt,ν ∈ Mt,ν is limited as described in Alg. 3.

Algorithm 3 Metric-limiting procedure
1) compute the step from the implied metric to the target: sν = (mν)−1/2mt,ν (mν)−1/2 (mν ∈ Mν),
2) directly limit the entries of the step matrix sν such that |sν,i, j | ≤ 2 log α, ∀i, j ∈ 1 . . . d,
3) compute the limited target metric m̃t,ν = (mν)1/2 exp(sν)(mν)1/2

Since the developed mesh generator targets metric fields provided by the work of Yano [2], in which the metric is
limited by a factor of 2 due to the approximability of the local error model, we set α = 2. Upon adaptation of the mesh,
the target metric is re-evaluated at the vertices of the new mesh and the above procedure is repeated until the number of
limited vertex metrics is small. Usually, this occurs within 10-20 iterations of the above algorithm, whereby less than
1% of the step matrices have been limited.

6

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

III. Numerical results
Here we examine the ability of the dimension-independent metric-conforming mesh generator to produce both 3d

and 4d meshes composed of tetrahedra and pentatopes, respectively. Metric-conformity will be assessed by examining
the edge lengths and cell qualities of the produced meshes. We differentiate between the two descriptions of the metric
field: analytic and discrete. The analytic metric field is used to analyze the properties of the mesh as measured under
the analytic description of the metric field. The discrete metric field is a continuous representation of the analytic
metric field on the background mesh obtained from the previous iteration of Alg.3. The former is used to demonstrate
that the sequence of meshes ultimately converges to a mesh conforming to the desired metric field. The latter is
used to assess the iteration-to-iteration metric-conformity properties of the mesh generator which is important for
adaptive numerical simulations. Both the analytic and discrete metric-conformity statistics are tabulated. However, we
simply provide the length and quality histograms as measured under the analytic metric field since the trends in the
histograms when evaluating the quantities with the discrete metric are very similar to their analytic counterpart. We
additionally discuss the number of tetrahedra and pentatopes produced for each case which is important when imposing
the degree-of-freedom constraint used by the adaptive algorithm of Yano [2].

A. Verification on UGAWG benchmark cases
First let us demonstrate the ability of the developed mesh generator to conform to the benchmark cases of the

Unstructured Grid Adaptation Working Group (UGAWG). The geometries and metric fields are described in the group’s
first benchmark paper [19]. The meshes generated for each of the four cases are shown in Fig. 2. The meshes appear
similar to those produced by the other codes in the UGAWG which is a good verification of our software implementation.
However, we remark upon one very important difference. Though the UGAWG participants report the number of
tetrahedra produced by each software implementation, no remark is made as to how many tetrahedra are expected for
each case. Integrating the mapped volume under metric field and dividing by the volume of the ideal unit tetrahedron
yields the expected number of tetrahedra. Table 2 tabulates the final number of tetrahedra our method produces in each
case and compares this with the expected number of tetrahedra alongside the number of tetrahedra of the participating
UGAWG codes which is closest to the expected number. We note that our software achieves the expected number of
tetrahedra much closer than the other codes which can be due to either (1) the proposed operator schedule or (2) the use
of metric limiting from the current mesh. The only case in which the target number of tetrahedra was overshot (though
still less than the other UGAWG codes) was in the Cube-Cylinder Polar 1 case which was deemed a difficult case due
to the high gradation requested by the metric [19]. As such, we decided to target a smaller length in the tangential
direction to eliminate issues that might be caused by the competing metric field and curved geometry. Indeed, when
setting this tangential spacing to ht = 0.01 instead of its original ht = 0.1, we agree much better with the expected
number of tetrahedra. The ability to match the target complexity is a promising result because of the computational cost
constraint used by the adaptive algorithm of Yano [2].

The edge length and quality histograms, as recomputed under the analytic metric, for these 3d benchmark cases are
provided in Fig. 3 and metric-conformity statistics measured under both the analytic and discrete representations of the
metric field are given in Tables 3 and 4, respectively. All meshes exhibit very good metric conformity; roughly 99% of
the edges are within the quasi-unit bounds and a large number of tetrahedra have a quality greater than 0.8. The only
case for which metric-conformity was low was unsurprisingly the Cube Cylinder Polar 1 due to the high gradation
requested by the metric field near the curved surface. When this gradation is relaxed (ht = 0.01), metric conformity
improves significantly.

Table 2 The number of tetrahedra produced by our method for each 3d UGAWG case is much closer to the
expected number than other mesh generators participating in the UGAWG [19].

Case # tetrahedra expected UGAWG # tetrahedra (code)

Cube Linear 40,212 39.4k 45,158 (feflo.a)
Cube-Cylinder Linear 32,434 31.7k 38,302 (EPIC-ICSM)

Cube-Cylinder Polar 1 (ht = 0.1) 25,388 20.2k 30,378 (EPIC-ICSM)
Cube-Cylinder Polar 1 (ht = 0.01) 203,550 202k n/a

Cube-Cylinder Polar 2 36,445 36.4k 44,280 (EPIC-ICSM)

7

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

(a) Cube Linear (b) Cube-Cylinder Linear (c) Cube-Cylinder Polar1 (d) Cube-Cylinder Polar2

Fig. 2 Meshes generated from the UGAWG benchmark cases appear similar to those produced by existing
mesh generators [19].

Cube Linear Cube-Cylinder Linear Cube-Cylinder Polar 1 (ht = 0.1)
Cube-Cylinder Polar 1 (ht = 0.01) Cube-Cylinder Polar 2

0 1 2 3 4 510−6

10−5

10−4

10−3

10−2

10−1

`M

no
rm

al
iz

ed
#

ed
ge

s

0 0.2 0.4 0.6 0.8 110−6

10−5

10−4

10−3

10−2

10−1

qM (κ)

no
rm

al
iz

ed
#

te
tra

he
dr

a

Fig. 3 Analytic metric edge length and cell quality for the 3d UGAWG benchmark cases demonstrate that
our method conforms very well to the metric fields used in the UGAWG benchmark cases. The highly-graded
Cube-Cylinder Polar 1 metric with ht = 0.1 exhibits the poorest metric conformity (as with the other mesh
generators) but is improved with ht = 0.01.

Table 3 Analytic mesh statistics for the 3d UGAWG benchmark cases. All quantities are measured under
the analytic description of the metric field. The percentage of quasi-unit edge lengths (% `unit) refers to the
percentage of edges with lengths within [

√
2/2,
√

2]. The percentage of quasi-unit tetrahedra (% qunit) refers to
the percentage of tetrahedra with quality greater than 0.8.

Case `min `max % `unit qmin qavg % qunit

Cube Linear 0.513 1.832 99.5 0.3820 0.8983 92.6
Cube-Cylinder Linear 0.342 2.996 99.2 0.0282 0.8937 91.3

Cube-Cylinder Polar 1 (ht = 0.1) 0.177 16.419 93.8 0.0011 0.7220 45.7
Cube-Cylinder Polar 1 (ht = 0.01) 0.242 9.167 99.6 0.0019 0.9010 93.3

Cube-Cylinder Polar 2 0.465 6.009 98.5 0.0156 0.8719 83.8

8

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Table 4 Discrete mesh statistics for the 3d UGAWG benchmark cases. All quantities are measured under
the discrete description of the metric field at the 20th iteration of Alg. 3. The percentage of quasi-unit edge
lengths (% `unit) refers to the percentage of edges with lengths within [

√
2/2,
√

2]. The percentage of quasi-unit
tetrahedra (% qunit) refers to the percentage of tetrahedra with quality greater than 0.8.

Case `min `max % `unit qmin qavg % qunit

Cube Linear 0.579 1.902 99.5 0.3557 0.8984 92.7
Cube-Cylinder Linear 0.363 2.837 99.2 0.0312 0.8939 91.3

Cube-Cylinder Polar 1 (ht = 0.1) 0.012 10.439 94.6 2.9e-06 0.7323 46.7
Cube-Cylinder Polar 1 (ht = 0.01) 0.349 3.383 99.6 0.0070 0.9011 93.4

Cube-Cylinder Polar 2 0.595 4.107 98.5 0.0156 0.8723 84.3

B. Anisotropic metrics in 4d
Having verified that the mesh generator works well in 3d, let us now study two 4d problems on the unit tesseract

x = [x, y, z, t]T ∈ [0, 1]4.

Tesseract Linear The first problem, inspired by the UGAWG Linear metric, is represented analytically by

m(x) = diag
(
h−2
x , h

−2
y , h

−2
z , h

−2
t

)
, (3)

where hx = hy = hz = hmax = 0.125 and ht = h0 + 2(hmax − h0) |t − 0.5|. Meshes were generated for the two cases
where ht = [0.25, 0.125]. Here, we expect to see six of the eight bounding hypercubes (non-constant t hyperplanes)
to show refinement in the t direction. The constant t hyperplanes should exhibit uniform meshes. This case will be
referred to as the Tesseract Linear case.

(a) x = 0 (b) y = 0 (c) z = 0 (d) t = 0

(e) x = 1 (f) y = 1 (g) z = 1 (h) t = 1

Fig. 4 Meshes of the eight bounding cubes generated from the Tesseract Linear case with ht = 0.125 demon-
strate the expected behaviour: the six bounding Cubes corresponding to the hyperplanes with non-constant t
show a refinement in the t direction. The coordinate axes have been labelled according the associated hyperplane.

9

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Tesseract Wave The second metric field is modeled after a propagating spherical wave in 3d (see Fig. 5a). Consider a
spherical wave of radius R0 = 0.4 centered about the origin at time t = 0. If the wave expands at a constant velocity to a
radius Rf = 0.8 at time t = 1, then the expanding sphere traces the geometry of a hypercone in 4d. To visualize this,
consider an expanding circle moving in a direction orthogonal to the circle – the expanding circle traces the geometry of
a cone (Fig. 5b). The metric used to capture the propagation of this wave is

m(x) = Q diag
(
h−2
r , h

−2
θ , h

−2
φ , h

−2
t

)
QT , Q =



sin α cos φ sin θ cos φ cos θ − sin φ cos α cos φ sin θ
sin α sin φ sin θ cos θ sin φ cos φ cos α sin φ sin θ

sin α cos θ − sin θ 0 cos α cos θ
− cos α 0 0 sin α



. (4)

The spacings in the tangential directions are

hθ, hφ =



h1, |r − r0 |> δ,

(h1 − h2) |r − r0 |/δ + h2, |r − r0 |≤ δ,
(5)

with r0 = R0 + (Rf − R0)t is the position of the spherical wave with time. The spacing in the radial direction is
hr = h0 + 2(h1 − h0) |r − r0 | and the spacing in the temporal direction is ht = 0.5. Note the use of spherical coordinates,
r =
√

x2 + y2 + z2, θ = arccos(z/r) and φ = arctan(y, x). Also observe that the eigenvectors Q are simply the unit
vectors for spherical coordinates with the radial unit vector rotated by an angle α = arctan(t f − t0, Rf − R0). The
remaining parameters are h0 = 0.0025, h1 = 0.125, h2 = 0.05 and δ = 0.1.

x y

z

R0

R f

vp

α

(a) Propagating spherical wave problem description.

x t

y

R0

R f vp

α

View 1

View 2

(b) Analogous problem in 2d + t.

Fig. 5 Problem description for the Tesseract Wave case and analogous problem description in 2d + t. View 1
corresponds to visualizing constant t hyperplanes whereas View 2 corresponds to visualizing constant x or
constant y (or constant z in 3d + t) hyperplanes. In 2d + t, we expect to see lines with slope tan α, however, these
should appear as cones in 3d + t due to symmetry about the time axis.

Since we are essentially conforming to the geometry of a hypercone in 4d, we can infer what the meshes along the
eight bounding hyperplanes of the final tesseract mesh should look like. At t = 0 and t = 1, we can clearly expect to
see a mesh of the spherical wave at its initial and final radii, respectively. This corresponds to 3d projections of the
hypercone at constant t (equivalent to View 1 in Fig. 5b). Along the constant x, y, or z hyperplanes, we expect to see 3d
cones since these correspond to the projection of the hypercone along these spatial dimensions (non-constant t) – this is
analogous to View 2 in Fig. 5b. This case will be referred to as the Tesseract Wave case.

To better visualize the meshes of the eight bounding hyperplanes, we have provided the meshes of the six bounding
planes of the analogous 2d + t case (described in Fig. 5b) in Fig. 6). The projection of the 3d cone onto the x = 0 and
y = 0 planes is indeed a straight line with slope tan α but we see no refinement at the x = 1 or y = 1 planes. We also see
the initial and final radii of the expanding circle at t = 0 and t = 1 planes.

10

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

(a) Boundary of full spacetime mesh

(b) x = 0 (c) y = 0 (d) t = 0

(e) x = 1 (f) y = 1 (g) t = 1

Fig. 6 Meshes of the six bounding Faces generated from the 3d case (analogous to the Tesseract Wave case)
along with full spacetime mesh. The coordinate axes have been labelled according the associated hyperplane.

Discussion Indeed, Figs. 4 and 8 show the expected behaviour in the meshes of the bounding hypercubes. The mesh
generator succeeds in refining in the t direction for the expected six hyperplanes of non-constant t in the Tesseract Linear

11

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

case. For the Tesseract Wave case, we also observe the expected mesh distributions. At time t = 0, we see a mesh of the
initial sphere (Fig. 8d) and at t = 1 we see the final sphere (Fig. 8h). Additionally, we do see the expected cone shape in
Figs. 8a,8b and 8c. Unfortunately, we have no current way of visualizing the actual pentatopes in the full tesseract mesh
but will investigate this in a future work.

The analytic edge length and quality histograms for the Tesseract Linear (with ht = 0.25 and 0.125) and Tesseract
Wave cases are shown in Figs. 7. Both analytic and discrete metric conformity statistics are reported in Table 6 and 7
with the pentatope counts given in Table 7. Despite metric conformity being very good (about 99% in edge lengths and
at least 80% in simplex quality) for the 3d UGAWG benchmark cases, the 4d metrics seem slightly more difficult to
obtain the same level of metric conformity conformity (about 93− 98% in edge lengths) – observe the wider distribution
in the edge lengths and lower quality elements of Fig. 7. Furthermore, the generated element counts is slightly higher
than the expected number which is attributable to the poorer metric conformity in these cases – see Table 5. In particular,
the Tesseract Wave case exhibits the poorest quality elements which, in turn, influences the ability of the edge lengths to
conform to the metric field. Perhaps more swaps are needed to weave out of restrictive topological configurations for
this difficult metric.

Tesseract Wave Tesseract Linear (ht = 0.25) Tesseract Linear (ht = 0.125)

0 1 2 3 4 510−6

10−5

10−4

10−3

10−2

10−1

`M

no
rm

al
iz

ed
#

ed
ge

s

0 0.2 0.4 0.6 0.8 110−6

10−5

10−4

10−3

10−2

10−1

qM (κ)

no
rm

al
iz

ed
#

pe
nt

at
op

es

Fig. 7 Analytic metric edge length and quality for the 4d anisotropic cases demonstrate that our method
conforms fairly well to the metric fields in our 4d cases. The best metric conformity is obtained with the
more resolved Tesseract Linear case (ht = 0.125) whereas the Tesseract Wave case shows the poorest metric
conformity, perhaps due to the difficulty in conforming to this metric field.

Table 5 The number of pentatopes produced for each 4d case demonstrates that our method overshoots the
expected number of pentatopes but is still reasonable.

Case # pentatopes expected

Tesseract Linear (ht = 0.25) 63,686 51k
Tesseract Linear (ht = 0.125) 957,453 818k

Tesseract Wave 393,907 n/a

12

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Table 6 Analytic mesh statistics for the 4d tesseract cases. All quantities are measured under the analytic
description of the metric field. The percentage of quasi-unit edge lengths (% `unit) refers to the percentage of
edges with lengths within [

√
2/2,
√

2]. The percentage of quasi-unit tetrahedra (% qunit) refers to the percentage
of tetrahedra with quality greater than 0.8.

Case `min `max % `unit qmin qavg % qunit

Tesseract Linear (ht = 0.25) 0.371 2.191 96.1 0.0360 0.7856 50.0
Tesseract Linear (ht = 0.125) 0.323 3.252 98.0 0.0162 0.8187 64.1

Tesseract Wave 0.371 5.035 93.8 0.0068 0.7298 29.5

Table 7 Discrete mesh statistics for the 4d tesseract cases. All quantities are measured under the discrete
description of the metric field at the 20th iteration of Alg. 3. The percentage of quasi-unit edge lengths (% `unit)
refers to the percentage of edges with lengths within [

√
2/2,
√

2]. The percentage of quasi-unit tetrahedra (% qunit)
refers to the percentage of tetrahedra with quality greater than 0.8.

Case `min `max % `unit qmin qavg % qunit

Tesseract Linear (ht = 0.25) 0.299 1.953 96.1 0.0360 0.7832 48.8
Tesseract Linear (ht = 0.125) 0.359 1.977 98.1 0.0163 0.8188 64.2

Tesseract Wave 0.286 2.857 94.3 0.0239 0.7330 30.2

(a) x = 0 (b) y = 0 (c) z = 0 (d) t = 0

(e) x = 1 (f) y = 1 (g) z = 1 (h) t = 1

Fig. 8 Meshes of the eight bounding cubes generated from the 3d + t Tesseract Wave case demonstrate the
expected behaviour: the meshes at t = 0 and t = 1 show the initial and final spheres whereas the meshes of the
bounding Cubes with non-constant t show a cone – the projection of a 4d hypercone onto 3d. The coordinate
axes have been labelled according to the associated hyperplane.

13

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

IV. Conclusions & future work
We have investigated and successfully implemented an extension of local cavity operators to generate metric-

conforming meshes consisting of pentatopes in 4d. Important choices in the design of the software consisted of (1)
closing the mesh with a ghost vertex such that it is always without boundary, (2) enforcing that a description of the
vertex-to-geometry associations be provided by the input mesh, (3) the development of a predicate for exactly computing
the volume of a pentatope, (4) a simple and efficient operator schedule to achieve good metric conformity and (5) a
metric limiting procedure to emulate the behaviour of a metric request from an adaptive numerical simulation. The
software was first demonstrated on benchmark 3d cases; the results show excellent metric conformity and a very good
ability to match the expected number of simplices. Furthermore, we demonstrated our method on two anisotropic
metrics to generate 4d meshes. Metric conformity was good but can likely be improved with additional swapping.
A visualization of the Cubes at the eight hyperplanes bounding the tesseract were given and future work consists of
investigating visualization techniques of the full 4d mesh. We will also use the developed software to perform fully
unstructured adaptive numerical simulations of unsteady partial differential equations in 3d+ t. The software, henceforth
referred to as avro, will be made available with an open-source license in the Spring of 2019.

Acknowledgments
We wish to thank Dr. Adrien Loseille for his help in clarifying questions about local cavity operators. This work

was funded by the CAPS project, AFRL Contract FA8050-14-C-2472: "CAPS: Computational Aircraft Prototype
Syntheses" with Dean Bryson as Technical Monitor.

14

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

References
[1] Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D. L., Gropp, W., Lurie, E., and Mavriplis, D. J., “CFD Vision 2030 Study:

A Path to Revolutionary Computational Aerosciences,” Tech. Rep. NASA/CR-2014-218178, 2014.

[2] Yano, M., “An Optimization Framework for Adaptive Higher-Order Discretizations of Partial Differential Equations on
Anisotropic Simplex Meshes,” PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics,
Jun. 2012.

[3] Hartmann, R., “Adaptive FE methods for conservation equations,” Hyperbolic Problems: Theory, Numerics, Applications:
Eighth International Conference in Magdeburg, February, March 2000, International series of numerical mathematics, Vol.
141, edited by H. Freistühler and G. Warnecke, Birkhäuser, Basel, 2001, pp. 495–503.

[4] Bangerth, W., Geiger, M., and Rannacher, R., “Adaptive Galerkin finite element methods for the wave equation,” Comput.
Methods Appl. Math., Vol. 10, No. 1, 2010, pp. 3–48.

[5] Yano, M., and Darmofal, D. L., “An optimization-based framework for anisotropic simplex mesh adaptation,” J. Comput. Phys.,
Vol. 231, No. 22, 2012, pp. 7626–7649.

[6] Jayasinghe, S., Darmofal, D. L., Burgess, N. K., Galbraith, M. C., and Allmaras, S. R., “A space-time adaptive method for
reservoir flows: formulation and one-dimensional application,” Computational Geosciences, Vol. 22, No. 1, 2018, pp. 107–123.

[7] Jayasinghe, S., “An adaptive space-time discontinuous Galerkin method for reservoir flows,” PhD thesis, Massachusetts Institute
of Technology, Department of Aeronautics and Astronautics, June 2018.

[8] Loseille, A., Alauzet, F., and Menier, V., “Unique cavity-based operator and hierarchical domain partitioning for fast parallel
generation of anisotropic meshes,” Computer-Aided Design, Vol. 85, 2017, pp. 53 – 67. doi:https://doi.org/10.1016/j.cad.
2016.09.008, URL http://www.sciencedirect.com/science/article/pii/S0010448516301142, 24th International
Meshing Roundtable Special Issue: Advances in Mesh Generation.

[9] Loseille, A., “Metric-orthogonal Anisotropic Mesh Generation,” Procedia Engineering, Vol. 82, 2014, pp. 403 –
415. doi:http://dx.doi.org/10.1016/j.proeng.2014.10.400, URL http://www.sciencedirect.com/science/article/
pii/S1877705814016798.

[10] Loseille, A., and Löhner, R., “Cavity-Based Operators for Mesh Adaptation,” 51st AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition., edited by A. I. of Aeronautics and Astronautics, American Institute of
Aeronautics and Astronautics, 2013. doi:10.2514/6.2013-152, URL https://hal.inria.fr/hal-00935363.

[11] Coupez, T., Digonnet, H., and Ducloux, R., “Parallel meshing and remeshing,” Applied Mathematical Modelling, Vol. 25, 2000,
pp. 153–175.

[12] Coupez, T., “Génération de maillage et adaptation de maillage par optimisation locale,” Revue européenne des éléments finis,
Vol. 9, 2000, pp. 403–423.

[13] Gruau, C., and Coupez, T., “3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural
and multidomain metric,” Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 4849, 2005, pp.
4951 – 4976. doi:http://dx.doi.org/10.1016/j.cma.2004.11.020, URL //www.sciencedirect.com/science/article/pii/
S0045782505000745, unstructured Mesh Generation.

[14] Gruau, C., “Metric generation for anisotropic mesh adaptation, with numerical applications to material forming simulation,”
Ph.D. thesis, École Nationale Supérieure des Mines de Paris, 2005.

[15] Digonnet, H., Coupez, T., Laure, P., and Silva, L., “Massively parallel anisotropic mesh adaptation,” The International Journal
of High Performance Computing Applications, 2017. doi:10.1177/1094342017693906.

[16] Bossen, F. J., and Heckbert, P. S., “A Pliant Method for Anisotropic Mesh Generation,” 5th Intl. Meshing Roundtable, 1996, pp.
63–74.

[17] Loseille, A., and Alauzet, F., “Continuous mesh framework part I: Well-posed continuous interpolation error,” SIAM J. Numer.
Anal., Vol. 49, No. 1, 2011, pp. 38–60.

[18] Loseille, A., and Alauzet, F., “Continuous mesh framework part II: Validations and applications,” SIAM J. Numer. Anal.,
Vol. 49, No. 1, 2011, pp. 61–86.

15

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

http://www.sciencedirect.com/science/article/pii/S0010448516301142
http://www.sciencedirect.com/science/article/pii/S1877705814016798
http://www.sciencedirect.com/science/article/pii/S1877705814016798
https://hal.inria.fr/hal-00935363
//www.sciencedirect.com/science/article/pii/S0045782505000745
//www.sciencedirect.com/science/article/pii/S0045782505000745

[19] Ibanez, D., Barral, N., Krakos, J., Loseille, A., Michal, T., and Park, M., “First benchmark of the Unstructured Grid
Adaptation Working Group,” Procedia Engineering, Vol. 203, 2017, pp. 154 – 166. doi:https://doi.org/10.1016/j.proeng.
2017.09.800, URL http://www.sciencedirect.com/science/article/pii/S1877705817343618, 26th International
Meshing Roundtable, IMR26, 18-21 September 2017, Barcelona, Spain.

[20] Shewchuk, J. R., “Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator,” Applied Computational
Geometry: Towards Geometric Engineering, edited by M. C. Lin and D. Manocha, Springer-Verlag, 1996, pp. 203–222.

[21] Si, H., “TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator,” Weierstrass Institute
for Applied Analysis and Stochastics, 2005. http://tetgen.berlios.de.

[22] Shewchuk, J. R., “Adaptive precision floating-point arithmetic and fast robust geometric predicates,” Tech. rep., Carnegie
Mellon University, 1996.

[23] Lévy, B., “Robustness and efficiency of geometric programs: The Predicate Construction Kit,” Computer-Aided Design, Vol. 72,
2016, pp. 3–12.

[24] Haimes, R., and Dannenhoffer, J., The Engineering Sketch Pad: A solid-modeling, feature-based, web-enabled system for
building parametric geometry, 2013.

[25] Caplan, P. C., Haimes, R., Darmofal, D. L., and Galbraith, M. C., “Anisotropic geometry-conforming d-simplicial meshing via
isometric embeddings,” Proceedings of the 26th International Meshing Roundtable, Springer Berlin Heidelberg, 2017.

[26] Henk, M., Richter-Gebert, J., and Ziegler, G. M., “Basic Properties of Convex Polytopes,” Handbook of Discrete and
Computational Geometry, 2nd Ed., 2004.

16

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

http://www.sciencedirect.com/science/article/pii/S1877705817343618

Tesseract geometry
In case the interested reader wishes to reproduce the tesseract geometry hierarchy (this is a fun exercise), the

coordinates and hyperplane incidence relations are provided in Table 8. From this data, the entire geometry hierarchy
can be constructed by traversing the hyperplanes and extracting the j-dimensional polytope along each hyperplane by
starting with the Cubes (j = 3) and ending with the Edges (j = 1). Specifically, this can be done by extracting the
HRep of the current polytope, from which theVRep of the children polytopes can be computed [26]. For reference,
this hierarchy for each bounding cube is reproduced as graphs in Figs. 9,10,11 and 12.

Table 8 Node coordinates for the tesseract geometry
with the set of bisectors B (corresponding to the set of
bounding Cubes – or hyperplanes) touching each Node.

Node x B

1 (1,1,1,1) { 1,2,3,4 }
2 (-1,1,1,1) { -1,2,3,4 }
3 (-1,-1,1,1) { -1,-2,3,4 }
4 (-1,-1,-1,1) { -1,-2,-3,4 }
5 (-1,1,-1,1) { -1,2,-3,4 }
6 (-1,1,1,-1) { -1,2,3,-4 }
7 (-1,-1,1,-1) { -1,-2,3,-4 }
8 (-1,1,-1,-1) { -1,2,-3,-4 }
9 (1,-1,-1,1) { 1,-2,3,4 }
10 (1,-1,-1,1) { 1,-2,-3,4 }
11 (1,1,-1,-1) { 1,2,-3,-4 }
12 (1,-1,1,-1) { 1,-2,3,-4 }
13 (1,-1,-1,-1) { 1,-2,-3,-4 }
14 (1,1,1,-1) { 1,2,3,-4 }
15 (1,1,-1,1) { 1,2,-3,4 }
16 (-1,-1,-1,-1) { -1,-2,-3,-4 }

Table 9 Hyperplane-bisector associations.

bisector hyperplane
-1 x = −1
1 x = 1
-2 y = −1
2 y = 1
-3 z = −1
3 z = 1
-4 t = −1
4 t = 1

17

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Cube 0

Face 0

Edge 21

Node 7

Node 15

Edge 19

Node 6

Edge 16

Node 5

Edge 15

Face 1

Edge 12

Node 3

Edge 13

Node 4

Edge 10

Face 2

Edge 8

Node 2

Edge 7

Face 3

Edge 6

Node 1

Edge 5

Face 4

Edge 4

Face 5

(a) x = 0

Cube 1

Face 6

Edge 26

Node 10

Node 12

Edge 29

Node 11

Edge 27

Node 13

Edge 30

Face 7

Edge 24

Node 9

Edge 28

Node 14

Edge 25

Face 8

Edge 23

Node 8

Edge 22

Face 9

Edge 2

Node 0

Edge 3

Face 10

Edge 1

Face 11

(b) x = 1

Fig. 9 Bounding cube geometry hierarchy at constant x hyperplanes.

Cube 2

Face 12

Edge 31

Node 12

Node 15

Edge 19

Node 6

Edge 29

Node 11

Edge 18

Face 13

Edge 12

Node 3

Edge 24

Node 9

Edge 11

Face 2

Edge 8

Node 2

Edge 7

Face 8

Edge 23

Node 8

Edge 22

Face 14

Edge 9

Face 15

(a) y = 0

Cube 3

Face 16

Edge 20

Node 7

Node 10

Edge 16

Node 5

Edge 27

Node 13

Edge 17

Face 17

Edge 13

Node 4

Edge 28

Node 14

Edge 14

Face 3

Edge 6

Node 1

Edge 5

Face 9

Edge 2

Node 0

Edge 3

Face 18

Edge 0

Face 19

(b) y = 1

Fig. 10 Bounding cube geometry hierarchy at constant y hyperplanes.

18

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

Cube 4

Face 20

Edge 31

Node 12

Node 15

Edge 21

Node 7

Edge 26

Node 10

Edge 20

Face 13

Edge 12

Node 3

Edge 24

Node 9

Edge 11

Face 1

Edge 13

Node 4

Edge 10

Face 7

Edge 28

Node 14

Edge 25

Face 17

Edge 14

Face 21

(a) z = 0

Cube 5

Face 22

Edge 18

Node 6

Node 11

Edge 15

Node 5

Edge 30

Node 13

Edge 17

Face 14

Edge 8

Node 2

Edge 23

Node 8

Edge 9

Face 4

Edge 6

Node 1

Edge 4

Face 10

Edge 2

Node 0

Edge 1

Face 18

Edge 0

Face 23

(b) z = 1

Fig. 11 Bounding cube geometry hierarchy at constant z hyperplanes.

Cube 6

Face 20

Edge 31

Node 12

Node 15

Edge 21

Node 7

Edge 26

Node 10

Edge 20

Face 12

Edge 19

Node 6

Edge 29

Node 11

Edge 18

Face 0

Edge 16

Node 5

Edge 15

Face 6

Edge 27

Node 13

Edge 30

Face 16

Edge 17

Face 22

(a) t = 0

Cube 7

Face 21

Edge 11

Node 3

Node 9

Edge 10

Node 4

Edge 25

Node 14

Edge 14

Face 15

Edge 7

Node 2

Edge 22

Node 8

Edge 9

Face 5

Edge 5

Node 1

Edge 4

Face 11

Edge 3

Node 0

Edge 1

Face 19

Edge 0

Face 23

(b) t = 1

Fig. 12 Bounding cube geometry hierarchy at constant t hyperplanes.

19

D
ow

nl
oa

de
d

by
 R

ob
er

t H
ai

m
es

 o
n

Ja
nu

ar
y

23
, 2

01
9

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

9-
19

92

	Introduction
	Review of local cavity operators for anisotropic mesh adaptation

	Dimension-independent implementation
	Topological robustness
	Geometric robustness
	Boundary representation
	Validity checks
	Operator scheduling
	Metric limiting

	Numerical results
	Verification on UGAWG benchmark cases
	Anisotropic metrics in 4d

	Conclusions & future work

