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The Computational Aircraft Prototype Syntheses (CAPS) enables vehicle designers to create 
multi-disciplinary, multi-fidelity analysis models from a single, parametric geometric source. These 
capabilities are natively accessed programmatically through an interface written in the C programing 
language, which can present a significant hurdle for initial users. To lower entry barriers, enable 
scriptable problem formulation, and improve overall flexibility, a Python-based interface module, 
pyCAPS, was created. The following paper provides an overview of pyCAPS’s capabilities and 
interface, while also providing simple examples of its use. Furthermore, details and discussions are 
provided on how pyCAPS can be used to integrate CAPS capabilities into external Multi-
Disciplinary Analysis and Optimization (MDAO) frameworks such as OpenMDAO, 
modeFRONTIER, and MSTC Engineering.  

I. Nomenclature 

AIM Analysis Interface Module 
API Application Programing Interface 
CAPS Computational Aircraft Prototype Syntheses 
DOE Design of Experiments  
MDAO Multi-Disciplinary Analysis and Optimization 

II. Introduction 

he Computational Aircraft Prototype Syntheses, typically referred to as CAPS, has the ability to uniquely support 
multi-disciplinary, multi-fidelity analysis from a single geometric source for the design of aerospace vehicles by 

combining geometry, meshing, and analyses model generation into a unified context [1]. Native programmatic access 
to CAPS is enabled through an API written in the C programming language. This high-level API is ‘object-based’ 
which utilizes blind pointers that the API functions internalize and parse to perform the given procedural-based tasks 
based on the set type for the object. Being written in C, the natural entry point into CAPS would be to setup one’s 
problem within a “main” function, link against the CAPS library, and compile the problem into an executable. From 
a user’s perspective this approach has two immediate disadvantages: 1) inflexibility, to make changes one must re-
compile and 2) requires a moderate knowledge of the C programming language. To lower these entry barriers, a 
Python-based interface, pyCAPS, was developed. The use of Python provides an easy to learn, readable (compared to 
low-level programming languages), and flexible entry point for CAPS. pyCAPS logically ties together features of the 
CAPS API to enable rapid generation of problems in the Python environment. Additional functionality not directly 
available through the CAPS API has also been incorporated into pyCAPS. To date, among the existing CAPS userbase, 
pyCAPS has become the primary entry point to the CAPS infrastructure. 
 

This paper aims to provide users an overview of pyCAPS’s capabilities, show simple examples of its use, and 
demonstrate and discuss how it can be used to integrate CAPS into external MDAO frameworks such as     

                                                        
1Aerospace Research Engineer, Multidisciplinary Science Technology Center, AIAA Member. 
2Software Research Engineer, Multidisciplinary Science Technology Center, AIAA Member. 

T 

D
ow

nl
oa

de
d 

by
 R

ob
er

t H
ai

m
es

 o
n 

Ja
nu

ar
y 

23
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
22

26
 

 AIAA Scitech 2019 Forum 

 7-11 January 2019, San Diego, California 

 10.2514/6.2019-2226 

 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 

 

 AIAA SciTech Forum 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2019-2226&domain=pdf&date_stamp=2019-01-06


OpenMDAO [2], ModeFRONTIER [3], and MSTC Engineering. It is assumed readers have a general familiarity with 
CAPS’s terminology and workflow as outlined by Alyanak et al. [1]. 

III. Overview for CAPS’s Python Interface 

pyCAPS is a light weight, Python extension module to interact with the CAPS routines in the Python environment. 
Written in Cython [4], pyCAPS natively handles all type conversions/casting, while logically grouping CAPS function 
calls together to simplify a user’s experience. The use of Cython inherently implies support for Python versions 2.6, 
2.7, and +3.3. Furthermore, pyCAPS is routinely tested on Linux, Mac OSX, and Windows operating systems to verify 
and ensure architecture independence. pyCAPS makes use of Python’s built-in module unittest for its unit testing 
framework with over fifty unit tests routinely executed. These unit tests not only validate proper functionality within 
pyCAPS, but within CAPS as well. Documentation for the pyCAPS API is embedded within its source code and is 
generated automatically using Doxygen [5]. For the majority of the classes’ methods, source code examples are also 
provided in the API documentation. In the following sections the overarching API for pyCAPS is discussed, key 
differences between the Python module and the C API are shown, and select add-ons available only within pyCAPS 
are highlighted. It should be noted that not all features of the pyCAPS module will be discussed, for which the user is 
referred to the API documentation.   

A. Primary pyCAPS classes 
While CAPS’s C API is ‘object-based’, pyCAPS, being Python driven, makes use of object-oriented programing 

techniques. As such pyCAPS’s API is laid out slightly different than its C counterpart that it is based off of (such as 
the use of classes), however at its core, its use is synonymous with the C API. The diagram in Figure 1 presents a 
hierarchical outline of a capsProblem, the main driving class of the pyCAPS API, and how other pyCAPS classes fit 
within the problem. It should be noted that for brevity and clarity within the figure, a limited subset of the classes’ 
functions and attributes are shown; readers should refer to pyCAPS’s API documentation for a complete list. Within 
the graphical layout, six class objects are present which are described in greater detail in the following:   
 

 
Figure 1. Hierarchy of a capsProblem in the pyCAPS public API. 

 

1. capsProblem - A capsProblem is the top-level class as shown in Figure 1, which contains and is used to 
describe the entirety of the problem or mission of interest. Conceptually it is similar to the Problem object [6] 
in CAPS’s C API.  It encompasses a single set of interrelated geometric models (capsGeometry), analyses to 
be executed (capsAnalysis), and connectivity and data (capsBound).  
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2. capsAnalysis – The capsAnalysis class is representative of a CAPS Analysis object [6], which corresponds to 
a specific analysis tool/code. Inputs and outputs to the analysis can be set and retrieved through functions 
within the class. Any number of instances of the class are kept within the analysis attribute of the capsProblem 
class. The analysis attribute corresponds to a Python dictionary from which instances of a given analysis are 
stored as the values in the dictionary’s key:value pairs.  

3. capsGeometry - Functionality and use found in the capsGeometry class is wrapped into the Problem object 
[6] within the CAPS C API. Here aspects dealing solely with the geometry are pulled out and packed into the 
capsGeometry class to increase clarity and enhance usability; though admittedly, the majority of the functions 
within the capsProblem class are dependent on the capsGeometry class having been initiated. Only a single 
capsGeometry class can be instantiated within a problem, with the instantiation being stored in the geometry 
attribute of the capsProblem class. The class provides functionality to set and/or retrieve geometric design 
and local variables, among other useful utilities. 

4. capsBound - The capsBound class is representative of a CAPS Bound object [6] which corresponds to a logical 
grouping of geometric features such as edges or faces. A Bound is primarily used to transfer data between two 
different bodies/domains, for example the aerodynamics pressure on the outer model line of a wing to the 
internal structural model. Instances of the class are kept within the bound attribute of the capsProblem class. 
The bound attribute corresponds to a Python dictionary from which instances of a given bound are stored as 
the values in the dictionary’s key:value pairs.  

5. capsVertexSet - The capsVertexSet class is representative of a CAPS VertexSet object [6] which corresponds 
to discrete locations in which data for a given capsAnalysis instance is defined. The CAPS C API supports 
“unconnected” vertex sets, that is the discretization is not a tied to a given instance of a capsAnalysis class, 
however these are not supported currently within pyCAPS. Instances of the capsVertexSet are stored as values 
in a Python dictionary within the vertexSet attribute of the initiating capsBound. The names of the 
capsAnalysis instances used to create the bound are used as the dictionary’s keys.   

6. capsDataSet - The capsDataSet class is representative of a CAPS DataSet object [6] which corresponds to 
engineering data (i.e. pressure, discplacements, etc.) defined by the capsVertexSet. Instances of the 
capsDateSet class are stored in a Python dictionary by variable names declared when initiating the capsBound. 
The dictionaries are stored under the dataSetSrc and dataSetDest attributes of the capsBound class, where 
dataSetSrc corresponds to “source” (or only dataset if not utilizing the capsBound to transfer data) and 
dataSetDest corresponds to the “destination” if executing a data transfer. 

B. Error handling 
Errors in CAPS’s C API are handled through an integer return on functions that correspond to marco definitions 

defined through the #define directive. Currently CAPS has thirty-eight predefined error codes, such as -332 = 
CAPS_IOERR or -317 = CAPS_BADNAME. Within pyCAPS, errors are handled through an exception class, 
capsError, which inherits Python’s Exception class. Along with CAPS’s error codes, error codes for EGADS [7] and 
OpenCSM [8] are also mapped within the class. All of CAPS’s integer function returns are captured and a capsError 
exception is raised if an error code is detected. If a user is trying to capture or check for specific error codes, as opposed 
to just a capsError, the exception can be further dissected using the class’s attributes errorCode and errorName. As 
the names imply, these attributes correspond to the integer value for the error code (e.g. errorCode = -332) and the 
error’s name (e.g. errorName = “CAPS_IOERR”), respectively. 

C. capsValue class 
A core object within CAPS’s C API is the Value object [6] which acts as the fundamental, general data container 

for the majority of inputs and outputs to the API functions. Along with storing a data value (e.g. a character string, a 
double array, etc.) the generic object’s structure allows for the assigning of meta-data such as: data type (e.g. Double, 
Integer, etc.), shape of the data (number of rows and columns), units of the data, and allowable upper and lower bounds 
of the data. CAPS’s C API provides numerous functions to unpack this information from a Value object when working 
with it; information such as data types and number of rows and columns are vital to know when working in a structured 
programing language such as C. However, this same information in mostly irrelevant in the Python environment as 
variable declarations and manipulations are much more flexible. As such the decision was made to use Python objects 
as the default “value” type when setting or retrieving data values through the pyCAPS API, with all the necessary type 
conversions handled internally and automatically. It should be noted that for the majority of the functions involved 
with setting or getting data values, units may also be optionally provided or retrieved.  
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While Python objects are the default data types used in pyCAPS, pyCAPS does allow for the creation and return 
of the equivalent of a Value object [6] through the capsValue class. The capsValue class has attributes which store 
meta-data such as the objects value (e.g. 50.0, “string”, etc.), units assigned, and data type (e.g. Double, Integer, etc.) 
similar to what can be retrieved for a Value object. 

D. Core differences between pyCAPS and CAPS 
 While minimal, there are few notable differences between the pyCAPS API and CAPS’s C API. These differences 
are outlined as follows: 
 

1. Manipulating the "owner" information for CAPS objects isn't currently supported. See CAPS’s C API [6] 
documentation for more information. 

2. CAPS does not natively support an array of string values, an array of strings is viewed by CAPS as a single 
concatenated string; pyCAPS does, however. If a list of strings is provided this list is concatenated, separated 
by a ';' and provided to CAPS as a single string. The number of rows and columns on the Value object [6] are 
correctly set to match the original list for the value. If a string is received from CAPS by pyCAPS and the 
rows and columns are set correctly it will be unpacked correctly considering entries are separated by a ';'. If 
the rows and columns aren't set correctly and the string contains a ';', the data will likely be unpacked 
incorrectly or raise an indexing error.  

E. Select add-ons available through pyCAPS  
Additional add-ons available through the pyCAPS API, which are not explicitly a part of the C API are described 

below. 
 
1. Unit conversions – Units play an important role in data values entered into and coming out of CAPS, with 

unit conversions happening automatically (when needed) to reduce this error prone burden on the user. Within 
CAPS, unit conversions are handled using the UDUNITS-2 package [9]. Now while there are numerous 
Python packages dedicated to unit conversions, to allow pyCAPS users a consistent syntax in specify units, a 
wrapping function, capsConvert(), to the UDUNITS-2 package is provided with pyCAPS. The capsConvert() 
function accepts a value (either a single or list of float(s)/double(s) and integer(s)), a string indicating the 
value’s current units,  and a string indicating the requested units. A simple use case is as follows:  

 
from pyCAPS import capsConvert 

convert = capsConvert(2, “in”, “m”) # Convert “inches” to “meters” 
print(“Value in meters =”, convert) # Result: Value in meters  = 0.0508 

 
2. Dendrogram visualization – Within the capsProblem, capsGeometry, capsAnalysis, and capsBound classes 

resides a function createTree() which can be used to generate an interactive dendrogram of the current state 
of the object. Written to an HTML file, and viewed with a web browser, the dendrogram utilizes the open-
source JavaScript library, D3 (Data Driven Documents) [10], to visualize the attributes and information in the 
class. This library is freely available from https://d3js.org/ and is dynamically loaded within the HTML file. 
If running on a machine without internet access, a (miniaturized) copy of the library in written out alongside 
the generated HTML file by setting a given keyword during the function invocation. These dendrograms are 
interactive in which the tree’s branches can be expanded and collapsed to explore the object(s). Users of 
pyCAPS to date, have found the dendrogram visualization to be useful for (1) record keeping and (2) 
debugging. First, the dendrogram created on an object represents an instantaneous snapshot of data contained 
within the object, which can be used to bookkeep user settings as a script progresses. Furthermore, the data 
used to generate the dendrogram may be output as a JSON (JavaScript Object Notation) string in a separate 
file for additional, independent processing.  The second use reported by pyCAPS users of the dendrogram 
feature, is its ability to aid in debugging by providing a quick, condensed visualization for lengthy or complex 
scripts. Along with trouble shooting user inputs such as the values set for a particular analysis (e.g. the Mach 
number set for an aerodynamic solver), attributes set on the geometry, a cornerstone of CAPS capabilities [1], 
can also be visualized with the dendrogram. Dendrograms can be created to provide detailed breakdowns at 
the body, face, edge and node level to display the attributes and their values for all geometric models loaded 
in the problem. A representative example dendrogram is provided in Figure 2 for a given instance of a 
capsProblem class. The subclass instances stored in the attributes of problem (geometry, analysis, bound – 
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Figure 1) are presented and expanded further in Appendix I. In this example, under the Geometry branch, 
information such as the design parameters can be viewed for the given geometry file loaded into the problem.  
Similarly, the Analysis branch can be expanded out to visualize information such as the input values set for a 
given analysis instance.  

 

 
Figure 2. Representative dendrogram for an instance of a capsProblem. An expanded version of the 

dendrogram is provided in Appendix I. 

 

3. Saving and viewing geometry – pyCAPS users have found when updating or changing a parametrized 
geometric model through CAPS during an optimization or design of experiments study it is often desirable to 
make a static copy of the modified geometry at each iteration for later reference or use. Using the method 
saveGeometry() within the capsGeometry class, users can save a static copy of the current geometry to a file. 
Various file formats (i.e. *.egads, *.iges, *.stp, and *.brep) are supported. Similarly, it has been found useful 
to have a picture of the current geometry automatically generated as a design is evolving. The ability to 
automatically create images, which can be saved or viewed or both, is enabled through the viewGeometry() 
function within the capsGeometry class. This capability is enabled through the matplotlib [11] Python module 
which must be installed separately on the system (an ImportError is raised otherwise).  

IV. Getting started with pyCAPS 

The following provides an overview of pyCAPS's use, with the intention being to emphasis and focus on basic, 
core functionality; as such not at all functions will be discussed. Readers are encouraged to individually explore each 
classes documentation within the pyCAPS API for a complete list of options, attributes, and methods available. 
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A. Setting up the problem 
The capsProblem class is the front end of pyCAPS. All other classes are intended to be initiated through the 

problem class as outlined in Figure 1. The following code details the primary function calls and uses when creating 
and setting up a new problem.  
 

1. Initialization and termination 
The first step to create a new capsProblem is to import the pyCAPS module; on Linux and OSx this is the 

pyCAPS.so file, while on Windows it is the pyCAPS.pyd file. 
 

import pyCAPS 
 
After the module is loaded, a new capsProblem class object should be instantiated. Note that multiple problems may 
be simultaneously loaded and exist in a single script as CAPS was designed to be thread safe allowing for multi-
threading. 
 

myProblem = pyCAPS.capsProblem() 
 
When using CAPS’s C API it is necessary to “close” the problem, after all desired operations are finished, through a 
dedicated function call to ensure all memory allocated by CAPS is cleaned up properly. A synonymous function is 
included as part of the capsProblem class (as shown below), however its invocation is optional (though recommend) 
as it is automatically invoked during garbage collection on the capsProblem object. An example explicit function call 
is as follows: 
 

myProblem.closeCAPS() 
 

2. Loading the geometry 
A geometry file is loaded into the problem using the loadCAPS() function. A previously saved CAPS problem 

(*.caps) file, a specified OpenCSM file (*.csm), or a static EGADS geometry file (*.egads) may be used. In the 
example below an OpenCSM file, “inputGeom.csm", is loaded into our created problem from above. The project name 
"basicTest" may be optionally set here; if no argument is provided, the CAPS file provided is used as the project name. 
A reference to the newly created capsGeometry class is stored and accessed through the geometry attribute (e.g. 
myProblem.geometry), which is optional returned by the method as well.  
 

myGeometry = myProblem.loadCAPS(“inputGeom.csm”, “basicTest”) 
 

3. Loading an analysis 
Interfaces to various analysis tools, denoted as Analysis Interface Modules (AIMs) in CAPS’s vernacular, are 

loaded into the problem using the loadAIM() function in the capsProblem class. In the code sample below, the 
"exampleAIM" is loaded into the problem with a specified working director.  
 

myAnalysis = myProblem.loadAIM(aim = “exampleAIM”,  
                                                             analysisDir = “./work”) 

 
 
The instance of the loaded AIM specified in the above snippet will be referenced in the problem's analysis attribute 
(which is a Python dictionary – Section III.A.2) as "exampleAIM" and can be retrieved at any point such as:  
 

myAnalysis = myProblem.analysis[“exampleAIM”] 
 

B. Working with geometry 
Once the geometry is loaded various functions are provided to interact with it within the capsGeometry class. The 

following sections highlight a few of the more common ones. 
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1. Setting and getting design parameters 
Geometric design parameters may be set using the setGeometryVal() function, while the current value of the 

parameter may be retrieved using getGeometryVal(). In the following example the current value for the parameter 
"sweep" is first obtained. The value is then reset and increased by 5.0. 
 

value = myGeometry.getGeometryVal(“sweep”) 
 

myGeometry.setGeometryVal(“sweep”, value + 5.0) 
 

2. Viewing geometry 
As described in Section III.E.3 it is often desirable to quickly view and/or automatically save images for the 

updated geometry during a design of experiments or optimization study. This is achieved using the viewGeometry() 
method in capsGeometry class. A representative example of the function is as follows, 
 

myGeometry.viewGeometry(filename = "GeomViewDemo_NewSweep", 
                                              title="DESPMTR: lesweep = " + str(value), 

       showImage = True, 
             combineBodies = True, 

               viewType = "fourview") 
 

Upon execution of the above code, an image of the current geometry is displayed on the screen (showImage = True) 
as shown if Figure 3, where all the bodies are combined (combineBodies = True) into a single image with four different 
viewpoints (viewType = "fourview"). Since a filename is also provided, the image displayed on the screen is also 
saved. 
 

 
Figure 3. Representative result from an invocation of the viewGeometry() function. 

 

C. Working with an analysis 
Similar to the geometry, once an analysis or AIM has been loaded, various functions are provided to interact with 

it within the capsAnalysis class. A few examples of some of the more commonly used functionality are outlined below. 
 

1. Setting and getting analysis inputs and outputs 
Analysis inputs may be set using the setAnalysisVal() function, while the current value of the input may be retrieved 

using getAnalysisVal(). In the following example the current value for the input "Mach" is first obtained and is then 
reset. 
 

value = myAnalysis.getAnalysisVal(“Mach”) 
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myAnalysis.setAnalysisVal(“Mach”, value + 0.2) 

 
Similar to getAnalysisVal(), the getAnalysisOutVal() function returns analysis output variables. 
 

2. Analysis pre- and post- analysis 
For a given analysis, the CAPS pre- and post- analysis [6] functions are executed in pyCAPS using the 

preAnalysis() and postAnalysis() functions. 
 

myAnalysis.preAnalysis() 
 

myAnalysis.postAnalysis() 
 

V. Interfacing with MDAO Frameworks 

The flexibility provided within pyCAPS allows it to be a natural entry point into the CAPS infrastructure. This 
flexibility also makes it an easy means to integrate CAPS into existing multi-disciplinary analysis and optimization 
frameworks. The following sections describe some of the frameworks pyCAPS has been used with and how the 
interaction was achieved.  

A. OpenMDAO 
The opensource MDAO framework, OpenMDAO [2], can be directly interfaced and linked to CAPS through 

pyCAPS. This connection is achieved through the capsAnalysis method, createOpenMDAOComponent. Upon being 
called, this function populates the public, class attribute openMDAOComponent (within the capsAnalysis object) with 
a reference to an OpenMDAO “component” object that can be used within its internal framework. This component 
provides OpenMDAO a direct connection to CAPS, for which its design of experiment or optimization drivers can 
change or evaluate analysis interface input and output variables or geometric design parameters. As such all of the 
analysis interfaces, AIMs, currently available for CAPS may be used within OpenMDAO. For example, Pankonien et 
al. [12] utilized OpenMDAO’s DOE driver coupled to a parametric geometry model of a trailing edge control surface 
for a design space study using CAPS’s Nastran [13] analysis interface. A representative, simplified optimization script 
is provided in the Appendix II, in which a simple lift optimization, subject to a moment constraint is executed by 
varying the angle of attack, airfoil thickness and area using the vortex lattice code, AVL [14] as the analysis tool. It is 
important to note that this functionality is currently tied to version 1.7.3 of OpenMDAO, use of version 2.x will result 
in an import error.  

B. modeFRONTIER 
Esteco’s commercial MDAO framework, modeFRONTIER [3], can also interface CAPS through the use of 

pyCAPS. Using modeFRONTIER’s scripting node for Python, CAPS problems can be used as a main project or a 
subproject.  An example of this is shown in Figure 4 where two CAPS problems utilizing the analysis interfaces for 
TSFoil [15] and XFoil [16] are setup to implement a DOE sweep over a range of Mach numbers (analysis input) and 
airfoil cambers (geometry input). Design variables (Mach number and airfoil camber) are linked automatically within 
modeFrontier and propagated through the scripting node into CAPS.  
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Figure 4: Example implementation of pyCAPS within a modeFRONTIER project: A) Overall project, B) 

subproject using modeFRONTIER’s Python component, and C) Python script utilizing pyCAPS. 

 

C. MSTC Engineering 
MSTC Engineering is a MDAO framework developed by the Air Force Research Lab’s Multidisciplinary Science 

and Technology Center (MSTC). The framework is used as a testbed to investigate distributed, service-oriented 
computing technology to enable modeling for multi-disciplinary engineering systems. At the core of MSTC 
Engineering is the capability to distribute the individual (or coupled) analyses through the network dynamically. This 
network centric approach allows for easy problem scaling and is achieved through a “grid” architecture which provides 
continuous operation allowing the distributed system to operate without interruption during the addition or removal 
of compute resources, and ultimately providing self-healing of the grid through dynamic and adaptive processing 
capabilities. Compute resources within the grid are virtualized allowing grid components to run on any machine that 
supports the Java Virtual Machine. Additional details on the capabilities and architectural layout of MSTC 
Engineering will be published in the future.  
 

Incorporating the CAPS capabilities into the distributed MSTC Engineering grid allows MSTC Engineering 
providers access to CAPS, providing a single geometric source for the design of aerospace vehicles. This merger is 
currently enabled through pyCAPS to make use of its flexible problem formation ability. In order to bridge the runtime 
divide of the pyCAPS Python accessible requirements to clients running in the MSTC Engineering grid, a Python 
server was developed that takes inbound JSON requests, decodes them, and translates them to pyCAPS invocations. 
Results are encoded into JSON replies and returned to the invoking client3. The Python server runs in a multi-threaded 
environment, creating handlers for geometry and AIM creation. Once a geometry is loaded it stays available for future 
requests to create analyses from, or to change geometry design parameters. This results in a stateful, networked 
geometry service, that multiple requesting clients can use to perform multi-disciplinary engineering analyses through 
the network. 
 
The pyCAPS Python server can be accessed by a client in a variety of ways: 

1. It can be launched as a “tethered” process, available to the client directly. 
2. It can be started as a shared network service, and dynamically discovered, and used remotely. 

 
                                                        
3This approach was chosen over using JNA (or JNI), which was shown to be unstable across different architectures. 
Additionally, it provides pyCAPS access to heterogeneous clients, albeit the capability to encode and decode JSON 
requests exists. 
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The client framework has been developed using a combination of Java and Groovy. The API follows the semantics of 
the pyCAPS API. The code which follows has been written using Groovy. 
 

1. Getting access to the pyCAPS server 
The client first creates an instance of the PyCAPSManager (to discover the pyCAPS network service, simply 

remove the .launch() method): 
 

PyCAPSManager pyCAPSManager = new PyCAPSManager().launch() 
                                  PyCAPS pyCAPS = pyCAPSManager.getPyCAPS() 
 

 
2. Creating a geometry 
When working over a network, the ability to load geometry files remotely needs to be addressed.  This is addressed 

within the pyCAPS server as the following example demonstrates how to declare a geometry file using a http URL 
and have the pyCAPS server load the file. 
 

                      String geometryURL = "http://${address}:${port}/ feaAGARD445.csm" 
                       Geometry myGeometry = pyCAPS.getOrCreateGeometry(geometryURL) 

 
3. Creating an analysis 
Analyses are created using the Geometry object. The Geometry objects has references to the pyCAPS server that 

created it and also contains a unique identifier for its Geometry Handler 
 

CAPSAnalysis myAnalysis = myGeometry.createAnalysis( “exampleAIM”) 
 
Using the created analysis, one can configure analysis values using semantics similar to those found in pyCAPS: 
 

                                                           def Mach = 0.25 
      myAnalysis.setAnalysisVal(“Mach”, Mach) 

 
Furthermore, one can declare what outputs are desired,  
 

myAnalysis.addOutputKey(“Cd”) 
 

4. Running the analysis 
There are two ways to run the configured analysis. First, the analysis can be directly submitted to the pyCAPS 

service one has been working with. For example, create an AnalysisDispatcher, dispatch it and get the results: 
 

AnalysisDispatcher myAnalysisDispatcher = new AnalysisDispatcher(myAnalysis) 
                         Map result = myAnalysisDispatcher.dispatch() 

 
Second the analysis can be submitted to the MSTC Engineering Grid. This is typically the approach taken when one 
is solving a larger problem built up of analysis linked together. Using this approach, the analysis needs to be added to 
a Workflow object. The Workflow object then creates a MSTC Engineering Model which is submitted to the MSTC 
Engineering grid for processing: 
 

Workflow myWorkflow = new Workflow(“myExample”) 
                                             myWorkflow.addAnalysis(myAnalysis) 

                              ResponseContext response = Model.runModel(myWorkflow.createModel()) 
 

Additional details regarding MSTC Engineering and its use of CAPS/pyCAPS will be outlined in greater detail in 
follow on work.  
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VI.Conclusions and Future Work 

While the Computational Aircraft Prototype Syntheses, CAPS, program acts as an enabler for multi-disciplinary, 
multi-fidelity analysis generation from a single, parametric geometric source, its entry-point, a C API, may prove to 
be too great of hurdle for some users. To lower this entry barrier, a Python interface module, pyCAPS, has been 
developed to allow greater flexibility and wider-spread use. Core functionality of select features from pyCAPS’s API 
have been presented along with simple examples. Additional features, found only within pyCAPS, were also described 
in full. Furthermore, details and discussions were provided on how pyCAPS can be used to integrate CAPS capabilities 
into external multi-disciplinary analysis and optimization frameworks. 
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Appendix I: Extended representative dendrogram 

 
Figure A.1. Extended representative dendrogram for an instance of a capsProblem, with branches of the 

dendrogram expanded out to visualize specific inputs to the given analysis loaded into the problem, along 
with design variables (and their values) present for the geometry. 
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Appendix II: Example pyCAPS script using OpenMDAO  

A representative example script coupling pyCAPS and OpenMDAO is outlined below:  
from __future__ import print_function 
 
# Import pyCAPS module (Linux and OSx = pyCAPS.so file; Windows = pyCAPS.pyd file)  
import pyCAPS 
 
# Import OpenMDAO module - currently tested against version 1.7.3 
from openmdao.api import Problem, Group, IndepVarComp, Component, ScipyOptimizer 
 
# Instantiate our CAPS problem "myProblem"  
myProblem = pyCAPS.capsProblem() 
 
# Load a *.csm file into our newly created problem.  
myGeometry = myProblem.loadCAPS("avlWing.csm") 
 
# Load AVL aim  
myAnalysis = myProblem.loadAIM(aim = "avlAIM",  
                                                            analysisDir = "OpenMDAOExample") 
 
# Create OpenMDAOComponent - ExternalCode  
avlComponent = myAnalysis.createOpenMDAOComponent(["Alpha",                  # Analysis inputs parameters  
                                                                                                    "thick", "area"],      # Geometry design variables 
                                                                                                   ["Cmtot", "CLtot"], # Output parameters 
                                                                                                   executeCommand = ["avl", "caps"], 
                                                                                                   stdin  = "avlInput.txt",     # Modify stdin and stdout 
                                                                                                   stdout = "avlOutput.txt", # for avl execution  
                                                                                                   setSensitivity = {"type": "fd",    # Set sensitivity  
                                                                                                                               "form": "central",  
                                                                                                                               "step_size" : 1.0E-3})  
# Setup AVL surfaces  
wing = {"numChord"   : 8,  
              "numSpan"     : 12} 
 
myAnalysis.setAnalysisVal("AVL_Surface", ("Wing", wing)) 
 
myAnalysis.setAnalysisVal("Mach", 0.25) 
 
# Setup and run OpenMDAO model 
 
# Create a Group class for our design problem  
class MaxLift(Group): 
    def __init__(self): 
        super(MaxLift, self).__init__() 
         
        # Add design variables  
        self.add('dvAlpha', IndepVarComp('Alpha', float(3.0))) 
        self.add('dvAirfoil_Thickness', IndepVarComp('Thick', float(0.13))) 
        self.add('dvAirfoil_Area', IndepVarComp('Area', float(10))) 
         
        # Add AVL component  
        self.add("AVL", avlComponent) 
         
        # Make connections between design variables and inputs to AVL and geometry 
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        self.connect("dvAlpha.Alpha", "AVL.Alpha")         
        self.connect("dvAirfoil_Thickness.Thick", "AVL.thick") 
        self.connect("dvAirfoil_Area.Area" , "AVL.area") 
         
# Initiate the OpenMDAO problem  
openMDAOProblem = Problem() 
openMDAOProblem.root = MaxLift () 
 
# Set design driver parameters 
openMDAOProblem.driver = ScipyOptimizer() 
openMDAOProblem.driver.options['optimizer'] = 'SLSQP' 
openMDAOProblem.driver.options['tol'] = 1.0e-8 
openMDAOProblem.driver.options['maxiter'] = 500 # Maximum number of solver iterations 
 
# Set bounds on design variables  
openMDAOProblem.driver.add_desvar('dvAlpha.Alpha', lower=-5.0, upper=10) # Analysis design values 
 
openMDAOProblem.driver.add_desvar('dvAirfoil_Thickness.Thick', lower=0.1, upper=0.5) # Geometry design 
values 
openMDAOProblem.driver.add_desvar('dvAirfoil_Area.Area', lower=5.0, upper=20.0) 
 
# Set objective 
openMDAOProblem.driver.add_objective('AVL.CLtot') 
 
# Set Cm constaint  
openMDAOProblem.driver.add_constraint('AVL.Cmtot', equals= -0.2) 
 
# Setup and run 
openMDAOProblem.setup() 
openMDAOProblem.run() 
 
# Print the output 
print("Design Alpha = ", openMDAOProblem["dvAlpha.Alpha"]) 
print("Design Thickness = ", openMDAOProblem["dvAirfoil_Thickness.Thick"]) 
print("Design Area = " , openMDAOProblem["dvAirfoil_Area.Area"]) 
 
print("Lift Coeff  = " , myAnalysis.getAnalysisOutVal("CLtot")) 
print("Drag Coeff  = " , myAnalysis.getAnalysisOutVal("CDtot")) 
print("Moment (y) Coeff  = ", myAnalysis.getAnalysisOutVal("Cmtot")) 
 
# Close our problems 
myProblem.closeCAPS() 
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Accompanying geometry file for OpenMDAO example – avlWing.csm:  
# Example AVL input file to create a simple wing model 
# ----------------------------------------------------------------- 
# Define the analysis that the geometry is intended support 
# ----------------------------------------------------------------- 
attribute capsAIM     $avlAIM 
# ----------------------------------------------------------------- 
# Design parameters to define the wing cross section and planform  
# ----------------------------------------------------------------- 
despmtr   thick     0.12      frac of local chord 
despmtr   camber    0.04      frac of loacl chord 
despmtr   area      10.0      Planform area of the full span wing 
despmtr   aspect    6.00      Span^2/Area 
despmtr   taper     0.60      TipChord/RootChord 
despmtr   sweep     20.0      1/4 Chord Sweep 
despmtr   washout  -5.00      deg (negative is down at tip) 
despmtr   dihedral  4.00      deg 
# ----------------------------------------------------------------- 
# set parameters for use internally to create geometry 
# ----------------------------------------------------------------- 
set       span      sqrt(aspect*area) 
set       croot     2*area/span/(1+taper) 
set       ctip      croot*taper 
set       dxtip     (croot-ctip)/4+span/2*tand(sweep) 
set       dztip     span/2*tand(dihedral) 
 
# ----------------------------------------------------------------- 
# Reference quantities must exist on any body, otherwise AVL defaults 
# to 1.0 for Area, Span, Chord and 0.0 for X,Y,Z moment References 
# ----------------------------------------------------------------- 
 
# left tip 
udprim    naca      Thickness thick     Camber    camber 
attribute capsGroup    $Wing 
attribute capsReferenceArea  area 
attribute capsReferenceSpan  span 
attribute capsReferenceChord croot 
attribute capsReferenceX     croot/4 
scale     ctip 
rotatex   90        0         0 
rotatey   washout   0         ctip/4 
translate dxtip    -span/2    dztip 
 
# root 
udprim    naca      Thickness thick     Camber    camber 
attribute capsGroup    $Wing 
rotatex   90        0         0 
scale     croot 
 
# right tip 
udprim    naca      Thickness thick     Camber    camber 
attribute capsGroup    $Wing 
scale     ctip 
rotatex   90        0         0 
rotatey   washout   0         ctip/4 
translate dxtip     span/2    dztip 
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