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The paper presents the HSM finite element formulation which extends common existing
C0-continuous large-deflection shell methods by the introduction of spherical interpolation
of unit basis vectors, and higher-order representations of a virtual C1 continuous shell
surface and its covariant basis vectors. These modifications greatly improve accuracy for
elements which are highly curved, either in the undeformed case or after deformation, with
the result that HSM can tolerate very coarse grids, especially in bending-dominated prob-
lems. This makes the method particularly well suited for intermediate-fidelity aeroelastic
modeling, since coarse surface grids on aerodynamic bodies naturally results in highly-
curved elements. Various structural phenomena common in nonlinear aeroelasticity, such
as large deformations and buckling, can be thus be predicted with modest cost.

Nomenclature

aaaa acceleration

aα,a
α covariant and contravariant basis vectors

b residual projection vector

ĉ1, ĉ2 element in-surface cartesian basis vectors

d̂ material quasi-normal vector (director)

ê1, ê2 nodal in-surface cartesian basis vectors
¯̄f shell stress resultant tensor

g acceleration of gravity

ğαβ metric tensor components

h̆αβ curvature tensor components
˘̀
α director lean vector components

l̂ shell perimeter unit vector

J element-coordinate Jacobian
¯̄m shell stress-moment resultant tensor

n̂ shell normal unit vector

Ni element interpolation basis function

q shell force loading vector

r position vector

R residual

t̂ shell-tangential edge normal unit vector

t time

U frame velocity

Wi residual weighting function

α, β element-basis indices, 1 or 2

γ transverse shear strain vector
¯̄ε in-surface strain tensor
¯̄σ stress tensor

ξ, η element coordinates

λ log-quaternion

ρ volume mass density

µ area mass density

ς first-moment area mass density

τ shell moment-loading vector

Ω frame rotation rate

Subscripts and Superscripts

( )i quantity at node i

( )n shell-normal component

( )0 undeformed-state quantity

( )a,b components in element cartesian ĉ1, ĉ2 basis

( )i,j components in nodal cartesian ê1, ê2 basis

(̆ )α covariant components in element aα basis

(̆ )
α

contravariant components in element aα basis

∇̃( ) tangential gradient (excludes n̂ component)
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I. Introduction

The Fluid-Structure Interaction (FSI) problem has been the topic of extensive research. It can be
implemented in several levels of fidelity, from full nonlinear treatment where the (possibly large) structural
deformation modifies both the structure and fluid-domain geometries, to linearized formulations where all
deformation perturbations are assumed small. The present treatment is aimed at intermediate-fidelity FSI
solutions, using a structural shell model allowing possibly large deformations. One advantage of a shell model
is that it can approximate the behavior of a relatively complex structure with stringers, doublers, etc. by
lumping these details into a monolithic shell with the equivalent mass and stiffnesses. This monolithic shell
requires many fewer parameters to describe, and is therefore better suited for early design and optimization,
or if the structure is driven by and coupled with an aerodynamic solver. The lumping procedure can of course
be carried further by representing the structure as a beam. This then gives a very simple structural problem,
but it causes modeling uncertainties for low to moderate aspect ratios, and also at body intersections in
general. Since a shell model can be formulated on the actual body outer mold line (OML) surface, these
beam-modeling difficulties are largely circumvented.

The earliest numerical solutions of shell problems with general geometry, such as the pioneering work
of Ahmad, Irons, and Zienkewicz,1 treated the shell elements as degenerate 3D solids. These circumvented
the complexity of global curvilinear coordinates2 by formulating the problem in 3D cartesian space, with
the node position vectors r and material quasi-normal vectors (or director) d̂ as the primary unknowns.
However, the early formulations suffered from shear locking, where the representation of the transverse shear
strains via the interpolated element r and d̂ fields was inconsistent in the thin-shell limit.

More recent shell model developments, such as those of of Dvorkin and Bathe,3 sidestep the shear locking
problem via the MITC scheme, where the transverse shear strain field is defined by a special interpolation
scheme from the edge midpoints (not nodes) of a quadrilateral element. Simo et al,45 further refined this
model, and Lee, Lee, and Bathe6 extended the approach to triangular elements. Talamini7 developed a
Discontinuous-Galerkin version applicable to both quad or triangular elements.

The present Hybrid Shell Model (HSM) starts with the basic bilinear MITC formulation, but introduces
spherical (quaternion) interpolation for the director field, and also for the local cartesian basis vectors
used to interpolate specified nodal stiffness tensors and loads. The element covariant basis vectors and
the moment arm appearing in the angular momentum equation are also modified to exploit the higher-
order geometry information contained in the director field, so that the governing equations are in effect
formulated on a virtual C1-continuous surface, rather than the standard C0 surface of conventional bilinear
finite element treatments. The result is a large improvement in accuracy with highly-curved elements and
bending-dominated problems. The method’s performance is demonstrated with a few representative test
cases and also with realistic aeroelastic problems.

II. Geometry

As shown in Figure 1, the geometry of the undeformed shell’s reference surface is specified by the r0(ξ,η)

position vector, which also has a unit normal n̂0(ξ,η), both being functions of the surface material coordinates
ξ, η. Non-isotropic shell materials also require choosing tangent vectors ê01

, ê02
which define the basis in

which the shell stiffness tensors are specified.

The deformed shell geometry is defined by the position vector r(ξ,η) of the shell reference surface and the
material quasi-normal vector (or director) d̂(ξ,η). Following standard formulations,1,3, 4 the position r′ of an
arbitrary material point off the reference surface is then given by

r′(ξ,η,ζ) = r + ζ d̂ (1)

where ζ is the distance from the reference surface along d̂. The normal vector is related to the director by

n̂(ξ,η) =
d̂− `
|d̂− `|

' d̂ − ` (2)

where `(ξ,η) is the director lean vector, shown in Figure 2. This is assumed to be small and perpendicular
to n̂, so that the approximation in (2) is valid to first order, and ζ is also the normal coordinate n to first
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Frame velocity,
rotation rate

Gravity
r

0r
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ΩΩΩ

     Global
cartesian axes

n

0
n

g

Material director vectord

Undeformed

Deformed

Figure 1. Shell geometry defined by deformed and undeformed position vectors r, r0.
Anisotropic shell properties are defined along local ê01 , ê02 , n̂0 basis vectors. Frame
velocity U(t) and rotation rate Ω(t) relative to some other inertial frame are used in
dynamic problems. All vectors are defined via components along global xyz axes.

order. For the undeformed geometry which by definition has zero strain, it is convenient to choose d̂0 = n̂0,
so that `0 = 0 and ζ = n exactly. With these choices the lean vector is also the transverse shear strain
vector, γ ≡ `− `0 = `, which will be assumed from now on.

d

n
ζ

reference

 surface

0

0

ζ
n

0 0,

material coordinates

n

n

e
1 2

e

r

xyz
r

γγγ

d

Deformed

Undeformedr

t

ξ ,

ξ ,

Figure 2. View through thickness of shell showing material-point position r′,
reference-surface position r, and material director d̂. Edge boundary conditions are
defined using edge unit normal vector t̂. Stiffness tensors are defined along the arbi-
trary in-surface basis vectors ê01 , ê02 .

III. Stress Resultant Integrals

A. Resultant Definitions

The integral momentum and angular-momentum equations for a shell will involve the following mass, mass-
moment, stress, and stress-moment resultant integrals over the shell thickness, which are then functions of
the surface coordinates ξ, η.

µ(ξ,η) ≡
∫ ζtop

ζbot

ρ dζ , ς(ξ,η) ≡
∫ ζtop

ζbot

ρ ζ dζ (3)

¯̄f (ξ,η) ≡
∫ ζtop

ζbot

¯̄σ dζ , ¯̄m(ξ,η) ≡
∫ ζtop

ζbot

¯̄σ ζ dζ (4)

Coordinate Jacobians, which appear in the geometrically-exact formulation of Simo et al,4 have been dropped
from the integrands here since they reduce to unity in the limit of small shell thickness relative to its radius
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of curvature, and also a small transverse shear strain, |γ| � 1. Note that this does not put any restrictions
on the element size relative to the radius of curvature.

The bending moment/length tensor about the reference point ζ=0 is defined as d̂× ¯̄m. At a shell element

edge with unit edge-normal vector t̂ as shown in Figure 3, d̂× ¯̄m · t̂ is the edge bending moment/length

vector, and ¯̄f · t̂ is the overall edge traction force/length vector. Also appearing will be the net top–bottom
surface traction stress and stress-moment.

q(ξ,η) ≡ ¯̄σtop · n̂top + ¯̄σbot · n̂bot (5)

τ (ξ,η) ≡ ζtop ¯̄σtop · n̂top + ζbot ¯̄σbot · n̂bot (6)

d

n

σσσ
=

. ntop

σσσ
=

. nbot−

d

t

σσσ
=

. t

d

=
. tf

q

= . tm

d
l

d d

ξ

t

2

ζ

ζ

n d

ξ

ζ

top

top

bot

ζ

nbot

d

a

1a
τττ

d

d

d

Figure 3. Shell element volume used to formulate integral momentum equations for
the shell’s lumped representation on the right. Tractions on volume surfaces become
net force loading q on the shell area and force loading ¯̄f · t̂ and moment loading d̂× ¯̄m · t̂
on the shell edges. The finite element implementation will be performed using local
element coordinates ξ, η, and associated covariant basis vectors a1,a2.

B. Thin-Shell Approximations

In the thin-shell approximation the shell thickness h is assumed to be much smaller than a typical shell
dimension L, as suggested by Figure 3.

ζtop− ζbot ≡ h � L (7)

In this case the torque of gravity and reference-surface acceleration acting on the mass-moment ς can be
assumed to be negligible for a sufficiently thin shell.

ς(g − aaaa) ' 0 (8)

We will also assume that the shell thickness variations are small, |∇̃h| � 1, so that the top and bottom
surface normal vectors are nearly anti-parallel, i.e. n̂ = n̂top = −n̂bot. The loading (5) can then be defined
using only the reference-surface normal vector n̂, and the moment loading (6) is assumed negligible.

q(ξ,η) ' ( ¯̄σtop − ¯̄σbot) · n̂ (9)

τ (ξ,η) ' 0 (10)

These assumptions are made here only for simplicity, and all the dropped terms could be retained if desired.
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IV. Discrete Shell Equations

The starting point for the discrete formulation is the 3D momentum and angular-momentum equations
for a material with Cauchy stress tensor ¯̄σ, density ρ, acceleration aaaa, and gravity g.

∇ · ¯̄σ + ρ (g−aaaa) = 0 (11)

∇ · (r′× ¯̄σ) + ρ r′×(g−aaaa) = 0 (12)

The standard shell analysis procedure is to reduce the volume momentum equations (11) and (12) to
a shell manifold, and then discretize that with shell finite elements. Here we will go directly from the
3D equations to the discrete shell formulation via weighted-residual volume integration, using a weighting
function whose variation through the shell thickness is diagrammed in Figure 4.

The discrete equations are obtained by multiplying (11) and (12) by the weighting function Wi(ξ,η) which

is nonzero only over the elements which contain node i, and whose isosurfaces lie along d̂, as diagrammed
in Figure 4. We then combine Wi with the divergence terms and integrate over the shell volume.∫∫∫ {

∇ · ( ¯̄σWi) − ¯̄σ · ∇Wi + ρ (g−aaaa)Wi

}
dV = 0 (13)∫∫∫ {

∇ · (r′× ¯̄σWi) − r′× ¯̄σ · ∇Wi + ρ ζ r′×(g−aaaa)Wi

}
dV = 0 (14)

The first pure divergence terms are next replaced by area integrals over the perimeter surface with surface-
tangent vector t̂ and area elements dζ d`, and over the top/bottom surfaces with normals ±n̂ and area
elements dA, all diagrammed in Figure 3. For the remaining terms, the volume element is written as
dV = dζ dA. We next introduce the tangential gradient which excludes any normal component along n̂,

∇̃Wi ≡ ∇Wi − (n̂ · ∇Wi) n̂ (15)

as shown in Figure 4. We can then decompose the second stress terms in (13) and (14) as

¯̄σ · ∇W = ¯̄σ · ∇̃W + (n̂ · ∇Wi) ¯̄σ · n̂ (16)

and we note that the normal components will be very small for thin shells.

d

ξ , η

ζ

reference

 surface n

γγγ

∆

W

W(ξ,η)

∆

W

isosurfaces

Figure 4. Weighting function gradient ∇Wi and tangential gradient ∇̃Wi, viewed
through the shell thickness.

The integrations
∫

dζ across the shell thickness are now carried out, and the q and τ definitions (9) are
used for the top and bottom surface terms. The fact that Wi(ξ,η) is defined to not vary in ζ enables it to be
put outside the

∫
dζ thickness integrals, so that the µ, ς, ¯̄f , ¯̄m definitions (4) and (4) can also be invoked.

Equations (13) and (14) then become the linear and angular momentum residual vectors for node i.

RRRfi ≡
∮

¯̄f · t̂ Wi d` +

∫∫ [
− ¯̄f · ∇̃Wi + qWi + µ (g−aaaa)Wi

]
dA = 0 (17)

RRRmi ≡
∮ (

d̂× ¯̄m + r× ¯̄f
)
· t̂ Wi d` +

∫∫ [
−
(
d̂× ¯̄m + r× ¯̄f

)
· ∇̃Wi + r×qWi

]
dA = 0 (18)

For simplicity, the typically very small surface-stress and mass-moment torques d̂× τ and ςd̂× (g− aaaa) have
been dropped from (18), although if deemed significant they could be retained with no complications.
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V. Surface Coordinates

Quantities in the element surface coordinate basis will use traditional tensor index notation, with ξ, η
denoted as ξ1, ξ2, or compactly as ξα with α ∈ {1, 2}. Coordinate derivatives will be compactly denoted
by ∂α( ) ≡ ∂( )/∂ξα. Also following convention, vector and tensor covariant and contravariant components
associated with these coordinates will be denoted by subscript and superscript indices, respectively. Vectors
and tensors in boldface will indicate coordinate-independent (invariant) quantities, although in the numerical
implementation they are defined via their global cartesian xyz components.

A. Basis Vectors

C0-surface basis vectors. The simplest and conventional definition of the element covariant basis
vectors is the ξ and η derivatives of the position vector r(ξ,η).

aα(ξ,η) ≡ ∂αr (19)

This makes aα tangent to the “faceted” bilinearly interpolated surface, indicated in Figure 5.

(ξ,η)r

bilinear

surface

 virtual

surface

aα

rj
rj

∆aα

jd

jdn

aα
−

(ξ,η)d

γγγ −

Figure 5. Basis vectors aα tangent to a virtual C1-continuous surface.

C1-surface basis vectors. The higher-order basis vectors aα used in HSM are obtained by removing
the components of aα along an estimated normal vector n, and stretching by the factors Kα.

n(ξ,η) ≡ d̂− γ (20)

aα(ξ,η) ≡ Kα

[
aα − n (n · aα)

]
(21)

Kα =
aα · aα

aα · aα − (n · aα)2
(22)

This definition makes the change ∆aα ≡ aα−aα be orthogonal to aα, as indicated in Figure 5.

∆aα · aα = (aα−aα) · aα = 0

In the n definition (20), d̂(ξ,η) is obtained via spherical interpolation, and the transverse shear stress vector
γ(ξ,η) is obtained via MITC interpolation. These interpolations will be described later.

The definition (21) makes aα tangent to a virtual C1-continuous surface which is everywhere normal to
the n(ξ,η) field, as diagrammed in Figure 5. The stretching factors Kα also make aα give the metric tensor of
the slightly longer curved virtual surface. Hence, when the shell is subjected to a pure bending deformation,
the spacing between the nodes will shrink such that the arc length of the virtual surface is maintained to
first order. This considerably improves accuracy for cases with large bending deformations.

Using the basis vectors we define the following surface metric, curvature, and director-lean tensors.

ğαβ ≡ aα · aβ (23)

h̆αβ ≡ aα · ∂βd̂ (24)

˘̀
α ≡ aα · d̂ (25)

The metric determinant and its inverse ğαβ are defined by

ğ ≡ det(ğαβ) (26)

ğαβ ≡
[
ğαβ

]−1

=
1

ğ

[
ğ22 −ğ12

−ğ12 ğ11

]
(27)
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which then give the contravariant basis vectors and the area element.

aα = ğαβ aβ (28)

dA =
√
ğ dξ1 dξ2 (29)

We also apply all the above definitions (19)–(28) to the undeformed geometry r0(ξα), to give the corre-

sponding a0α , ğ0αβ
, h̆0αβ

, ˘̀
0α , ğ0, ğαβ0 , and aα0 . The undeformed area element is dA0 =

√
ğ0 dξ1 dξ2.

B. Tangential Gradient

The tangential gradient of any scalar quantity on the surface is computed using its coordinate derivatives
and the contravariant basis vectors, both defined on the virtual surface as described above.

∇̃( ) = a1 ∂1( ) + a2 ∂2( ) (30)

Gradients of in-surface vectors or tensors will not appear in the numerical solution method, which avoids
the need to construct basis-vector gradients and associated Christoffel symbols.

C. Effective Shell Position Vector

In the angular momentum residual (18), bending moments are driven primarily by the transverse shear
stresses, and also by the membrane stresses in curved shells, both acting over the position vector r which
here serves as the moment arm. To improve accuracy for cases with large initial curvatures or large bending
deformation, HSM defines this r to lie on a virtual surface which is offset from the bilinear surface r as
diagrammed in Figure 6. We have

r(ξ,η) = r + [B1φ1(ξ) +B2φ2(η)] n̂c (31)

where n̂c is a local normal vector, which will be conveniently defined at the element centroid. The φ1, φ2

“bubble” functions are defined to be zero at each node and quadratic over an element. Their coefficients
B1, B2 are chosen so that the director field is nearly normal to the virtual surface. Specifically, we require

min
B1,B2

∫∫
1

2

[(
d̂ · ∂1r

)2

+
(
d̂ · ∂2r

)2
]

dA (32)

with the integral carried out over the element. Carrying out the minimization gives explicit expressions for
the coefficients.

B1 =
−
∫∫

d̂ · ∂1r ∂1φ1 dA∫∫
(∂1φ1)2 dA

, B2 =
−
∫∫

d̂ · ∂2r ∂2φ2 dA∫∫
(∂2φ2)2 dA

(33)

The factors d̂ · n̂c have been dropped from the integrals for simplicity, since these are nearly unity and we are
estimating a higher-order correction to begin with. For the same reason the director d̂ is being used rather
than the more appropriate but more complicating estimated normal n given by (20). This is also justified
by noting that a uniform transverse strain field would merely add a constant to the least-squares penalty
function (32), with no effect on the resulting B1, B2 coefficients.

rj

jd

(ξ,η)d

n
c

(ξ,η)r
−

(ξ,η)r

bilinear surface

(ξ,η)rα

Figure 6. Effective shell position vector r offset from bilinear surface r, based on
director d̂ distribution over an element.

7 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 R

ob
er

t H
ai

m
es

 o
n 

Ja
nu

ar
y 

23
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
22

27
 



D. Stress Tensor Decomposition

The stress integral resultant tensor is decomposed into in-surface and transverse parts,

¯̄f = ¯̄fS + ¯̄fT (34)
¯̄fS = f̆αβ aαaβ = f̆11 a1 a1 + f̆12 (a1 a2 + a2 a1) + f̆22 a2 a2 (35)

¯̄fT = f̆αn(aαn̂ + n̂ aα) = f̆1n (a1 n̂ + n̂ a1) + f̆2n (a2 n̂ + n̂ a2) (36)

where each vector dyad denotes the usual outer product, i.e. a1 a2 = a1 aT
2 = a1⊗a2. The remaining f̆nn n̂ n̂

transverse normal-stress part is omitted, since this is assumed negligible within the thin-shell approximations.

The stress-moment integral resultant tensor is assumed to have the form

¯̄m = ¯̄mS = m̆11 a1 a1 + m̆12 (a1 a2 + a2 a1) + m̆22 a2 a2 (37)

from which m̆1n, m̆2n, m̆nn are omitted since these are negligible within the thin-shell approximation.

VI. Strains

As with the stresses, the strain tensor is decomposed into in-surface and transverse parts.

¯̄ε = ¯̄εS + ¯̄εT (38)

¯̄εS = ε̆αβ aαaβ (39)

¯̄εT = 1
2 γ̆α(aαn̂ + n̂ aα) (40)

For a point r′ at location ζ from the reference surface, defined by (1), the in-surface strain tensor is

ε̆′αβ ≡ 1
2

(
ğ′αβ − ğ′0αβ

)
' ε̆αβ + ζ κ̆αβ (41)

where in the linearized form (41) the ζ2 term was dropped as a thin-shell approximation. This is seen to
have a membrane contribution ε̆αβ due to tangential stretching and shearing of the reference surface, and a
bending contribution κ̆αβ due to curvature changes of the reference surface.

ε̆αβ ≡ 1
2

(
ğαβ − ğ0αβ

)
(42)

κ̆αβ ≡ h̆αβ − h̆0αβ
(43)

γ̆α ≡ ˘̀
α − ˘̀

0α (44)

VII. Constitutive Relations

A. Stress-Strain Relations

The stress and strain tensors are related by assuming a Hookean material, with the in-surface and transverse
tensors assumed to be decoupled. We substitute the strain (41) into the Hookean stress-strain relations,

¯̄σS = ¯̄̄̄c : ¯̄ε′ (45)

¯̄σT = ¯̄s · γ (46)

where ¯̄̄̄c is the 4th-rank in-surface stiffness tensor and ¯̄s is the 2nd-rank transverse shear stiffness tensor.
Integration across the shell thickness and transformation into the element basis then ultimately gives

f̆αβ(ξ,η) = Ăαβγδ ε̆γδ + B̆αβγδ κ̆γδ (47)

m̆αβ
(ξ,η) = B̆αβγδ ε̆γδ + D̆αβγδ κ̆γδ (48)

f̆αn = S̆αn γ̆α (49)

where the matrices are 0th, 1st, and 2nd moments of the stiffnesses across the shell,

Ă ≡
∫
c̆ dζ , B̆ ≡

∫
c̆ ζ dζ , D̆ ≡

∫
c̆ ζ2 dζ , S̆ ≡ k

∫
s̆ dζ (50)
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and k is the transverse strain energy reduction factor, equal to 5/6 for an isotropic shell. A balanced shell
material with the reference surface at its midpoint has B̆ = 0, but in practice it is desirable to put the
reference surface on one side which is the usual location of the body OML definition. So for generality,
and for natural use with geometry representations, any assumptions on the reference surface placement are
avoided here.

VIII. Finite-Element Solution

This section summarizes the Galerkin finite element solution method. All boldface vectors are numerically
defined in the global cartesian xyz basis.

A. Global Data

The global data is listed in Table 1. For stationary problems, the only global parameter is the gravity
acceleration vector g. For non-stationary problems, additional parameters would be the frame velocity U(t)

at the xyz origin and frame rotation rate Ω(t), both sketched in Figure 1, and their corresponding rates
U̇(t) and Ω̇(t), all relative to some inertial frame of reference (e.g. earth). These can be either prescribed, as
in a forced-motion case, or evolved in time via additional kinematic constraints and global momentum and
angular-momentum conservation constraints, as in a free-body case.

Table 1. Specified global data

symbol description

g gravity acceleration

U(t) frame velocity

Ω(t) frame rotation rate

U̇(t) frame velocity time rate of change

Ω̇(t) frame rotational acceleration

For a purely translating case, which has Ω = Ω̇ = 0, we can ignore U. And in this case if U̇ is also
constant in time, it can be lumped into a modified effective gravity vector

g ← g − U̇

and we can then set aaaa=0 in residual (17).

B. Nodal Data

1. Parameters

In common CAD and FEM analysis practice, a complex undeformed geometry is defined by the parametric
surface r0(u,v), where u, v are the global (e.g. B-spline) surface coordinates. This also then uniquely defines
the n̂0(u,v) distribution.

n̂0 =
∂ur0 × ∂vr0

|∂ur0 × ∂vr0|
(51)

The same u, v parameterization can be used for the shell material properties (stiffnesses, mass), and also the
applied loads. After the shell discretization is chosen, this B-spline input data is evaluated at the discrete
nodes. This makes the input data the same for triangle and quad elements, and also independent of the
element integration schemes. All the required data values at each node j are listed in Table 2.

The stiffnesses in the table are most naturally specified in the chosen nodal 12n basis. For isotropic
shell materials, the orientation of the ê01

, ê02
vectors within the tangent plane is arbitrary, and an adequate

choice is
ê01

= ∂ur0 , ê02
= n̂0 × ê01

. (52)

If the shell material is anisotropic with known properties along specific directions, such as a composite,
then it is natural to orient ê01

, ê02
along these directions, since this will then simplify the stiffness matrix

specification.
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Table 2. Specified nodal data

symbol num. axes description

r0j
3 xyz position vector of undeformed geometry

¯̄e0j
9 xyz ê01

, ê02
, n̂0 unit vectors of undeformed geometry

¯̄Aj 6 12n lumped shell extension and shear stiffness

¯̄Bj 6 12n lumped shell extension/bending coupling

¯̄Dj 6 12n lumped shell bending stiffness

¯̄Sj 2 12n lumped shell transverse shear stiffness

qnj 1 12n shell-following applied normal force/area

qxyzj 3 xyz fixed-direction applied force/area

µj 1 — lumped shell mass (mass/area density)

A typical shell-following load is the pressure difference across the top and bottom sides of the shell.

qn = pbot − ptop (53)

A shell-following tangential shear load could also be imposed, although this is a vector and its basis vectors
in the deformed configuration would be ambiguous.

2. Unknowns (primary variables)

The primary variables which are to be determined at each node j are listed in Table 3.

Table 3. Primary nodal unknowns

symbol description

rj position vector of deformed geometry

d̂j unit material vector (director) of deformed geometry

It should be noted that since each d̂j vector has unit magnitude, it actually represents two rather than
three unknowns, which will be exploited later in the Newton method formulation. The resulting numerical
problem will then have a total of 5 or 8 unknowns per node for steady or unsteady cases, respectively.

C. Element Interpolation

1. Bilinear interpolation

The nodal rj variables are interpolated to the element interior by usual bilinear interpolation, which also
gives their covariant derivatives.

r(ξ,η) =
∑
j rj Nj (54)

∂αr(ξ,η) =
∑
j rj ∂αNj (55)

The interpolation functions used for quad and triangular elements are listed below.

N1(ξ,η) = 1
4 (1−ξ)(1−η)

N2(ξ,η) = 1
4 (1+ξ)(1−η)

N3(ξ,η) = 1
4 (1+ξ)(1+η)

N4(ξ,η) = 1
4 (1−ξ)(1+η)

(quad)

N1(ξ,η) = 1− ξ − η
N2(ξ,η) = ξ

N3(ξ,η) = η

(triangle) (56)
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Bilinear interpolation of the nodal normal vectors d̂j does not in general produce a unit vector. A common
fix is to combine it with normalization,

d̂(ξ,η) =

∑
j d̂j Nj∣∣∣∑j d̂j Nj

∣∣∣ (57)

although this will still produce irregularities in d̂(ξ,η) for very a highly curved element.

2. Spherical interpolation

To minimize sensitivity to element curvature HSM uses spherical interpolation. An element reference unit
vector d̂ref is first defined, with the first node’s (j=1) vector being a convenient choice.

d̂ref = d̂1 (58)

This is then used to define the log-quaternion λj for each node, which is half the rotation vector needed to

rotate d̂ref into d̂j , as shown in the diagram below.

ref

j
(ξ,η)

jλλλ (ξ,η)λλλ

d

d

d

2 2

αj = d̂ref × d̂j (59)

θj = atan2
(
|αj | , d̂ref · d̂j

)
(60)

λj =

 0 , |αj | = 0

αj
|αj |

θj
2

, |αj | 6= 0
(61)

These nodal λj values are interpolated over the element using the interpolation functions,

λ(ξ,η) =
∑
j λj Nj (62)

and this is then used to rotate d̂ref into d̂(ξ,η) which is the required result.

w(ξ,η) = cos|λ| ' 1− 1
2 |λ|

2 (63)

v(ξ,η) =
sin|λ|
|λ|

λ '
(
1− 1

6 |λ|
2
)
λ (64)

d̂(ξ,η) = d̂ref + 2 v ×
(
v × d̂ref + w d̂ref

)
(65)

The coordinate derivatives of d̂(ξ,η) are obtained by explicit differentiation of the above expressions.

∂αλ =
∑
j λj ∂αNj (66)

∂αw = − sin|λ|
|λ|

λ · ∂αλ ' −λ · ∂αλ (67)

∂αv =
sin|λ|
|λ|

∂αλ +

(
cos|λ| − sin|λ|

|λ|

)
λ

|λ|2
λ · ∂αλ '

(
1− 1

6 |λ|
2
)
∂αλ (68)

∂αd̂ = 2 ∂αv ×
(
v × d̂ref + w d̂ref

)
+ 2 v ×

(
∂αv × d̂ref + ∂αw d̂ref

)
(69)

The approximate forms in (63), (64), (67), (68), are used when |λ|2 < εmachine to prevent a divide by zero.

Operations (58)–(69) are also applied to the undeformed-geometry n̂0j
vectors to obtain the interpolated

n̂0(ξ,η) vector and its covariant derivatives ∂αn̂0.
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3. Transverse shear strain interpolation

The transverse strain defined by HSM is based on the standard MITC formulation,3 with interpolation from
the edge midpoints rather than from the corner nodes. One modification here is that the edge-midpoint
d̂j+1/2 values are obtained using spherical interpolation between the j and j + 1 nodes, specifically by using

λj+1/2 = 1
2 (λj+1 + λj) (70)

in expressions (63)–(65). For each edge midpoint we then compute

γ̆αj+1/2
= aαj+1/2

· d̂j+1/2 − a0αj+1/2
· n̂0j+1/2

(71)

and these are then interpolated using the following standard MITC scheme to give the γ̆α(ξ,η) field for a
quad element.

γ̆1(η) = 1
2 (1−η) γ̆11 1/2

− 1
2 (1+η) γ̆13 1/2

(72)

γ̆2(ξ) = 1
2 (1−ξ) γ̆24 1/2

− 1
2 (1+ξ) γ̆22 1/2

(73)

The similar MITC3 scheme is used for triangular elements.6 To compute the cartesian shear stress vector,
we use the approximate (bilinear) contravariant basis vectors.

γ = γ̆1 a1 + γ̆2 a2 (74)

Once r, d̂, and γ are computed, the normal vector n and the virtual-surface aα basis vectors are computed
using relations (20)–(22). The metric tensors and contravariant vectors aα are then obtained using (23)–(28)

4. Rotated nodal data

The stiffnesses of isotropic materials can be uniquely defined by the scalars E, ν (or equivalent Lamé con-
stants), which allows stiffness properties to be constructed locally within the element. However, the shell
stiffness properties for composite materials are inherently tensor quantities which must be defined in some
basis, which here is chosen to be defined by the ê01

, ê02
, n̂0 basis vectors tangent and normal to the surface.

For a curved geometry these must in general differ between the nodes of an element, so the tensor stiffness
data must be interpolated in some common basis. To exactly represent uniform loading and uniform strain
and stress fields (and thus pass patch tests), this interpolation is typically performed in a local surface-aligned
cartesian basis defined by the ĉ vectors computed at the element centroid3,8 as follows.

ĉ1ref
=

∂ξr0

|∂ξr0|

∣∣∣∣
ξc,ηc

, ĉnref
=

∂ξr0×∂ηr0

|∂ξr0×∂ηr0|

∣∣∣∣
ξc,ηc

, ĉ2ref
= ĉnref

× ĉ1ref
(75)

For an element whose undeformed shape is curved, or more precisely whose nodal n̂0 are not all parallel,
using this basis as-is at the nodes will produce spurious cosine-error “mixing” between the tangential and
normal components of the tensor node data, as suggested by the top diagram Figure 7 for the 2D case. In
HSM this is avoided by using a rotated basis ĉj at each node, as indicated in the bottom diagram.

In the 3D case, the rotation is performed via equations (59)–(65), but now the rotation angle is what’s
required to rotate ĉnref

into n̂0j
, and no interpolation (via λ) is needed.

α = ĉnref
× n̂0j

(76)

θ = atan2
(
|α| , ĉnref

· n̂0j

)
(77)

w = cos(θ/2) (78)

v =
α

|α|
sin(θ/2) (79)

ĉ1j
= ĉ1ref

+ 2 v ×
(
v × ĉ1ref

+ w ĉ1ref

)
(80)

ĉ2j
= ĉ2ref

+ 2 v ×
(
v × ĉ2ref

+ w ĉ2ref

)
(81)

ĉnj = n̂0j
(82)
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cn

c
α

e j0

n j0

c
refn

c
αref

cnj

c
αj

e j0

n j0

without  rotation

with  rotation

element

centroid

Figure 7. Rotation of 2D element cartesian ĉ basis vectors into each node avoids
spurious mixing between tangential and normal components of node tensor data.

e

j2c

jc1

cnj

j10

e
j20

n j0

2c

c

1c
ref

ref

refn

element

centroid
θ

Figure 8. Cartesian ĉref basis vectors at element centroid of the undeformed geometry
are rotated to each node j by the angle from ĉnref to n̂0j

. Nodal vector and tensor

data is projected onto the rotated basis for interpolation over element.

These procedures are applied to each node of the element, as diagrammed in Figure 8. The components of
the nodal stiffness tensors in the rotated element cartesian basis are

Aĉ
abcd = Aijk` (ê0i · ĉa) (ê0j · ĉb) (ê0k · ĉc) (ê0` · ĉd) (83)

Sĉ
anbn = Sinjn (ê0i · ĉa) (ê0j · ĉb) (84)

where here i, j, k, `, a, b, c, d ∈ {1, 2}. These projected values are then interpolated to the interior as usual.

Aĉ
abcd(ξ,η) =

∑
j (Aĉ

abcd)j Nj , etc. (85)

Finally, the interpolated stiffnesses are put into the local contravariant basis.

Ăαβγδ = Aĉ
abcd (ĉa · aα0 ) (ĉb · aβ0 ) (ĉc · aγ0) (ĉd · aδ0) (86)

S̆αnβn = Sĉ
anbn (ĉa · aα0 ) (ĉb · aβ0 ) (87)

Note that all these projections involve only the undeformed reference configuration and do not depend on
the solution, so they could be performed only once for each element and stored.

5. Derived data and dependent variables

The total applied load q is the sum of the fixed-direction and shell-following normal loads.

q = qxyz + qn n̂ (88)
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A static problem is one where aaaao is constant in time, making the solution in the xyz frame steady. In
this case the local acceleration aaaa at location r is

aaaa = U̇ + Ω×U + Ω̇×r + Ω×(Ω×r) (89)

where the first two terms are the frame linear acceleration, the third term is the relative tangential accel-
eration, and the last term is the relative centripetal acceleration. General dynamic problems require the
introduction of a node velocity u as a primary unknown, which adds u̇ + 2 Ω×u to the acceleration (89).
This extension will not be considered here.

The interior metric and curvature tensors are used to compute the strain and curvature-change tensors.
These and the stiffnesses then give the stress resultants as follows.

ε̆αβ(ξ,η) = 1
2

(
ğαβ − ğ0αβ

)
(90)

κ̆αβ(ξ,η) = h̆αβ − h̆0αβ
(91)

f̆αβ(ξ,η) = Ăαβγδ ε̆γδ + B̆αβγδ κ̆γδ (92)

m̆αβ
(ξ,η) = B̆αβγδ ε̆γδ + D̆αβγδ κ̆γδ (93)

f̆αn = S̆αβ γ̆β (94)

D. Equation Residuals

1. Residual weights and integration

HSM uses a standard Galerkin-type finite-element formulation, where the residual weighting function Wi(ξ,η)

associated with node i is chosen to be the “tent” function formed from the union of the Ni(ξ,η) interpolants,
shown in Figure 9. On each element we then have

Wi (ξ,η) = Ni (ξ,η) (95)

∇̃Wi (ξ,η) = ∇̃Ni (ξ,η) (96)

where the weight function gradient ∇̃Wi is defined via its element-basis components like ∇̃Ni.

iW iW

t

t

iW

l

l
1a

2a
1i

b

2i
b

Figure 9. Residual weighting functions Wi(ξ,η), variable and residual projection vec-
tors b̂1i

, b̂2i
(ξ,η), and element basis vectors a1,a2(ξ,η) associated with interior, edge,

and corner nodes. The edge-normal and edge-parallel tangent vectors t̂, l̂ and edge
length coordinate ` are also shown.

Per standard procedure, all area integrals will be recast in terms of the element coordinates ξ, η and their
Jacobian J0, and then numerically evaluated using 4-point Gaussian quadrature,∫∫

F dA0 =

∫∫
F J0 dξ dη '

4∑
k=1

F (ξk,ηk) J0(ξk,ηk) wk (97)

J0 =
∣∣a01

×a02

∣∣ (98)

where the index k runs over the Gauss points (ξk, ηk) and wk are the corresponding Gauss weights. The
integration is performed over the undeformed geometry, primarily because this simplifies linearization of the
resulting residual expressions for Newton solution.
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For the edge line integrals appearing in (17) and (18), 2-point Gaussian integration is used.∫
F d`0 =

∫
F J0 dξ '

2∑
k=1

F (ξk) J0 wk (99)

Here, −1≤ξ≤+1 is the parameter along the edge, and the Jacobian is a constant J0 = ∆`0/2 where ∆`0 is
the edge length of the undeformed element. The integrands are computed as

¯̄f · t̂ ≡ fBC(`) = fxyzBC
+ ftBC

t̂ + f`BC
l̂ + fnBC

d̂ (100)

d̂× ¯̄m · t̂ ≡ mBC(`) = mxyzBC
+ mtBC

t̂ + m`BC
l̂ (101)

where all the components are provided by load boundary condition data.

E. Variable and Residual Projection Vectors

1. Projection vector definitions

To minimize the number of unknowns, and to enable the imposition of strong (Dirichlet) boundary conditions,

we define local projection basis vectors b̂1i
, b̂2i

, b̂ni at each discrete node i. It is desirable that these vectors
are orthogonal, which will then minimize the coupling between the projected equations, but this is not
required — they only need to be non-coplanar.

For all nodes, we define

b̂ni = d̂i (102)

and then define the remaining two vectors depending on where node i lies. For interior nodes, and edge
nodes which have only loading boundary conditions, b̂1i

and b̂2i
are arbitrary as long as they span the shell

reference surface. For numerical stability we choose b̂1i
to be the unit vector which is along the smallest

component of d̂i = dxi x̂ + dyi ŷ + dzi ẑ, and orthogonalize it against d̂i. We then set b̂2i
perpendicular to

both d̂i and b̂1i
.

For boundary nodes with one or two specified displacements along specified directions (e.g. normal to a

symmetry plane), we set b̂1i
and/or b̂2i

along those directions, and orthogonalize any remaining unspecified

b̂ vectors.

2. Residual projection

Each vector residual, including any loading BC contribution, is projected onto the b̂1i
, b̂2i

, b̂ni vectors of
the corresponding node. 

Rf1i
Rf2i
Rfni

 ≡

− b̂1i
−

− b̂2i
−

− b̂ni −

 ·

|

RRRfi
|

 (103)

{
Rm1
i

Rm2
i

}
≡

[
− b̂1i

−
− b̂2i

−

]
·


|

RRRmi
|

 (104)

Equation (104) excludes the b̂ni projection because the RRRm vector residual does not contain any d̂ com-
ponent to first order. It would be retained if a director drilling degree of freedom were introduced into the
formulation.

3. Variable projection

The projection vectors are also used to define perturbations of the primary vector variables,

δri = b̂1i
δr1i

+ b̂2i
δr2i

+ b̂ni δr3i
(105)

δd̂i = b̂1i
δd1i

+ b̂2i
δd2i

(106)
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which can represent either the linearized variables in a perturbation analysis, or the variable changes in a
Newton iteration solution procedure. Since d̂i is defined to be a unit vector, and with definition (102), we

have δd3i
=0 a priori, thus reducing the number of Newton change variables from 6 to 5, i.e. from (δr, δd̂)i

to (δr1, δr2, δrn, δd1, δd2)i.

A necessary precaution during solution iteration is that each d̂i must maintain its unit magnitude. This
is ensured by rescaling each d̂i to unit magnitude after its Newton update, as follows.

d∗i = d̂i + b̂1i
δd1i

+ b̂2i
δd2i

, d̂i = d∗i / |d∗i | (107)

Since |d∗| = 1 + O(δd2), the effect of this explicit normalization vanishes as the solution is approached, so
there is no noticeable adverse effect on the quadratic convergence of the Newton iteration.

F. Edge Geometry Boundary Conditions

As mentioned previously, the edge position or angle boundary conditions are of the Dirichlet type, and are
imposed by replacing the appropriate natural residuals with the Dirichlet constraint residuals.

1. Dirichlet boundary condition data

All the boundary condition data which can be imposed on the shell edge nodes is listed in the table below.
The edge position is specified by rBC which is arbitrary, although in most cases it will be the same as r0 of
the undeformed geometry. The edge orientation is specified by the tBC, lBC vectors which are also arbitrary,
but frequently same as t̂0 and l̂0.

2. Target equations for Dirichlet boundary conditions

After the projections onto b̂1, b̂2, b̂n are applied, each variable is predominantly governed by a Poisson-type
equation which reduces to a Neumann BC on the boundary. To impose a Dirichlet BC on a variable in
a well-posed manner, the Dirichlet BC residual must replace the corresponding Neumann BC residual, as
listed in the table below.

Rf1 ∼ t̂ · ∇̃r1 → Rr1 ∼ r1

Rf2 ∼ t̂ · ∇̃r2 → Rr2 ∼ r2

Rfn ∼ t̂ · ∇̃rn → Rrn∼ rn

Rm1 ∼ t̂ · ∇̃d1 → Rd1 ∼ d1

Rm2 ∼ t̂ · ∇̃d2 → Rd2 ∼ d2

Specifically, Rr1 must replace Rf1 , Rr2 must replace Rf2 , etc.

Node displacement. The specified position of node i is imposed by replacing the two in-surface force
equilibrium residuals and the single compatibility residual with the following three position-constraint resid-
uals Rri . 

Rf1i
Rf2i
Rθi

 ←


Rr1i
Rr2i
Rrni

 ≡

− b̂1i
−

− b̂2i
−

− b̂ni −

 ·


|

ri−rBCi

|

 (108)

Either one or two or three of these residuals can be imposed, as dictated by the number of restrained degrees
of freedom in the physical boundary condition.

Node edge direction. The shell surface angles are imposed by requiring the shell material quasi-normal
vector to lie within the specified sliding plane defined by either the b̂1 or b̂2 vector. The corresponding
residuals replace the moment equilibrium equations.{

Rm1
i

Rm2
i

}
←

{
Rd1i
Rd2i

}
≡

[
− b̂1i

−
− b̂2i

−

]
·


|

d̂i

|

 (109)
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Either one or two of these residuals can be imposed, as dictated by the physical boundary condition. A
clamped edge or a single symmetry plane edge would have only the Rm1

i replaced with Rd1i . A double

symmetry plane edge would have both residuals replaced, thus completely specifying the d̂i vector at that
node.

IX. Newton Solution

All the discrete residuals are driven to zero by a standard Newton method. For the pure structural shell
problem the linear Newton system is [

∂ ~Ri
∂~vi

]{
δ~vi

}
= −

{
~Ri

}
(110)

where ~R = (Rf1 ,Rf2 ,Rfn ,Rm1 ,Rm2) and ~v = (r1, r2, rn, d1, d2) are the projected residuals and variables.
The Jacobian is computed exactly from the current solution at each iteration. It is sparse and well conditioned
due to the Poisson-type form of all the equations, and hence is well suited for iterative solution, especially
for large problems. The usual Newton update is then performed, possibly with an underrelaxation factor ω.

~vi ← ~vi + ω δ~vi (111)

Provided there are no structural instabilities (e.g. buckling) present, ω = 1 can be set and convergence is
typically rapid. For strong geometrically nonlinear problems with large deformations, ω < 1 is typically
needed initially, set either via line search, or heuristically such that the position changes do not exceed some
specified fraction of the body dimensions, and that the director changes do not exceed some modest angle.

X. Example Test Cases

A. Beam in pure bending

Many problems in nonlinear aeroelasticity feature large deformations. A popular test case for such problems
is a uniform cantilevered plate beam of length L, subjected to a bending moment load mxBC

at its tip edge,
as shown in Figure 10. With ν = 0, the exact solution is m11 = −mxBC

everywhere (1 is the lengthwise
direction), with all other stress resultants being zero. The deformed beam shape is a circular arc with
curvature κ11 = m11/D11, so that the particular load mxBC = 2πD11/L deforms the beam into a circle.

mx
BC

y

z

x

Grid a)

Grid b)

Figure 10. Plate beam deformed into an arc by an applied tip bending moment.

Figure 11 shows the computed shapes with grid a) in Figure 10, for standard bilinear interpolation, and

for the HSM scheme with spherical interpolation of d̂ and projected basis vectors aα given by (21). The HSM
formulation produces the exact solution for this case for any number of elements. The shell thickness ratio
is t/L = 0.025, although this is not relevant for this pure-bending problem since the in-surface membrane
stresses are zero.

For more general cases and irregular grids the HSM solution is not exact, but it does greatly improve
accuracy for bending-dominated cases. Figure 12 shows the solution error versus the average element size
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-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

z/L

y/L

bilinear

exact

 0

 0.05

 0.1

 0.15

 0.2

 0.25
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 0.35

 0.4

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

z/L

y/L

HSM

exact

Figure 11. Side view of plate beam with 10 rectangular elements deformed into circle,
computed with standard and HSM modeling options, as described in the text.

for the circular beam, for grid b) shown in Figure 10. Interestingly, correct representation of the C1 virtual
surface in HSM produces 4th-order accuracy for this case, versus the typical 2nd-order accuracy of the
standard bilinear method.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1

xtip / L

∆x / L

2:1

4:1

bilinear 

HSM 

Figure 12. Convergence of tip displacement error for circular beam, using the irreg-
ular grid b) shown in Figure 10.

B. Beam buckling

To verify that the nonlinear interaction between membrane loads and curvatures is correctly captured in
the present method, the simple beam-buckling case shown in Figure 13 was computed. A zero Poisson
ratio is specified to prevent transverse warping of the beam strip of width w = L/10, which allows the use
of the theoretical buckling load Pcrit = π2wD11/4L

2 as the reference solution. The actual buckling load
P is implemented by imposing on the tip edge a combined a force/length fyBC = −P/w together with a
moment/length mxBC = 0.002P to give a small eccentricity. As expected, the tip deflections increase very
rapidly as P approaches Pcrit, as shown in Figure 13 on the right.

Figure 14 shows a zoom-in of the tip deflections near P/Pcrit = 1, and the grid convergence for the largest
computed load P/Pcrit = 0.995. The usual 2nd-order accuracy of conventional shell methods is observed,
but the absolute error of the HSM formulation is more than an order of magnitude smaller, and even more so
for the coarsest grid. This accuracy is attributable mainly to the higher-order position vector definition (31),
which models the curvature of an individual element. This therefore gives a higher-order representation of
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the interaction between the curvature and axial stress, which is the primary column-buckling mechanism.

mx
BC

y

z

x

BC
f y

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.2  0.4  0.6  0.8  1

ztip /L

P/Pcrit

Figure 13. Plate beam is subjected to a buckling load P and a small tip moment to
simulate load eccentricity. Computed deflection versus P is shown on the right.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.95  0.96  0.97  0.98  0.99  1

ztip /L

P/Pcrit

exact

HSM   ∆x/L = 0.1

bilinear ∆x/L = 0.1

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01  0.1

ztip /zexact - 1

∆x / L

2:1

bilinear

HSM

Figure 14. Errors in computed tip deflection for P/Pcrit = 0.995 versus element size.

C. Tube beam with incipient shell buckling

To verify that various types of shell buckling and wrinkling can be predicted, the end-loaded hollow tube
beam case shown in Figure 15 was computed for a range of grids. The tube radius and wall-thickness ratios
are R/L = 0.1, h/R = 0.1. A simple pinned support boundary condition was specified at the anchor end on
the y = 0 plane. A vertical force/length fzBC was imposed on the tube edge at the free end, giving a total
vertical loading force F = 2πRfzBC .

As expected, this case exhibits local buckling for a sufficiently large tip load F . In the solution it is
manifested by the failure of the Newton iteration to converge, due to the non-existence of a solution for
a tip load which exceeds the maximum supportable buckling load Fmax. Figure 16 shows the shell axial
and circumferential curvatures for a solution at the onset of buckling computed on the finest grid. A tube-
ovalization buckling mode is evident, and features an inward “dent” with negative κ11 on the upper surface
roughly 1.5 diameters out from the anchored end. Also visible is another conventional column-type buckling
mode characterized by an outward bend with positive κ11 immediately adjacent to the anchor end. Figure 15
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∆xavg / L

2:1
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z

x

BC
fz

20× 20 grid

 0
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Figure 15. Tube beam is subjected to a vertical load on its free edge to investigate
curved-shell buckling and wrinkling. Wall-anchor ends of coarsest and finest grids
used are shown at incipient-buckling solution. Grid convergence of total buckling-
onset tip load shown on bottom left.

on bottom left shows the grid convergence of the buckling load relative to the reference Fref , which is obtained
by Richardson extrapolation from the three finest-grid Fmax values.

κ11 κ22
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Figure 16. Distributions of bending curvature strains κ11 and κ22 in the axial and
circumferential directions, respectively, computed on the 80× 80 grid.

D. Wing shell beam

Figure 17 shows a wing-like closed shell beam, with vertical loading taken from 2D airfoil surface pressures.
Figure 18 is the same beam with the loading increased by a factor of 1.5×. The tip deflection is more than
doubled, due to localized buckling of the shell near the root, shown in Figure 19. This again shows that
the present nonlinear HSM formulation is able to capture structural instabilities like buckling in realistic
structural shapes.
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Figure 17. Wing-like shell beam under deformation from 2D aero loads.
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Figure 18. Same as in Figure 17, but with applied loads increased by factor of 1.5×.

 0

 0.2

 0.4

 0.6

 0.8

 1
 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5 deformed, 1.5x load

Figure 19. Detail of the case in Figure 18, showing shell buckling near the wing root.
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XI. Conclusions

This paper presented the HSM finite element formulation, which introduces higher-order treatments into
existing nonlinear shell methods to more accurately represent shells with large element curvatures. This
makes the method particularly attractive for intermediate-fidelity nonlinear aeroelastic problems, where
relatively coarse grids are desirable to achieve computational economy. Example solutions demonstrated the
ability of HSM to achieve improved accuracy over conventional methods, especially for bending-dominated
problems with large deformations and buckling.
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