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During conceptual aircraft design, the layout (arrangement and size) of an aircraft’s
components are continuously updated. Current computational environments, such as NASA’s
Open Vehicle Sketch Pad, allow for the designer to indirectly manipulate the layout by using
sliders in a separate window. However, there is no way for the designer to directly interact
with the components and change their shape or size. Furthermore, the user is not given any
immediate feedback on how the design change affected the overall system.

The Graphical Layout of Vehicle Systems, GLOVES, allows a designer to interactively
arrange and size predefined or custom aircraft components within the Engineering Sketch
Pad software. That way, the designer can create an aircraft layout starting with the payload
arrangement and finish with a completed outer mold line. The distinguishing features of
GLOVES include: (1) the ability to directly manipulate the geometry in real-time; (2) a weight
and balance analysis that updates both the components’ and overall centers of gravity as the
geometry changes. These features provide the user with immediate feedback on how changing
the geometry affects the layout and its mass properties. To demonstrate the current capabilities
of GLOVES, a simple transport aircraft layout is created. It is shown that interactively
manipulating the components in a graphical user interface is more effective than using sliders.

I. Nomenclature

CAPS = Computational Aircraft Prototype Synthesis
CG = Center of Gravity
ESP = Engineering Sketch Pad
GLOVES = Graphical Layout of Vehicle Systems
GUI = Graphical User Interface
OpenVSP = Open Vehicle Sketch Pad
TIM = Tool-Interface Module
UDP = User-Defined Primitive
VBO = Vertex Buffer Object
2D = Two-Dimensional
3D = Three-Dimensional

II. Introduction
During conceptual design, a preliminary layout of the aircraft and its major components (payload, fuselage, wing, tail,

etc.) is developed. The designer explores multiple aircraft layouts and determines the best one that satisfies the mission
- both performance and payload - criteria. After drawing rough sketches, simple geometric models are created in a
computer-aided design system. Once these models are made, the designer will interact with the layout to improve it or
explore alternative ones. Current computational environments for aircraft modeling and design, such as NASA’s Open
Vehicle Sketch Pad (OpenVSP), only allow the designer to interact with the layout indirectly via sliders [1]. Figure 1
illustrates two of the windows that an OpenVSP user interacts with: (1) the main workspace (left), used for transforming
the view of the layout, and (2) the geometry window (right), used for changing the design parameters governing the
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layout. As the user adjusts one of the sliders in the geometry window, the layout in the main workspace is re-drawn and
the parameters dependent on the one being changed are updated.

Fig. 1 OpenVSP’s main workspace (left) and geometry manipulation window (right) [2].

One advantage of using OpenVSP is that the user can add custom components to their design by writing a VSPPART
file [2]. The geometry of the new components and the sliders needed to modify it can be defined in a maximum of six
functions [3]. This allows the user to include proprietary or unique components in the layout. A second advantage of
OpenVSP is that the geometry can be connected to a variety of analysis tools. In OpenVSP, there are geometric analysis
tools that allow a user to compute the mass properties or projected area in a given direction, to name a couple. There are
also tools for low-fidelity aerodynamic analysis such as VSPAERO, a potential flow solver [3], and the Parasite Drag
and Wave Drag tools [2]. All of these tools use a graphical user interface (GUI) similar to the one used for geometry
manipulation.

One disadvantage of using OpenVSP is that the software is more suited for modeling aircraft rather than designing
aircraft. If the mission criteria were to change after the aircraft layout was already made, significant time and effort
would be required to modify the existing design. Each component needs to be individually adjusted by the sliders and
for designs with more than 5 components, the layout modification becomes a tedious process. Additionally, not all
design parameters are listed on one menu. For example, the position of the wing is listed on a different menu than the
nominal wing dimensions. This requires the user to navigate between menus and find the desired design parameter
while manipulating a component. It would be simpler if the designer knew the design parameters that affected the
geometry the most, and directly interact with the components on the main workspace by manipulating them with their
mouse. Another disadvantage of using OpenVSP is that the computed mass properties are only valid for the existing
configuration, must be re-computed upon manipulating the geometry, and cannot be updated in real-time. It would be
more instructive if the designer received immediate feedback and knew how manipulating the layout affected its mass
properties.

In addition to OpenVSP, the Engineering Sketch Pad (ESP) currently has a limited version of GLOVES, which allows
users to layout wing, fuselage, and tail components on a screen and directly manipulate a wireframe representation
in the GUI (Figure 2) [4]. The components in GLOVES are drawn using a two-dimensional (2D) canvas rendering
context in a web-based browser and are wireframes comprised of only line segments [4]. On each component, there are
small pips (points) at its vertices. As the user moves the mouse and hovers over each pip, a menu is displayed on the
screen and lists the available design parameters that can be changed, as depicted in Figure 3a. After selecting a design
parameter to be changed, the user moves their mouse on the screen to directly manipulate the wireframe. As shown in
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Figure 3b), the pip that was selected turns red and the design parameters governing the shape and size of the component
are listed in the upper left corner of the canvas. After the desired configuration is attained, the user left-clicks to stop
manipulating the wireframe, and the layout is re-built.

Fig. 2 Limited version of GLOVES that already exists in ESP [4].

An advantage of using the current implementation of GLOVES is that the user can easily modify the layout if the
mission were to change. This is done by hovering over the pips on each component and manipulating the geometry, thus
changing the design parameter values. The process to update the design will be faster in ESP than OpenVSP because
the user does not waste time selecting each component individually, navigating to, and moving multiple sliders - the
user can hover over the component and change it immediately. Another advantage of GLOVES is that the user can
connect the geometry to both low- and high-fidelity analysis tools via CAPS, an Application Programming Interface that
transforms the geometry in ESP into an input file for one of the analysis tools. However, this is currently a moot point
because the configurations developed in GLOVES are quite simplistic and need to be refined outside of GLOVES before
undergoing any analyses.

(a) Menu available to manipulate the geometry. (b) Manipulating the area of the wing.

Fig. 3 Example operations in the limited version of GLOVES.

There are some disadvantages to the current implementation of GLOVES in ESP. First, all of the current GLOVES
operations are done by manipulating a wireframe. Although the user interacts with the wireframe directly, there is
no interaction with the final geometry. Upon saving and exiting GLOVES, the geometry is re-built, and will not
exactly match the user’s design in the tool, as seen in Figure 4. Second, only three components are available: (1) a
wing/horizontal tail; (2) a fuselage; and (3) a vertical tail. Currently, the user cannot add custom components, making
this version of GLOVES extremely limited in its capabilities. In order to develop more complex configurations, other
components such as different shaped payloads, control surfaces, internal structures, and landing gear must be available.
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Lastly, the user is only limited to four views: (1) an isometric view; (2) a side view; (3) a front view; and (4) a top view.
Since the components are drawn on a 2D canvas, it is sometimes difficult for the user to gauge depth, especially in the
side, front, and top views. As a result of this, the user is not always able to effectively interact with the wireframe.

Fig. 4 GLOVES configuration after building the geometry.

III. Objective
The objective of this research is to develop a new version of GLOVES that allows a user to design an aircraft

graphically and modify the geometry directly in the ESP GUI. That way, the user can create an aircraft layout starting
with the payload arrangement and finishing with a completed outer mold line. In order for the user to interact with the
geometry directly, sensitivities are used. While manipulating the geometry, the layout only needs to be re-drawn on the
canvas. Once the user is done manipulating the geometry, it is then be re-built and re-drawn. As a result, the proposed
geometry manipulation process will be less computationally expensive and time consuming than repeatedly re-building
the geometry for every mouse movement made by the user.

Rather than creating 2D wireframes, three-dimensional (3D) solids are created via User-Defined Primitives (UDPs)
specifically for GLOVES∗. This gives the user the freedom to add their own custom components and makes it easier
to include newly developed components into future iterations of GLOVES. Since the UDPs create primitive solids,
GLOVES is housed in the same 3D canvas rendering context as the ESP graphics window. The user can easily pan,
zoom, or rotate the view, thus making it easier to interact with the geometry.

In addition to its geometry creation and manipulation capabilities, GLOVES has a feature that allows the designer to
visualize the center of gravity of each component as well as that of the entire layout. By using sensitivities, the mass
properties are updated in real-time, thus allowing the user to understand how the proposed modification affects the
weight and balance of the overall design. This feature is particularly useful for modifying existing aircraft designs. For
example, if the fuselage is lengthened and engines are enlarged on a layout, the designer knows how much the center of
gravity has shifted from its original location.

IV. GLOVES Operations

A. Launching GLOVES
To initialize a session of GLOVES, ESP must be launched first. After ESP has started, the user left-clicks the “Tool”

button and selects “Gloves” from the “Tool Menu”, as shown in Figure 5. Figure 6 depicts what GLOVES looks like
∗A UDP is a piece of C, C++, or FORTRAN code written by a user to create a primitive solid that doesn’t already exist in ESP [5].
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upon initializing a new session with multiple components in the CSM script. If no components were given in the CSM
script, the canvas only contains the axes in the bottom left corner.

Fig. 5 Launching GLOVES from the “Tool Menu”.

Fig. 6 GLOVES after a new session has been started.

In the top left pane, the Tree Window, there are two buttons that a GLOVES user selects. In the top left corner,
a button labeled “Gloves” appears in green. After clicking on this button, a dropdown menu contains a list of the
available analyses that can be performed on the layout, and also allows the user to either save and exit the session or quit
without saving. Currently, there is only one analysis option, “Toggle CGs”, which allows the user to see the CG of each
component and that of the entire layout. Below the “Gloves” button is another yellow button labeled “Add Component”.
After clicking the button, the user is prompted with a list of components from the two available systems: (1) the Payload
System, and (2) the Aerodynamic System. (The components in these systems will be presented in subsection V.A.) The
user is also given an option to add a custom component to the layout.

Below the buttons is a tree of design parameters, local variables, branches, and displays. These trees are filled as a
user adds components to the layout. In the “Design Parameters” portion of the tree, the user can view and modify the
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value of a design parameter by clicking on its name (in addition to hovering over a pip and modifying the geometry
directly). This is particularly useful for making changes to a vector valued design parameter, such as the camber or
thickness of multiple airfoils in a wing or tail. In the “Local Variables” portion of the tree, the user can view two mass
properties for each component: (1) its volume and (2) center of gravity. In the “Branches” portion of the tree, the user
can see a list of the branches used to generate the layout. However, the user cannot modify the branches directly in
GLOVES and must wait to do so until saving or quitting. Lastly, the “Display” portion of the tree allows the user to
change the visibility of the graphics primitives on the 3D canvas. The user can also modify the transparency of the faces
on each component, which is particularly useful when viewing the CGs.

The top right pane, also known as the Graphics Window, contains two canvases. One of them contains a 3D rendering
context, which is used for displaying the layout and the axes drawn in the bottom left corner of the Graphics Window.
The second canvas contains a 2D rendering context and displays text. When hovering over a component and selecting a
pip, the 2D canvas is placed in-front of the 3D canvas, thus allowing the user to select a design parameter to modify.
When manipulating a component, the 2D canvas displays the proposed value of the design parameter being modified.

The bottom left pane, also known as the Key Window, lists the available key presses that a user can perform to interact
with the layout. The Key Window is updated when a user selects a pip, actively modifies a design parameter, or links
multiple components together. Lastly, the bottom right pane, also known as the Message Window, will occasionally
display a warning or notification to the user. Messages are typically posted when the user makes an error such as
selecting an invalid value for a design parameter or linking two components that are already connected.

B. Layout Arrangement Workflow
The goal of GLOVES is to allow the user to build up an aircraft layout from the payload to the outer mold line. After

arranging the payload, the user can surround it with a fuselage. Once the fuselage is placed, the user adds a wing to the
layout. By using the weight and balance analysis tool, the wing can be placed such that the center of gravity of the
layout aligns with the quarter-chord. Upon placing the wing, the user can add and size the horizontal and vertical tail
components based on the size and position of the wing.

To perform this workflow in GLOVES, the user first adds a component to the layout. This is done by selecting the
“Add Component” button, and selecting a component from the Payload System. After the user selects which component
to create, a 3D solid body is created. At the same time, the sensitivities of the component with respect to its design
parameters are computed. Once the sensitivities have been computed, the pips and their menus are created. The menu
on each pip contains a ranked list of the design parameters that affect the configuration the most at that point. After the
menus are created, the solid body and pips are drawn on the canvas, and the user can begin manipulating the geometry.

To manipulate the geometry, the user first selects a pip and a design parameter from its menu. At this point, the user
moves the mouse on the canvas and the pip begins to follow the mouse movements. This is done internally by choosing
a step size that minimizes the distance between the pip on the canvas and the mouse position. Once this step size is
chosen, the VBOs are re-drawn and the geometry is deformed. Once the user has finished manipulating the geometry,
they left-click on the final pip position. After this, the geometry is re-built and the sensitivities are computed again, thus
creating new menus on each of the pips. The user will continue manipulating the geometry until the desired shape and
size is attained. Once the desired geometry is made, a new component is added to the system and the cycle repeats itself.
A diagram of the overall workflow is illustrated in Figure 7.

V. GLOVES Features

A. Predefined and Custom Components
In GLOVES, there are currently six predefined components that a user can add to the layout. Each component is

created based on a set of design parameters and (possibly) configuration parameters†. The components in GLOVES are
currently grouped into two ‘systems’: (1) the Payload System and (2) the Aerodynamic System.

†A design parameter is a value whose sensitivities can be computed. A configuration parameter is a value whose sensitivities cannot be computed
[6].
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Initialize a session
of GLOVES.

Add a component
to the layout.

Select a pip and design
parameter to change.

Move the mouse to
deform the geometry.

Click on the final
pip location.

Save and quit the
GLOVES session.

Done
manipulating
component

Continue
manipulating
component

Fig. 7 Workflow in GLOVES for adding and manipulating components.

From the Payload System, the user can add a: (1) box, glovesBox, (2) cylinder, glovesCyl, or (3) sphere,
glovesSphr. If a user adds a cylinder, they have the option to build either the top (+𝑧), bottom (−𝑧), or both halves of
the cylinder. Selecting to build only the top half of the cylinder is useful for creating a cabin for the passengers and
galleys. Selecting to build only the bottom half of the cylinder is useful for creating a cargo bay or fuel tank in the
fuselage.

From the Aerodynamic System, the user can add a:
1) Fuselage, glovesFuse, which is made of a set of blended superellipses. On each superellipse, the user can

control the position, nominal radii in the 𝑦- and 𝑧-directions, and its power. The user is also given control over
the continuity in the blend direction and can select: C2 continuity, curvature continuous; C1 continuity, slope
continuous; or C0 continuity, value continuous [7]. For this component, the default continuity at each superellipse
is set to be C2 continuous. However, the user may want to modify the continuity to be C1, particularly for the
portion of the fuselage that contains the passenger cabin.

2) Symmetric wing or horizontal tail, glovesWing, which is made of a set of blended NACA airfoils along the
𝑦-axis. On each airfoil, the user can control the camber, thickness, location of maximum thickness, angle of
attack, and position as a function of the wingspan. On each section of the wing (the area bounded by two
consecutive airfoils), the user can control the taper ratio, sweep angle, dihedral. Just like the fuselage component,
the user is also given control over the continuity in the blend direction. For the wing, the default continuity at
each airfoil is set to be C0 continuous, thus creating a ruled wing. The user may want to modify the continuity
towards the outboard portions of the wing to create a blended wingtip.

3) Vertical tail, glovesVtail, which is also made of a set of blended NACA airfoils. The user is given the exact
same control over this component as they are with the wing. The only difference between the wing and vertical
tail components is that the blend direction for the vertical tail is parallel to the +𝑧 axis (as opposed to the +𝑦-axis).
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In addition to the predefined components, the user can elect to create their own custom components and include
them in a layout. In order for a custom component to be created, the user must write a UDP, which contains a series of
function calls to EGADS [5]. At a high-level, these function calls are used to create the component’s topological entities
(faces, edges, and nodes). Additionally, for GLOVES components, the user must specify the location of the pips on each
face and whether any ‘special’ menu options should be displayed when a pip is selected. The location of the pips on
each face is specified by adding an attribute, _.pips._ to the face. The attribute contains an array of doubles consisting
of a 𝑢-𝑣 coordinate pair for each pip. If no pips are to be placed on the face, the attribute should be assigned a string
value of NULL.

‘Special’ menu options may be required for some pips. Typically, the menu on a pip only contains a list of the design
parameters with the largest sensitivities. However, there may be times in which a user wants to change a configuration
parameter, or modify the number of sections in a blend. If the user feels that this is necessary for their custom component,
the _.type._ attribute needs filled. The attribute consists of a pair of numbers for each pip. The first number is a
bitwise representation of the menu options to be added at the pip. The second number in the pair is the index of the
section that the menu option pertains to, or -1 if it is not applicable (like changing the half of a cylinder to build). The
options for the first number of the pair include:

1) GLOV_HERE: used on pips between two sections. This allows a user to add a section halfway between the two
existing sections.

2) GLOV_BEFR: used on pips at a section. This allows a user to add a section before the index indicated on the menu
option.

3) GLOV_AFTR: used on pips at a section. This allows a user to add a section after the index indicated on the menu
option.

4) GLOV_DLTE: used on pips at a section. This allows a user to delete the section given by the index on the menu
option.

5) GLOV_CURV: used on pips at a section. This allows a user to change the blend continuity given by the index on
the menu option.

6) GLOV_SECT: used on pips at the beginning or end of a blended body. This allows a user to add another section
before the first section or after the last section.

7) GLOV_NODE: used on pips at the beginning or end of a blended body. This allows a user to add a node (to blend
to a point) before the first section or after the last section.

8) GLOV_ARFL: used on pips at a section. This allows a user to specify the NACA 4-digit series airfoil at a section.
9) GLOV_HALF: used on pips for a cylinder. This allows a user to specify whether the top (+𝑧), bottom (−𝑧), or both

halves of the cylinder are built.

The user can include an additional bitwise representation to create a new menu option, but it may be overwritten
in future iterations of GLOVES. The bitwise representations of the menu options can be found in gloves.h that is
shipped with ESP.

Aside from creating the UDP, the user must also update two functions in the source code, gloves.c, that is shipped
with ESP. The first function is compInit, which gets the default design/configuration parameter values when the
component is added. Here, the user must fill the following output variables:

1) ptype: the parameter type for ESP to recognize. This will either be OCSM_DESPMTR for a design parameter or
OCSM_CFGPMTR for a configuration parameter.

2) gtype: the parameter type for GLOVES to recognize. This will either be GLOV_SCALAR if the parameter is
scalar valued or GLOV_VECTOR if the parameter is vector valued.

3) nvalu: the number of values associated with the default parameter. This is either 1 for a scalar valued parameter
or the length of the vector for a vector valued parameter.

4) valu: an array of the default value(s).
5) lbnd: an array of the lower bound(s). If there is no lower bound, use an arbitrarily large number like −1010.
6) ubnd: an array of the upper bound(s). If there is no upper bound, use an arbitrarily large number like +1010.

The second function to be updated is compSect, which computes the new design/configuration parameters for a
component when a section is added or removed. For example, if a section is added on the glovesWing component, a
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new taper ratio, sweep angle, and dihedral must be computed before building the modified component. There are no
particular rules associated with modifying this function. If the component does not have sections, like a box or cylinder,
the function does not need to be updated.

B. Real-Time Geometry Manipulation
One feature of GLOVES that distinguishes it from other programs is its ability to directly manipulate the geometry in

real-time. This is done through sensitivities. After a component is built or updated, the sensitivities of the component
are computed with respect to its design parameters. In a UDP, a routine can be written to compute the sensitivities
analytically. If no sensitivity routine is provided, they are computed via finite differences [5]. However, this process
takes longer because a perturbation of the configuration must be generated for each of the design parameters. For now,
there are no sensitivity routines associated with any of the UDPs that create GLOVES components. This is an area of
future work that would allow GLOVES to operate more efficiently.

There are two steps to manipulate the geometry in real-time. The first step involves computing what the new value of
the design parameter should be, and is completed in the browser. Equation 1 reveals how every point on the geometry is
updated. In the equation, 𝑥0, ¤𝑥, and 𝑥3D are the original position, sensitivity of the point with respect to the design
parameter being modified, and the final position, respectively. The variable 𝑡 represents a ‘time’ to scale the sensitivity
by, and is found by performing a Golden Section Search on 𝑑2 (𝑡), the square of the distance between the 2D coordinates
of the pip and 2D coordinates of the mouse, to minimize its value. The second step of manipulating the geometry
involves re-drawing the component. This is done in the server to update the VBOs and in the browser to process the
updated VBOs.

𝑥3D = 𝑥0 + ¤𝑥𝑡 (1)

Before explaining the Golden Section Search algorithm, the steps to compute 𝑑2 will be explained. The position of
the mouse, 𝑚, is recorded in 2D coordinates, or screen coordinates. Since the 3D coordinates of the pip are known, 𝑝3D,
they can be transformed into 2D coordinates to compute the distance between itself and the mouse position. The first
step of the transformation is to scale the 3D coordinate by the focus, a vector of 4 doubles,

[
𝑐𝑥 𝑐𝑦 𝑐𝑧 𝑠

]
, and is

shown in Equation 2. The first three entries of the vector correspond to the 3D coordinate at the center of the Graphics
Window and the last entry corresponds to the 3D scale of the display.

𝑝𝑥,scaled =
𝑝𝑥,3D − 𝑐𝑥

𝑠

𝑝𝑦,scaled =
𝑝𝑦,3D − 𝑐𝑦

𝑠
(2)

𝑝𝑧,scaled =
𝑝𝑧,3D − 𝑐𝑧

𝑠

After the scaled coordinates of the pip are found, they are multiplied by a transformation matrix to convert them to
the scaled 2D coordinates. The transformation matrix is normally used to convert from scaled 2D coordinates to scaled
3D coordinates, and is given in Equation 3. In the matrix, 𝑅 is a 3-by-3 rotation matrix with orthonormal columns, and
depends on how the user rotates the view. The diagonal of the rotation matrix is multiplied by a nonnegative scale factor,
depending on how much the user has zoomed in/out. Δ is a 3-by-1 column vector and depends on how much the user
pans (translates) the view. 𝑜 is a 3-by-1 column vector of offsets to illustrate 3D perspective on a 2D canvas. The last
entry in the matrix, 𝑤, is a scalar value and represents an offset between the scaled 3D and scaled 2D widths of the
display.

𝑇 =

[
𝑅 Δ

𝑜𝑇 𝑤

]
(3)

Since the described transformation matrix converts from scaled 2D coordinates to scaled 3D coordinates, 𝑝scaled, is

multiplied by
(
𝑇

)−1
to obtain the scaled 2D coordinates of the pip. However, the transformation matrix is 4-by-4, but the
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vector of scaled 3D coordinates is 3-by-1. To resolve this, the homogeneous coordinates of the scaled 3D coordinates,[
𝑝scaled 1

]𝑇
, are multiplied by

(
𝑇

)−1
. 

𝑝𝑥,2D

𝑝𝑦,2D

𝑝𝑧,2D

𝑤2D


=

(
𝑇

)−1


𝑝𝑥,scaled

𝑝𝑥,scaled

𝑝𝑥,scaled

1


(4)

Now that the scaled 2D coordinates of the pip have been obtained, 𝑝𝑧,2D can be disregarded because there is no
‘depth’ in the screen. To obtain the 2D coordinates of the pip, 𝑝𝑥,2D and 𝑝𝑦,2D are scaled by (𝑤2D)−1. Notice that this
portion of the transformation is non-linear, which is one of the reasons why a Golden Section Search was chosen as the
optimization technique.

𝑝𝑥,2D =
𝑝𝑥,scaled

𝑤2D

(5)

𝑝𝑦,2D =
𝑝𝑦,scaled

𝑤2D

Lastly, 𝑑2 can be computed as shown in Equation 6. Since the Golden Section Search is searching for the new value
of the design parameter, it does not matter whether the distance between the pip and mouse is squared or not.

𝑑2 =
(
𝑚𝑥 − 𝑝𝑥,2D

)2 (
𝑚𝑦 − 𝑝𝑦,2D

)2 (6)

The Golden Section Search is performed as follows [8]:
1) Compute the initial position of the pip, 𝑑2 (0).
2) Set 𝑖 = 0.
3) Compute 𝛼𝑖 = 𝛿 × 1.612𝑖 and evaluate 𝑑2 (−𝛼𝑖) and 𝑑2 (+𝛼𝑖), where 𝛿 is a step size. In GLOVES, 𝛿 = 0.10.
4) If the minimum is bounded, meaning that 𝑑2 (0) < 𝑑2 (−𝛼𝑖) and 𝑑2 (0) < 𝑑2 (+𝛼𝑖), continue. Otherwise, set

𝑖 = 𝑖 + 1 and return to Step 3.
5) Set 𝛼𝑙 = −𝛼𝑖 , 𝛼𝑢 = +𝛼𝑖 .
6) Compute the Interval of Uncertainty, 𝐼 = 𝛼𝑢 − 𝛼𝑙 .
7) While 𝐼 > 𝜖 : (in GLOVES, 𝜖 = 10−6)

a) Compute 𝛼𝑎 = 𝛼𝑙 + 0.382𝐼 and 𝛼𝑏 = 𝛼𝑙 + 0.618𝐼.
b) Compute 𝑑2 (𝛼𝑎) and 𝑑2 (𝛼𝑏).
c) If 𝑑2 (𝛼𝑎) < 𝑑2 (𝛼𝑏), set 𝛼𝑢 = 𝛼𝑏 . Otherwise, set 𝛼𝑙 = 𝛼𝑎.
d) Compute the Interval of Uncertainty, 𝐼 = 𝛼𝑢 − 𝛼𝑙 .

8) Set 𝑡 = 0.5(𝛼𝑢 − 𝛼𝑙) and end optimization.

Once the Golden Section Search has converged, the proposed design parameter value, 𝑣new is computed from its
original value, 𝑣old and 𝑡 found from minimizing the distance between the mouse and pip. The proposed design
parameter value is displayed to the user on the 2D canvas rendering context.

𝑣new = 𝑣old + 𝑡 (7)

In order to update the geometry, the browser sends a message to the server containing the optimum 𝑡. The server then
computes 𝑥3D via Equation 1 for each point on the geometry, updates the respective VBOs, and then sends the VBOs to
the browser to be re-drawn. Recall that the geometry is displayed on the 3D canvas rendering context.
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Two examples of manipulating the geometry are shown in Figures 8 and 9, which show a box as its length changes
and a fuselage as its 𝑦-radius at the tail-end changes, respectively. Notice that when manipulating the box, the modified
geometry appears as the user would expect - the box has become longer and still looks like a box. However, when the
fuselage is modified, the tail-end no longer appears as a super-ellipse, but rather as two teardrop shapes. This is because
Equation 1 linearly approximates the new position of each point while the geometry is manipulated. The points on the
box vary linearly with respect to its length. Thus, there is no discrepancy between the modified geometry and what it
would look like after a re-build. However, the points on the fuselage vary non-linearly due to the blend. Hence, there is
a discrepancy between the modified geometry and what it would look like after a re-build. If small (local) changes
are made, the modified geometry should accurately represent what it would look like after a re-build. Otherwise, the
geometry will likely appear distorted.

(a) Box before manipulation. (b) Box during manipulation.

Fig. 8 Modifying the length of the box.

(a) Fuselage end before manipulation. (b) Fuselage end during manipulation.

Fig. 9 Modifying the 𝑦-radius of a fuselage section.

C. Weight and Balance Analysis
Another feature that distinguishes GLOVES from other programs is its ability to perform a simple weight and balance

analysis in real-time. Again, this can be done as a result of using sensitivities to modify the geometry. To accomplish
this, the sensitivities of 𝑥CG,𝑖 , 𝑥CG,𝑖 , 𝑥CG,𝑖 , the 𝑥-, 𝑦-, and 𝑧-centers of gravity of each component, respectively, and 𝑉𝑖 ,
the volume of each component, are computed with respect to the modified design parameter. After this, the sensitivities
of 𝑋CG, 𝑌CG, and 𝑍CG the 𝑥-, 𝑦-, and 𝑧-centers of gravity of the layout, respectively, can be computed using Equation 8:
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¤𝑋CG =
(∑𝑛

𝑖=1 𝑉𝑖) ( ¤𝑥CG, 𝑗𝑉 𝑗 + 𝑥CG, 𝑗
¤𝑉 𝑗 ) − (∑𝑛

𝑖=1 𝑥CG,𝑖𝑉𝑖) ( ¤𝑉 𝑗 )
(∑𝑛

𝑖=1 𝑉𝑖)2

¤𝑌CG =
(∑𝑛

𝑖=1 𝑉𝑖) ( ¤𝑦CG, 𝑗𝑉 𝑗 + 𝑥CG, 𝑗
¤𝑉 𝑗 ) − (∑𝑛

𝑖=1 𝑦CG,𝑖𝑉𝑖) ( ¤𝑉 𝑗 )
(∑𝑛

𝑖=1 𝑉𝑖)2 (8)

¤𝑍CG =
(∑𝑛

𝑖=1 𝑉𝑖) ( ¤𝑧CG, 𝑗𝑉 𝑗 + 𝑧CG, 𝑗
¤𝑉 𝑗 ) − (∑𝑛

𝑖=1 𝑧CG,𝑖𝑉𝑖) ( ¤𝑉 𝑗 )
(∑𝑛

𝑖=1 𝑉𝑖)2

where 𝑛 represents the number of components in the layout and 𝑗 represents the index of the component that is being
manipulated.

A demonstration of a weight and balance analysis is shown. For this demonstration, there are two components: (1) a
box and (2) a sphere. The initial configuration is depicted in Figure 10a. The CG of each component is plotted in red.
The CG of the overall layout is plotted in blue. First, the depth of the box (in the 𝑧-direction) will be increased. As the
depth of the box increases, the volume of the box increases, and the center of gravity of the layout shifts closer to the
box, as seen in Figure 10b. However, notice that the center of gravity of the box does not change. This is because the
box is being stretched equally in the ±𝑧-directions. Now, the sphere will be moved in the +𝑦-direction by increasing its
𝑦-center. As the 𝑦-center of the sphere increases, its 𝑦-center of gravity increases, and the center of gravity of the also
moves in the +𝑦-direction, as seen in Figure 10c. This time, notice that the center of gravity of the sphere translated
with the geometry.

D. Component Linking
The final feature of GLOVES is its ability to link components together. The purpose of this feature is to connect

one or more components that are dependent upon each other. This operation is done primarily in the browser. An
example of when component linking would be useful is if a user was trying to find the minimum volume fuselage to
enclose a payload. Another example would be connecting the horizontal tail to the main wing: as the area of the main
wing changes, the horizontal tail volume coefficient needs to be changed. Component linking would also be useful
if GLOVES were to contain a feature that allowed the automatic sizing of components. That way, the sizing of one
component can depend on the size of other components in the layout.

In order to connect multiple components, first select the ‘parent’ component (the component that will depend upon
all other connections) by hovering over it with the mouse and pressing “c” on the keyboard. After pressing “c” the
Key Window will change and the user can continue hovering over the ‘children’ components (the component that will
impact the parent) and pressing “c” on the keyboard to connect them to the parent. Each time a connection is made, the
user will see a message posted in the Message Window to confirm the selected children component. If a component is
erroneously connected to another one, the user can press “r” to remove the connection. Similarly, the user will receive a
message informing them of the connection that was removed.

After all necessary components are connected, the user will press “d” on the keyboard. At this time, a message will
be sent to the server indicating which component is the parent and which ones are the children. The server will then add
an attribute, _.children._, to all of the faces on the parent. The user can confirm that the connection was made by
hovering or the parent component and pressing “6” or “ˆ” on the keyboard. In the Message Window, the name of the
component and its attributes will be listed.

Figures 11a (before linking) and 11b (after linking) illustrate an example with three bodies: (1) a sphere, which will
be the parent; (2) a box, which will be one of the children; and (3) a cylinder, which will also be one of the children. As
seen in Figure 11b, there is a post in the Message Window with the attribute: _.children._ myBox;myCyl. This
confirms that the connection was properly made between the parent and children.
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(a) Layout and CGs before manipula-
tion.

(b) Box stretched in the ±𝑧-direction.

(c) Sphere moved in the +𝑦-direction.

Fig. 10 Weight and balance analysis of a simple layout.

(a) GLOVES before component linking. (b) Message window after components were linked.

Fig. 11 Component linking between a sphere (parent), box (child), and cylinder (child).
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VI. Demonstration
To demonstrate the capabilities of the new version of GLOVES, a simple transport layout is made. Select screenshots

of the demonstration are presented in the figures below. First, launch ESP with a blank CSM file. If the file has not
already been saved, do so before launching GLOVES. Then, the user left-clicks the “Tool” option in the tree window
and then clicks “Gloves” (shown previously in Figure 5). This launches GLOVES, and the user can now begin to add
components to the layout. If the reader wants to replicate this configuration, the components and their respective design
parameters are listed in the Appendix.

Fig. 12 Payload arranged in GLOVES.

First, the payload is arranged on the screen. This is done with three cylinders and a box. The cylinders represent:
(1) the passenger cabin, the half cylinder on top of the two smaller cylinder halves; (2) the front cargo hold, the half
cylinder on the bottom left of the configuration; and (3) the aft cargo hold, the half cylinder on the bottom right of the
configuration. The box represents the avionics, and is forward of the passenger cabin and cargo holds. The resulting
payload arrangement is depicted in Figure 12. After this phase, the user navigates to and left-clicks the “Gloves” button
and then left-clicks “Save”. After saving, the configuration is appended to the current CSM file. The user must edit the
CSM file and move the statements associated with GLOVES before the end of the file. This can be done by left-clicking
“File”, left-clicking “Edit”, and then moving the necessary code. Note that there is a header, # begin GLOVES, and a
footer, # end GLOVES, that must remain in the CSM file. This is how GLOVES knows which components should be
loaded into the next session of GLOVES.

Second, the fuselage is created to fully enclose the payload. Before adding another component, the user initializes
another session of GLOVES. This is done by left-clicking on “Tool” and then left-clicking “Gloves”. If the header, #
begin GLOVES, and the footer, # end GLOVES, are in the CSM script, GLOVES will automatically load the components
between the header and footer. After loading the components and computing the sensitivities of each component with
respect to its design parameters, the user can add a fuselage component. The fuselage is pointed at the nose and blunt
at its tail end. That way, in a more detailed model of the transport, an Auxiliary Power Unit can be placed in the aft
portion of the fuselage. The resulting fuselage is depicted in Figure 13. Some of the faces of the fuselage were set to be
transparent and the pips were turned off so the reader could see the payload inside of it.

After the fuselage is added, the user saves the configuration. Again, this is done by left-clicking “Gloves”, then
“Save”. If a header for GLOVES is found in the CSM file, all of the existing components in the CSM file are overwritten
and the new components are written to the CSM file. As a caution to the reader, any comments added in-between the
GLOVES header and footer are erased from the CSM file upon saving and exiting GLOVES. If the user quits from
GLOVES without saving, the CSM file is not altered.
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Fig. 13 Fuselage made to surround payload.

Fig. 14 Wing, horizontal tail, and vertical tail added to the configuration.

Next, the wing, horizontal tail, and vertical tail components are added to the configuration. Note that the wing and
horizontal tail components are the same. Since the predefined wing component is made of three sections, the middle
section is removed such that the horizontal tail is made of only two airfoils. The final configuration is depicted in Figure
14. Again, note that some of the faces of the fuselage were set to be transparent and the pips were turned off so the
reader could see the payload inside of it.

VII. Summary
In this research, a new version of GLOVES for ESP was developed. This enhanced computational environment

allows a user to interactively arrange and size aircraft components and directly manipulate their geometry. In order to
manipulate the geometry without constantly re-building it, ESP’s sensitivity capabilities were used. These capabilities
were also used to include a weight and balance analysis tool, which illustrates how the component (local) and layout
(global) CGs are affected by changing the value of a design parameter. To demonstrate the current capabilities of
GLOVES, a transport layout was created and a weight and balance analysis was performed whilst arranging the payload.

It is much simpler to manipulate the geometry directly than it is to use sliders. By doing so, the user only needs
to look at one window to understand how modifying the design parameter affects the geometry. Furthermore, the
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user is aware of the design parameters that affect the component the most because they are listed in a menu after a
pip is selected. An advantage of using sensitivities to do this is that the user receives immediate feedback on how
their proposed design change affects the layout. However, if the changes made to the configuration are ‘too large’, the
modified geometry may not accurately represent what the geometry will look like after it is re-built. If the user makes
small, ‘local’ changes to the geometry, the feedback they receive is accurate.

Aside from the user experience manipulating the geometry, one downfall of using sensitivities is that the times to
re-build the configuration can be lengthy. For now, it was decided that all of the sensitivities would be computed via finite
differences rather than analytically. That way, attention could be focused on building up the capabilities of GLOVES
rather than writing sensitivity routines and improving its efficiency. As a result of this, a perturbed model must be built
for each design parameter in the configuration so the sensitivities to be computed. In the future, once sensitivities are
computed analytically, the process will be faster. For the transport configuration exhibited in the demonstration, the time
to build the configuration when launching ESP was 2.90 seconds on a Windows 10 Computer with an Intel i7 Processor.
However, when loading the configuration into GLOVES, it took 214 seconds. During this time, the model was built and
sensitivities were computed with respect to 121 design parameters. For comparison, modifying the fuselage, which had
the most design parameters (39), took 35.9 seconds to build the perturbed models and compute the sensitivities.

VIII. Future Work
There are multiple areas of improvement for future iterations of GLOVES. The first area of improvement is to write

sensitivity routines for all of the existing GLOVES components. That way, the time to compute the sensitivities with
respect to each design parameter is reduced. This will also allow the user to spend more time interacting with the
geometry and improving the aircraft layout. The second area of improvement is to allow the user to make multiple
changes to a component before it is re-built. This reduces the number of times that the sensitivities need to be computed
and allows the user to work more efficiently while developing the layout. For example, if a user is going to change the 𝑦-
and 𝑧-radii of a fuselage, it makes more sense to compute the sensitivities and update the model after both changes have
been made. Another example involves the user translating a component in multiple directions. Translating a component
will not affect the sensitivities of the component. However, GLOVES requires that the sensitivities be re-computed
because the value of a design parameter changed. To remedy this, it may be useful to include an “Update Component”
button, which allows the user to request that the sensitivities of one or more components be re-computed and that the
menus on the pips be updated.

The third area of improvement is to include additional systems that the user can add components from: (1) the
Propulsion System; (2) the Control System; and (3) the Structural System. The Propulsion System would contain
turboshaft, turboprop, and turbojet engines, nacelles, pods/pylons to connect the propulsion system to the main wing or
fuselage. The Control System would contain flaps/slats, ailerons/elevators, and rudders. The Structural System would
contain ribs, spars, bulkheads, and longerons. The final area of improvement is to implement a feature that allows a user
to automatically size different components of the layout. Two examples of this include: (1) finding a minimum volume
fuselage to enclose a payload arrangement; or (2) computing the area of a wing based on the weight of the payload,
desired lift coefficient, and expected cruise velocity. That way, the user can focus on the parent-child relationships of
components and design parameters across multiple, high-level aerospace systems.

16

D
ow

nl
oa

de
d 

by
 J

oh
n 

D
an

ne
nh

of
fe

r 
on

 J
ul

y 
5,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

34
93

 



Appendix
The following is a list of all the components needed to re-create the transport example in Section VI. The values of

the design and configuration parameters for each component are listed under its name as CSM statements. However,
these statements should not be used in an attempt to load the configuration into GLOVES. Instead, it should be built on
its own using GLOVES.

• Passenger Cabin:

DESPMTR xbeg 15.00

DESPMTR ybeg 0.00

DESPMTR zbeg 0.05

DESPMTR length 70.00

DESPMTR azimuth 0.00

DESPMTR elevation 0.00

DESPMTR rad 5.00

CFGPMTR half 2

• Forward Cargo Hold:

DESPMTR xbeg 20.00

DESPMTR ybeg 0.00

DESPMTR zbeg -0.05

DESPMTR length 10.00

DESPMTR azimuth 0.00

DESPMTR elevation 0.00

DESPMTR rad 5.00

CFGPMTR half 1

• Aft Cargo Hold:

DESPMTR xbeg 70.00

DESPMTR ybeg 0.00

DESPMTR zbeg -0.05

DESPMTR length 25.00

DESPMTR azimuth 0.00

DESPMTR elevation 0.00

DESPMTR rad 5.00

CFGPMTR half 1

• Avionics:

DESPMTR xcent 15.00

DESPMTR ycent 0.00

DESPMTR zcent 0.05

DESPMTR dx 70.00

DESPMTR dy 0.00

DESPMTR dz 0.00
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• Fuselage:

DESPMTR length 100.00

DESPMTR width 12.50

DESPMTR height 12.50

DESPMTR xcent 0.00;0.05;0.15;0.90;0.98;1.10

DESPMTR ycent 0.00;0.00;0.00;0.00;0.00;0.00

DESPMTR zcent -1.50;-0.60;0.00;0.00;0.60;5.00

DESPMTR ry 0.00;0.50;1.00;1.00;0.90;0.25

DESPMTR rz 0.00;0.50;1.00;1.00;0.90;0.25

DESPMTR power 2.00;2.00;2.00;2.00;2.00;2.00

CFGPMTR curv 2;2;1;2;2;2

• Wing:

DESPMTR area 1000.00

DESPMTR aspect 9.00

DESPMTR xroot 45.00

DESPMTR yroot 0.00

DESPMTR zroot -2.00

DESPMTR taper 0.60;0.40

DESPMTR sweep 20.00;20.00

DESPMTR dihed 4.00;8.00

DESPMTR yloc 0.00;0.50;1.00

DESPMTR camber 0.02;0.02;0.02

DESPMTR maxloc 0.40;0.40;0.40

DESPMTR thick 0.12;0.12;0.12

DESPMTR alpha 0.00;0.00;0.00

CFGPMTR sharp 1

CFGPMTR curv 0;0;2
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• Horizontal Tail:

DESPMTR area 100.00

DESPMTR aspect 6.00

DESPMTR xroot 95.00

DESPMTR yroot 0.00

DESPMTR zroot 5.50

DESPMTR taper 0.60

DESPMTR sweep 20.00

DESPMTR dihed 10.00

DESPMTR yloc 0.00;1.00

DESPMTR camber 0.00;0.00

DESPMTR maxloc 0.40;0.40

DESPMTR thick 0.12;0.12

DESPMTR alpha 0.00;0.00

CFGPMTR sharp 1

CFGPMTR curv 0;2

• Vertical Tail:

DESPMTR area 50.00

DESPMTR aspect 3.00

DESPMTR xroot 95.00

DESPMTR yroot 0.00

DESPMTR zroot 5.50

DESPMTR taper 0.20

DESPMTR sweep 35.00

DESPMTR dihed 0.00

DESPMTR zloc 0.00;1.00

DESPMTR camber 0.00;0.00

DESPMTR maxloc 0.00;0.00

DESPMTR thick 0.12;0.12

DESPMTR alpha 0.00;0.00

CFGPMTR sharp 1

CFGPMTR curv 2;2
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