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Over the last decade, the Engineering Sketch Pad (ESP) has been adopted in many
organizations for the analysis of geometrically-complex configurations, such as aerospace
vehicles. A unique strength of ESP is the analytic computation of sensitivities of the
configuration and its associated tessellations, all as a function of the user-specified design
parameters. Several CFD solution systems can use these sensitivities with their adjoint-
based flow solutions to modify the design parameters to achieve a near-optimum design of
a fixed configuration. In a sense, these systems can be used to improve a design but are
not directly suitable for the evolution of a design from conceptual, to preliminary, to final
design.

Described herein is an Integrated Design Environment (IDE) that allows a user to evolve
a design from the earliest, simple descriptions and analyses through detailed design and
analysis. First the guiding principles of the new IDE are presented, followed by a case
study that illustrates the use of the IDE through the design of a rubber-powered model
aircraft.

The Engineering Sketch Pad (ESP)

Over the last decade, the Engineering Sketch Pad (ESP)1 has been adopted by many organizations as the
basis for the analysis of geometrically-complex configurations, such as aerospace vehicles. ESP is a geometry
creation and manipulation system whose goal is to support the analysis methods used during the design
process via the Computational Aerospace Prototype Syntheses (CAPS) program.2 ESP’s user interface runs
in any modern web browser and its calculations are executed in a server-based backend program.

ESP is a solid modeler, which means that the construction process guarantees that models are realizable
solids, with a watertight representation that is essential for mesh generators. Since some analyses require
representations in terms of sheets or wires, ESP can support those too.

ESP’s models are parametric, meaning that they are defined in terms of a feature tree (which can be
thought of as the “recipe” for how to construct the configuration) and a set of user-defined design parameters
that can be modified to generate families of designs.

Like all feature-based systems, ESP models start with the generation of primitives, which can either
be one of the standard primitives (box, sphere, cone, cylinder, torus), or can be grown from a sketch as
either an extrusion, body of revolution, or a blend of a series of sketches. In addition, ESP allows users to
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create their own primitives; for example, a series of airfoil generators are shipped with ESP. Primitives can
be modified via transformations (translate, rotate, scale, mirror); fillets, chamfers, or hollows can also be
applied. Finally, bodies can be combined via boolean-like operators such as intersect, subtract, and union.

ESP maintains a set of global and local attributes on a configuration that are persistent through rebuilds.
This association is essential in the support of multi-fidelity models (wherein the attributes can be used
to associate conceptually-similar parts in the various models) and multi-disciplinary models (wherein the
attributes can be used to associate surface groups which share common loads and displacements). User-
specified attributes are also used to mark faces and edges with information such as nominal grid spacings or
material properties.

A key difference from ESP and all other available modeling systems is the ESP allows a user to compute
the sensitivity of any part of a configuration with respect to any design parameter. Many of ESP’s commands
have been analytically “differentiated” or have used “operator overloading”, making the computation of
sensitivities efficient (since there is no need to re-generate the configuration) and accurate (since there is no
truncation error associated with “differencing”). A few feature types still require the use of finite-differenced
sensitivities, for which a new mapping technique is used to ensure robustness.

As mentioned above, ESP is extensible, in that users can add their own user-defined primitives (UDPs)
and user-defined functions (UDFs), both of which are written in C, C++, or FORTRAN and are compiled,
using either top-down or bottom-up process. UDPs/UDFs are coupled into ESP dynamically at run time.
Additionally, a user can write a user-defined component (UDC), which can be thought of as a “macro”.

ESP models are defined in .csm files, which are human readable ASCII files that use a CAD-traditional
stack-like process, but which also allows for looping (via patterns), logical (if/then) constructs, and error
recovery via thrown/caught signals.

ESP’s back-end (server) runs on a wide variety of modern compute platforms, including LINUX, MAC-
OS, and Windows. ESP’s user-interface (client) runs in most modern web browsers, including FireFox,
Google Chrome, Safari, and chromium Edge. ESP is an open-source project (using the LGPL 2.1 license)
that is distributed as source, and is available from acdl.mit.edu/ESP.

The geometry in ESP is coupled with a wide variety on analytical tools via CAPS. Until recently, ESP
(and CAPS) have been primarily used as an analysis environment:

• Geometry is generated via a .csm file

• One or more analyses (AIMs) are set up and executed

• The “results” are sometimes written to the screen (stdout) or sometimes written to files to possibly be
examined or visualized by an external program

These analyses are typically executed in isolation, with no connection to the results of prior analyses.
This is typical of the workflow associated with normal Computational Fluid Dynamics (CFD) and Finite
Element Method (FEM) analyses.

The Design Problem

In contrast to analysis, design is a workflow or process that involves a series of interconnected models
of both the form and function of the product. A typical design process can involve many users working
over a long period of time, in possibly geographically-dispersed locations. Unlike analysis, which typically
uses a single instance of the model, models in design evolve over time, generally with increasing detail and
complexity. Also, design is not a single-pass process, but frequently involves exploration of alternatives,
some of which might be abandoned, but all of which should be documented in some way. Lastly in design,
it is not uncommon for the requirements to change and the customer learns more about the evolving design.

The objective of the current work is to extend ESP from geometry and analysis to a design system.
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Users’ Requirements

In creating any new capability, it is essential to develop a set of requirements. For an Integrated Design
Environment (IDE), a survey of designers developed the following list:

• A tool that can be used by all individuals involved with the design and its process

• Have a central repository of all design data including initial mission and functional requirements

• Provide a way of including outside documents (such .pdf and .png files)

• Provide a mechanism for the user to document the how and why design decisions were made

• Maintain history of the evolving design and design decisions

• Support various optimization schemes (provide sensitivities when available)

• Support user-written workflow (Python) scripts

• Allow for connecting to MDO Frameworks

• Be robust; be able to recover from errors/aborts

• Be able to be suspended (for example, during a long-running analysis or runs supporting Design Of
Experiments)

• Be able to “restart” after being suspended/aborted

• Be able to execute workflow scripts in a batch setting (production) or interactively (using a debugging
analogy) without modification

• Give users methods to interactively visualize the geometry and analysis results at any stage of the
design

• Allow the user to generate simple graphs from within scripts

• Allow geometric models to evolve over time

• Be able to build upon the work done in previous sessions

• Support branching, merging, and pruning of the design-decision tree

• Allow collaboration by geographically-disperse users

Guiding Principles

These requirements could be translated into the following guiding principles:

• Explicitly encode Design Intent

• Provide feedback to the designer/engineer to help them learn (and add value) during the design process

• Support (and reinforce) best practices

• Allow the users to be agile as they gain more experience with their design and with the system

• Provide an interactive experience that facilitates geometric construction coupled with process manage-
ment

• Allow for easy debugging and error handling
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• Facilitate collaboration

The IDE-specific guidelines are in addition to the general guidelines that have been adopted throughout
the entire ESP development process; the system should:

• work for user, not the user working for the system

• be based on a mental model that is easy for the user to grasp

• never lose anything they have done (backward compatibility)

• solve the user’s real problem, not their stated request

• be responsive to the changing needs of the users

• never surprise the user

• not require reverse engineering; and

• be tested thoroughly.

A search of any prior “art” that can be directly mimicked to assist with the software design of the
IDE yielded no good results. So concepts were borrowed from commercial parametric CAD (but with
rich attribution), multi-disciplinary optimization (MDO) frameworks (with their associated embedding of
the process/workflow), video meetings (for geographically-dispersed collaborations), database management
system, software repositories, and software Integrated Development Environments (IDEs).

New Integrated Design Environment (IDE)

In recognizing that the design workflow may require a long running and complex process involving a mix
of multi-fidelity and multidisciplinary analyses, the IDE needed to give the user(s) the ability to manage
the complexity of their process, be able to answer what if questions, continually checkpoint the state of the
session, and retrieve design decisions at a later time (why did this happen?). The solution adopted here is to
break the design execution into a series of phases, which can be thought of as branches of the design-decision
tree. Typically each new phase is a built upon its parent phase, just like in various versions of a computer
program builds upon its predecessors. But also like in software development, occasionally new “branches”
can be created, in which a user might want to examine several alternatives.

This design of the IDE that allows for:

• incrementally building up the design workflow;

• editing and debugging the workflow;

• having a flexible and robust execution model;

• supporting multiple participants in the design session: discipline engineers, designers and managers;

• adding any number of new design tools and analysis suites;

• a common and consistent user interface throughout; and

• visualizing geometry, geometry related data, and other useful information (again for debugging)

Also, like a software IDE the user need not leave the design IDE to edit, execute, and debug the geometry
construction (CSM) or workflow (python).
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Demonstration

To demonstrate the new IDE, a mini-design project was executed, which was patterned after the senior
design project at Syracuse University in the Spring 2022 semester. The students were asked to design, build,
and fly a rubber-powered aircraft that carried golf balls. The “score” associated with an airplane was the
product of the number of seconds aloft and the square of the number of balls carried.

As with all design exercises, the design process was conducted in a series of “phases”. In the earliest
phases, a large number of assumptions were made and the analyses were rather simple. Throughout the
course of the design process, many of the earlier assumptions were replaced by analytical results associated
with more detailed models.

The initial model (phase 1.1) was that of a simple rectangular wing, as shown in Figure 1. For this wing,
there were only four design parameters: the wing area (S), the wing aspect ratio (AR), wing thickness-to-
chord ratio (t/c), and wing camber (m/c). Given this simple model, the task was to find the values of S,
AR, and cruise velocity (V ) that maximized the score for a given number of balls (n). This was done with
a full-factorial design of experiments, using the relations:

b =
√
SA!R (1)

q =
1

2
ρV 2 (2)

W = Wfixed + nWball + SbWwing (3)

CL = W/(qS) (4)

CD = CD,0 +
C2

L

πARe
(5)

L/D = fracCLCD (6)

Here, there were assumed valued for the air density (ρ), the various weight terms (W?), and Oswald efficiency
factor (e). All this was encapsulated in a user-defined python script that was executed directly within the
IDE.

Figure 1. Rectangular wing used in phase 1.1

In the next phase (1.2), the user switched from a simple rectangular wing to a tapered wing, with the
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addition of the taper ratio (τ). The “improved” geometrical representation is shown in Figure 2. In order to
find the “optimal” taper ratio, a series of aerodynamic computations were computed via the Athena Vortex
Lattice (AVL) method.3 This program requires that the wing be represented by a series of cross-sections.
Fortunately, these cross-sections are known since they were used to generate the outer mold line (OML)
shown in Figure 2; the “view” of the configuration needed for AVL is shown in Figure 3. The “optimization”
used here was to find the taper ratio that maximized the Oswald efficiency factor (e). This was performed
in another user-supplied python script, which produced the plot shown in Figure 4. This plot, which is
displayed for the user, gives the user both confidence in the result and an insight into the design trade-offs.

Figure 2. Tapered wing used in phase 1.2

The next phase (1.3) looks at the effect of wing bending. It is well known that minimizing weight is key
to design when propulsive power is limited (such as with rubber-band power), and so the wing will be made
as light as possible. This in turn means that the wing will bend significantly — a concern that must be
addressed. Here, it (conservatively) assumed that the wing load is elliptical and that wing structure consists
of a single spar. The geometrical model is again “improved” to allow for wing bending, and the bent shape
is computed via another user-supplied python script. The resulting bent wing is shown in Figure 5.

After the wing is designed, the next phase (1.4) aims to size the tail. Again this is done via trimming
calculations with AVL. Figure 6 shows the cross-sections used in AVL for the trimming calculations.

As one can see, the new ESP IDE give the user the ability to enrich the geometric model as the design
progresses, based upon the results of both back-of-the-envelope and CFD/FEM-based methods.

Once the above has been completed, the design team may want to explore the effect of changing the
number of golf balls. To do this, the team might create a new “branch” of the design tree. This new phase,
called phase 2.1, is branched off the completed phase 1.1 done previously.

At any time, the team can get a view of the phases, such as:

Phase parent description

1.1 - baseline rectangular wing

1.2 1.1 optimal taper for one golf ball

1.3 1.2 effect of wing bending

2.1 1.1 optimal taper and wing bending for two golf balls
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Figure 3. AVL representation of tapered wing used in phase 1.2

Figure 4. Oswald efficiency (e) as a function of taper ratio (τ) for the optimization of taper ratio in phase 1.2
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Figure 5. Bent wing shape in phase 1.3

Figure 6. AVL model of wing/tail used to size the tail in phase 1.4
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Also, the user may examine the changes to any design input or output parameter over the various phases.
These capabilities are embedded in the latest version of the Engineering Sketch Pad (ESP), which is freely

available at acdl.mit.edu/ESP.
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