
Using OpenVSP Models in the Engineering Sketch Pad

John F. Dannenhoffer, III∗

Aerospace Computational Methods Laboratory

Syracuse University, Syracuse, New York, 13244

OpenVSP is a parametric aircraft geometry tool that allows the user to create a 3D
model of an aircraft defined by common engineering parameters. It has been used by
professionals and hobbyists to create models of over 100 different aircraft types. OpenVSP
models can be processed into formats suitable for engineering analysis.

The Engineering Sketch Pad (ESP) is a CAD-like system for the generation of geometric
models for the analysis and design of complex configurations, such as aircraft. It is a feature-
based, parametric solid modeler that has been coupled directly to a large number of fluid-
thermal-structural-control analysis programs via the Computational Aerospace Prototype
Synthesis (CAPS) system.

The objective of this current research is to be able to use models created in OpenVSP
directly in ESP, and subsequently in CAPS. This coupling allows ESP to directly drive
OpenVSP’s user parameters and to generate sensitivities of the configuration with respect
to changes in the user parameters.

OpenVSP

Since the early 1990’s, OpenVSP1–3 and its predecessors have been under active development for NASA.
Through numerous publications,4 its “Ground School”, and annual workshops (all or which can be found
online5), OpenVSP has gained widespread adoption and has made a significant impact on the aerospace
industry’s ability to rapidly sketch aircraft. OpenVSP is an open-source project that allows one to download
current and past versions for several operating systems from its website.5

One builds an OpenVSP configuration by creating one or more pods, fuselages, wings, stacks, ellipsoids,
bodies of revolution, humans, props, hinges, or conformals. Each of these components are defined in terms
of “sensible” engineering parameters; the wing alone has about 100 user-adjustable parameters such as span,
area, sweep, twist, and thickness/chord and camber (at several spanwise locations). A particular strength of
OpenVSP is its ability to provide nearly instantaneous feedback to the user as any of the parameters associated
with the components are modified, either via numerical input or via sliders. This makes it ideal for creating
3D models from 3-view drawings of aircraft.

Traditionally OpenVSP models are represented by a series of components that “fly in formation”. Methods
of combining these components, such as the use of Boolean operations, have been somewhat limited until
recently. Even with these new Boolean techniques, OpenVSP lacks the tools necessary to add wing/fuselage
fillets, for example.

Fig. 1 shows an example of the OpenVSP user interface when building a parametrically-defined transport
configuration. Shown in its various windows are a view of the aircraft model, a list of the components in the
model, a panel to edit the parameters associated with the wing, a list of the linkages between parameters,
and a window that allows a user to modify any of the user parameters.

∗Associate Professor, Mechanical and Aerospace Engineering, AIAA Associate Fellow.

1

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

 AIAA AVIATION FORUM AND ASCEND 2024

 29 July - 2 August 2024, Las Vegas, Nevada

 10.2514/6.2024-4304

 Copyright © 2024 by John F. Dannenhoffer, III. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA Aviation Forum and ASCEND co-located Conference Proceedings

Figure 1. Some of the OpenVSP windows for the transport configuration.

The Engineering Sketch Pad (ESP)

The Engineering Sketch Pad (ESP) and it supporting components6–8 is a geometry creation and ma-
nipulation system whose goal is to support the analysis methods used during the design process via the
Computational Aerospace Prototype Syntheses (CAPS) program.9 Numerous publications on the effective
use of ESP for a wide variety of aerospace applications can be found at its website.10 ESP is an open-source
project that allows one to download current and past versions for several operating systems from its website.11

ESP is a solid modeler, which means that the construction process guarantees that models are realizable
solids, with a watertight representation that is essential for mesh generators. ESP’s models are parametric,
meaning that they are defined in terms of a feature tree (which can be thought of as the “recipe” for how to
construct the configuration) and a set of user-defined design parameters (DESPMTRs) that can be modified
to generate families of designs. In many ways, ESP is like a traditional CAD system, but one focused on
engineering models for analysis and design rather than manufacturing.

ESP maintains a set of global and local attributes on a configuration that are persistent through rebuilds.
This association is essential in the support of multi-fidelity models (wherein the attributes can be used
to associate conceptually-similar parts in the various models) and multi-disciplinary models (wherein the
attributes can be used to associate surface groups which share common loads and displacements). User-
specified attributes are also used to mark faces and edges with information such as nominal grid spacings or
material properties.

A key difference from ESP and all other available modeling systems is the ESP allows a user to compute
the sensitivity of any part of a configuration with respect to any design parameter.

ESP models are defined in .csm files, which are human readable ASCII files that use a CAD-traditional
stack-like process, but which also allows for looping (via patterns), logical (if/then) constructs, and error
recovery via thrown/caught signals.

ESP’s user interface runs in any modern web browser and its calculations are executed in a server-based
backend program. ESP is an open-source project (using the LGPL 2.1 license) that is distributed as source,
and is available from acdl.mit.edu/ESP.

2

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

Aircraft Design Process

Traditionally, the earliest phase of any aircraft design activity starts with a hand sketch of a proposed
aircraft. Several such hand sketches are shown as examples in Raymer’s classic aircraft design textbook.12

Having such a sketch anchors a design, ensuring that the various subsequent calculations are consistent and
that the size and proportion of the various aircraft components “make sense” together.

OpenVSP is a computerized implementation of hand sketches, and as such is often the starting point for
modern aircraft designs. Since the purpose of its sketches is to convey overall views of an aircraft, details
as to how the various components actually interface are often omitted. This omission makes downstream
analyses (such as computational fluid dynamics (CFD) and finite element methods (FEM)) difficult.

ESP, through CAPS, was designed to transform an engineer’s design ideas into CFD- or FEM-ready models
for more detailed analysis and design. But ESP uses a somewhat CAD-like approach to creating models,
making its use in the earliest design phases somewhat heavy handed.

The purpose of this research is to import OpenVSP-created models into ESP and CAPS.

Importing OpenVSP models into ESP

A user-defined primitive (UDP) has been written for ESP that allows a user to directly import OpenVSP

models. This primitive generates in ESP a series of bodies, one for each component in the OpenVSP model.
When the transport configuration shown in Fig. 1 is imported into ESP with the statement:

UDPRIM vsp3 filename $myfile.vsp3

it produces the bodies shown in Fig. 2. Notice on the left side of the figure that the 10 components in the
OpenVSP model come into ESP as 10 bodies (listed under the word “Display”).

Figure 2. The transport configuration imported into ESP as 10 bodies “flying in formation”.

The process has been tested on over 30 OpenVSP models (mostly from the OpenVSP Hanger); Figs. 3–5
show three examples.

3

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

Figure 3. NASA Multi-tiltrotor configuration.

Figure 4. QEU2023-SMR-6pax-turbo-notar 450fps configuration.

4

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

Figure 5. Sukboi Suk 31 SFB configuration.

In developing the new method, the first major decision was how to implement the OpenVSP-compatible
geometry into ESP. The initial attempt at doing this involved reproducing OpenVSP’s geometry creation in
ESP. This had several important drawbacks. First, the complexity of doing this was overwhelming, especially
due to the large number of inputs available for each of the components. And second, there would be no way
of ensuring that the geometry creation would remain consistent as OpenVSP and its methods evolved. Hence
it was decided to use OpenVSP directly to create the geometry; this could be done by having OpenVSP export
its curves and surfaces.

The second major decision was how to allow ESP to modify the various OpenVSP user parameters (User-
Parms) in a model; doing such would be essential to using the OpenVSP-ESP link in analysis and design.
Fortunately this can be done via OpenVSP’s scripting language, angelscript.13 More specifically, every ESP DE-
SPMTR (such as wing:sweep) is mapped to an OpenVSP UserParm in the ESP Group (such as wing.sweep).
Note that ESP uses the colon (:) to organize DESPMTRs whereas OpenVSP uses the period (.) to organize
UserParms; this translation is done automatically in ESP.

The mechanism used to import an OpenVSP model consists of the following steps:

1. ESP creates an angelscript for OpenVSP’s vspscript that:

• reads the .vsp3 file;

• sends all of ESP’s design parameters (DESPMTRs) to OpenVSP (some of which may not be in the
OpenVSP model and are thus rejected);

• sets the various OpenVSP internal parameters such that its output STEP file has the appropriate
format and surface labels; and

• exports it surfaces (and curves) in a .stp file.

2. vspscript is executed via a call to the system() function in C. The VSP3 ROOT environment variable
is used to select the appropriate version of OpenVSP; and

3. the .stp file that vspscript wrote is read into ESP

5

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

When ESP reads the .stp file, it consists of one body for each (untrimmed) surface in the whole config-
uration. Fortunately OpenVSP’s naming convention allows ESP to assemble many .stp bodies that comprise
a component (such as fuselage) into a single ESP body. Hence each OpenVSP component is a separate ESP

body after the UDPRIM vsp3 statement.
Since analyses of aircraft seldom want to analyzes bodies “flying in formation”, one can simply add the

ESP command:

UNION 1

to UNION all components into a single body, as shown in Fig. 6.
For design trade-offs, the ESP user can then change any DESPMTR; for example, changing the wing:sweep

to 15◦, yielding the result in Fig. 7.

Figure 6. The transport configuration imported into ESP and UNIONed into one body.

In addition, one can easily add the wing/fuselage fillets, producing the configuration in Fig. 8.

Sensitivities

One of the unique powers of ESP is its ability to compute the sensitivity of a configuration with respect
to any of the DESPMTRs.14 This capability is essential for “completing-the-adjoint-loop” in gradient-based
design methods.

Most of ESP’s geometry-creating commands have been analytically differentiated (or computed directly via
operator-overloading), giving sensitivities directly (that is, not via finite differences); this makes sensitivities
efficient and accurate. Note that finite differences are available for those commands for which the geometric
algorithm is unknown, such as fillets.

The problem with using this analytic approach with OpenVSP geometry is that one would have to modify
the OpenVSP source code in hundreds of places, which would be both difficult and prone to errors.

One other complication here is that one needs the compute the sensitivity at any location on the con-
figuration. Hence if the sensitivities were to be computed directly in OpenVSP, there would need to be a
mechanism to tell OpenVSP the locations the user required.

6

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

Figure 7. The transport configuration imported into ESP with sweep angle changes to 15◦.

Figure 8. The transport configuration imported into ESP with fillet added at wing/fuselage junction.

7

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

Instead, here a hybrid approach is taken. First, OpenVSP is used to compute the sensitivity of the surface
control point locations (which are contained in the .stp file) via finite differences. This is done by executing
OpenVSP a second time, where one or more of its UserParms is/are perturbed and the differences in the
control point locations is noted. Second, ESP’s internal “dot” functions are used to compute sensitivities
where needed, based upon the control point sensitivities. With this approach, OpenVSP only needs to be
re-executed when sensitivities are required for a different (set of) DESPMTRs.

Fig. 9 shows the geometric sensitivity with respect to the fuse:midWidth. Here red indicates that the
surface grows outward whereas blue indicates that the surface grows inward (which does not occur in this
case). Note that the geometric sensitivity shows only the magnitude of the surface motion that is normal
to the surface. Since the fuselage width does not affect the wing, the sensitivities on the wing are zero; the
discontinuity in the sensitivity at the wing/fuselage junction is a consequence.

Fig. 10 shows the geometric sensitivity with respect to the wing:dihedral; note that as the dihedral
increases, the actual pods also moves upward. If you look closely, you can see a little bit of blue on the
under-side of the pod, meaning that the surface is moving inward (that is, upward).

Finally, Fig .11 shows the tessellation sensitivity with respect to the wing:dihedral. The little tufts
show a motion of all the tessellation points. Tessellation sensitivities are continuous at all Edges in the
configuration.

Figure 9. Geometric sensitivities with respect to fuse:midWidth on transport configuration.

8

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

Figure 10. Geometric sensitivities with respect to wing:dihedral on transport configuration.

Figure 11. Tessellation sensitivities with respect to wing:dihedral on transport configuration.

9

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

Giving ESP access to OpenVSP’s user parameters

One point glossed over in the above is how ESP gets access to OpenVSP’s user parameters. This is done
via the VspSetup tool within ESP. When this tool is executed, the user is asked for the name of the .vsp3

file. The tool then extracts from the OpenVSP model (via another automatically-generated angelscript) all of
its user parameters (UserParms) in the ESP Group and puts them into a ESP user-defined component (UDC).
The first few lines of the UDC for the transport configuration are:

generated by VspSetup from ../data/vsp3/OPAM1.vsp3

INTERFACE . ALL

DESPMTR fuse:aftHeight 3

LBOUND fuse:aftHeight -100000

UBOUND fuse:aftHeight 100000

DESPMTR fuse:aftLength 44

LBOUND fuse:aftLength -100000

UBOUND fuse:aftLength 100000

DESPMTR fuse:aftWidth 1

LBOUND fuse:aftWidth -100000

UBOUND fuse:aftWidth 100000

These lines tell ESP the current value of, and lower and upper bounds for the user parameters named
fuse:aftHeight, fuse:aftLength, and fuse:aftWidth. The rest of the UDC gives the values for the other
user parameters. If you look on the left of Fig. 2 you will see the user parameters listed (for the wing) under
“Design Parameters”.

Note that the VspSetup tool only needs to be executed once for each .vsp3 file.

Summary

A link between OpenVSP and ESP has been built which allows any OpenVSP model to be imported into
ESP. The user parameters in the OpenVSP model are exposed in ESP, thereby allowing the ESP user to create
various instances of the model, which is useful in a design optimization environment. The ability for ESP to
compute sensitivities of the OpenVSP model makes gradient-based optimization system work effectively.

Acknowledgment

This work was supported by the EnCAPS Project (AFRL Contract FA8650-20-2-2002): “EnCAPS:
Enhanced Computational Prototype Syntheses”, with Richard Snyder as the Technical Monitor. The author
would like to thank Rob McDonald for the many conversations and insights that it took to make this project
successful.

References

1Gloudemans, J.R., Davis, P.C., and Gelhausen, P.A., “A Rapid Geometry Modeler for Conceptual Aircraft”, AIAA-1996-
52, January 1996.

2Hahn, A., “Vehicle Sketch Pad: Parametric Geometry for Conceptual Aircraft Design”, AIAA-2010-657, January 2010.
3McDonald, R.A. and James R. Gloudemans, J.R., “Open Vehicle Sketch Pad: An Open Source Parametric Geometry

and Analysis Tool for Conceptual Aircraft Design”, AIAA-2022-0004, January 2022.
4https://openvsp.org/wiki/doku.php?id-papers
5https://openvsp.org

10

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

6Haimes, R., and Drela, M., “On the Construction of Aircraft Conceptual Geometry for High-Fidelity Analysis and
Design”, AIAA-2012-0683, January 2012.

7Dannenhoffer, J.F., “OpenCSM: An Open-Source Constructive Solid Modeler for MDAO”, AIAA-2013-0701, January
2013.

8Haimes, R. and Dannenhoffer, J.F., “The Engineering Sketch Pad: A Solid-Modeling, Feature-Based, Web-Enabled
System for Building Parametric Geometry”, AIAA-2013-3073, June 2013.

9Bryson, D.E., Haimes, R., and Dannenhoffer, J.F., “Toward the Realization of a Highly Integrated, Multidisciplinary,
Multifidelity Design Environment”, AIAA-2019-2225, January 2019.

10https://acdl.mit.edu/ESP/Publications
11https://acdl.mit.edu/ESP
12Raymer, D., “Aircraft Design: A Conceptual Approach, Sixth Edition”, ISBN: 978-1-62410-490-9, September 2018.
13http://www.angelscode.com/angelscript
14Dannenhoffer, J.F., and Haimes, R., “Design Sensitivity Calculations Directly on CAD-based Geometry”, AIAA-2015-

1370, January 2015.

11

D
ow

nl
oa

de
d

by
 M

ar
sh

al
l G

al
br

ai
th

 o
n

Se
pt

em
be

r
14

, 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

02
4-

43
04

