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ABSTRACT

Pure quadrilateral meshes are preferred when using shell-based structural analysis solvers since they provide more
accurate results if compared to triangular or mixed meshes. Triangulations of complex trimmed surfaces (as con-
structed in CAD) can be always generated and any triangle can be subdivided into three quadrilaterals by splitting
the sides and introducing a new vertex at the centroid. Therefore, the conversion of a triangular mesh into a fully
quadded conformal mesh is straightforward, and if the source triangulation is watertight, the resultant quad mesh
maintains that property. However, triangle splitting implies that the quads inherit the original triangle shapes and
the resulting mesh presents a very large number of irregular vertices. This paper describes a technique that recovers
a significant amount of irregular vertices by performing iterative topological changes on the mesh and employs a
modified Laplacian method for adjusting the vertex coordinates. The algorithm is robust, fast and produces a surface
mesh of a BRep (where all vertices are on the geometry) that it is completely quadrilateral and semi-regular suitable
for structural analysis and possibly other surface-based PDE solvers.
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1. INTRODUCTION

Automatic mesh generation plays a key role in design
systems when converting CAD output for use within
various discipline analyses. For quad meshes, this
can be done by constructing quadrilaterals directly or
transforming triangular meshes into quads. The ad-
vantages of using triangular meshes as input is that
for general surfaces, as for many other geometries, the
mesh can always be produced using triangles. For ap-
plications in numerical simulations, a suitable mesh
represents the surface geometry correctly (where all
the vertices live on the surface or trimming curve) and
has the appropriate element shape ensuring geometric
accuracy and stability for the underlying solver.

In addition, the mesh should be as regular as possible.
That is, most of its vertices should have valence four.
3-valence vertices often produce flat elements. Higher

valences on the other hand, imply having highly mul-
tivalued surface points (mesh vertices) since a vertex
belongs to many elements. In both cases, this has a
negative effect on the performance of the numerical
scheme and should be addressed.

When using a triangle splitting approach for producing
quads, the new mesh has an increased number of ele-
ments as well as irregular vertices. Further, depending
on the triangle anisotropy the resulting quads shape
becomes unsuitable. Hence, it is necessary to perform
topological changes on the mesh targeting these prob-
lems and ensuring that the final tessellation becomes
suitable for the desired application.

The methodology presented here produces pure
quadrilateral meshes from a given triangulation.
Starting with the triangle splitting procedure [1], it
applies systematic topological operations that enable
a significant improvement in the mesh quality. Our



results suggest that in general we obtain semi-regular
meshes with less than 5% irregular vertices. Since all
the topological changes are performed in the paramet-
ric space of the geometry, its applications extend to
general surfaces in 3-space. This procedure has been
integrated into part of the ESP software suite [2]. The
results presented here employed the software’s internal
tessellator, but the algorithm is designed to convert
triangular meshes in general.

2. QUAD MESH GENERATION

Generating quad meshes can be done directly using
advancing front techniques [3, 4, 5] or defining quad
partitions on the domain [6, 7, 8, 9, 10, 11]. On the
other hand, one can start with a triangular mesh and
transform it into quads by merging or splitting the tri-
angles. When merging triangles, this process requires
appropriate triangle pairing [12, 13, 14, 15] since the
resulting quadrangulation might leave several triangles
that have to be subsequently eliminated [16].

Alternatively, any triangle can be split into three
quads directly using its medians and inserting an extra
vertex at the centroid [1] (see Figure 1). This approach
is computationally efficient and produces pure quad
conformal meshes. However, it naturally increases the
total number of elements and the resulting mesh in-
herits the source triangle quality which in many re-
gions generates quads that are too sharp or too flat.
On top of that, the splitting step adds irregularity to
the mesh. To overcome these limitations, mesh coars-
ening techniques [17, 18] can be applied as well as
performing topological changes in the mesh. For ex-
ample, the Quad Mesh Simplification [19] technique
which uses poly-chords and the fundamental operation
of quad collapsing. Or combining several fundamental
operations, namely: swapping, splitting and collapsing
[20, 21, 22, 23, 24].

Finally, most automated mesh processes require a
post-processing step which ensures a suitable vertex
distribution. That is, there are no sharp or flat el-
ements and the quad’s aspect ratio as well as the
internal angles are within an admissible range. For
quad meshes derived from triangles this is a require-
ment considering that the quad conversion step usu-
ally produces meshes of very poor quality. In addition,
changing the mesh topology further deforms the quad
shapes. Therefore, once the desired quad configuration
is obtained, the final stage in the mesh generation pro-
cess is to readjust the vertex coordinates. This can be
cast as an optimization problem solving for the quad
internal angles [25], orientation or side sizes [26]. Al-
ternatively, one can solve variations of the Discrete
Laplacian [25] or the elliptic operator [27] through an
iterative scheme. Although element metrics such as
skewdness, aspect ratios and the Jacobian matrix are

better enforced through optimization [28, 29], iterative
schemes are computationally cheaper.

The mesh regularization technique proposed in this
paper builds upon the clean-up strategy from [20]. Un-
like in [20, 22], the initial mesh comes directly from an
unstructured triangulation consisting of nearly 50% ir-
regular vertices. Using information from a vertex and
its neighbors, we extend the set of possible two (three)
step local topological operations from [20]. Each op-
eration involves removing (adding) at most two quads
and always reduces the total number of irregular ver-
tices. Further, we adopt the approach from [22] to
move irregular vertex pairs along the mesh whenever
this operation preserves the number of elements.

As the algorithm evolves, vertex coordinates are re-
computed using a modified Laplacian solver. At each
iteration, the quad aspects ratios and relative angles
about the moving vertex are used to decide the new
vertex coordinates. Physical coordinates are com-
puted from the underlying surface parametrization en-
suring that mesh points remain on the surface. This
technique has been tested over a wide range of com-
plex geometries including surface cut-outs and surfaces
with singular points. Although it is a heuristic ap-
proach, the algorithm consistently produces all valid
meshes with isolated irregular vertices. The computa-
tional cost associated to this mesh processing step is
less than a minute even for meshes consisting of 10k
elements.

Figure 1: Catmull–Clark algorithm [1]: each triangle is
split into three quads by inserting a new vertex at the
centroid and creating three new sides (medians). The
thicker lines (red) show the original triangles and the
highlighted vertices indicate high/low valences.

3. MESH REGULARIZATION

Let us begin by briefly describing the Catmull – Clark
[1] algorithm. Given a triangular tessellation, we split
each triangle’s side using the medians and insert a new
vertex at all the triangle centroids. Then, as shown
in Figure 1, three new quads are produced by linking
the centroid location where the median intersects each
side. The result is a fully quadded mesh but with many
irregular vertices (valence 6= 4): the original vertices
whose valence does not change, and the new vertices
added at the centroids, which end up all having valence



three. On the other hand, note that the new vertices
that were inserted along triangle sides nicely end up
with a valence of 4 (2 from the side split and 2 from the
connection of the centroids of the triangle neighbors).

Hence, once the initial quadrangulation has been pro-
duced, we apply a regularization technique that recov-
ers as many valence 4 vertices as possible. To motivate
the discussion, in Figure 2 we have produced an ide-
alized mesh showing the mesh manipulation pipeline.
The first step (local operations) which is discussed in
Section 3 consists of applying the basic element oper-
ations of swapping, collapsing and splitting (and com-
binations of the same such as swap-collapse or double
splitting) systematically. As it will be discussed later,
it is necessary to have at least 3 irregular vertices for
an overall improvement. Hence, for pairs of irregu-
lar vertices surrounded by regular quads, a type of
vertex translation is applied allowing quads from far
regions to interact with each other. As [22] demon-
strated, it is possible to identify the shortest path be-
tween two isolated irregular vertices and bring them
together by inserting a number of elements propor-
tional to their graph distance. For complex geome-
tries, it is not always possible to generate space for
inserting new vertices whilst preserving mesh validity
so the vertex translation is restricted to vertex pairs
with valences 3, 5 and in a particular configuration.
This is discussed at the end of this section.

Once there are no more possible operations (or the
mesh is fully regular), we apply a Laplacian based it-
erative scheme for recomputing the vertex locations
(in the parameter space of the surface) and produce
the final mesh.

Figure 2: A simple quadded mesh obtained by triangle
splitting and the evolution of the regularization algorithm
including a final vertex coordinates computation.

We will start by detailing the basic operations followed
by examples of compositions that allow for recovering
regular vertices within a neighborhood (not all of them
necessarily connected). We will use the following no-
tation: vi are quad vertices, val(vi) their valences and
the pair (a, b) means vertices with valences a and b
respectively. Similarly, the group {a, b, c, d} denotes
the valences of an ordered quad.

Swapping: this process allows for exchanging high
and low valence pairs by changing the vertex pair form-
ing the common side of any two adjacent quads. If
(v1, v2) was the common side to both quads which has

now become (v3, v4), then:

val(vi) = val(vi)− 1, i = 1, 2, (1)

val(vj) = val(vj) + 1, j = 3, 4. (2)

Hence, as shown in Figure 3, the perfect swap oc-
curs for a (5, 5) and (3, 3) pair, producing two regular
quads. In practice, we don’t require them to be per-
fect since, for example, swapping a (5, 5) pair with a
(3, 4) gives (4, 4) and (4, 5) pairs, thus improving the
overall mesh regularity.

Collapsing: eliminating a quad by merging two of
its opposite vertices (see Figure 3). Given an ordered
quad with vertices {v1, v2, v3, v4}, collapsing v1 with
v3 results in:

val(v2) = val(v2)− 1, val(v4) = val(v4)− 1 (3)

val(v13) = val(v1) + val(v3)− 2 (4)

Therefore, the ideal collapse occurs for a {3, 5, 3, 5}
quad since val(v2) = val(v4) = 5 − 1 and val(v13) =
3+3−2 = 4. Like for the previous case, this operation
is suitable as long as there are three irregular vertices.

Splitting: inverse operation to collapsing and it is
applied whenever there are high valence vertices linked
to low valence vertices. Figure 3 shows a split which
goes from three irregular vertices to one. In this case,
the quad distance between the vertices dictate the final
valence distribution. In Figure 4 we illustrate a split
for a valence 6 vertex which can result perfect or not
depending on the (3, 3) pair configuration.
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Figure 3: The three basic vertex operations showing how
vertices gain / lose valences and become regular (= 4).
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Figure 4: Splits depending on quad distances. Option 1
is perfect since vertices are 3 quads away but Option 2
produced a (3, 5) pair because they are 2(4) quads away.



Using these operations alone leaves many irregular ver-
tices behind. This is due to the fact that the remaining
irregular vertices are either too far away or in a con-
figuration for which none of the basic operations are
suitable. However, by combining several operations as
well as translating vertices, it is possible to improve
the mesh quality even further, finally resulting in few
or no irregular vertices. To illustrate this Figure 5
shows two stages of the regularization process: with-
out vertex translation (b) and using vertex translations
together with compositions (c). Notice that the final
mesh has fewer elements but this is acceptable since
we started with 3× the number of triangles.

(a) (b) (c)

Figure 5: A twisted surface at the initial mesh (a), with-
out transfering the vertex valences (b) and after applying
full regularization with vertex translation (c).

Composition: we have seen that three or more irreg-
ular vertices need to exchange valences effectively in
order to improve the mesh overall. However, the basic
operations require that all the irregular vertices have
to be contained within a quad and its adjacent neigh-
bors, and in a precise configuration; suitable collapses
need a vertex distribution where opposite vertices have
low-low and high-high valences respectively. Swaps on
the other hand, need the vertex pairs to be three ver-
tex counts apart (clockwise or counter-clockwise). In
Figure 6 we illustrate a vertex star centered at v0 with
all the quads and vertices that are stored within this
datatype. Star groups are employed to detect three
or more irregular vertices around a particular vertex
(S). For example, the pair (S, v2) cannot see vertex
v6 from quad q1 but star S sees the three irregular
vertices. This information is used to perform the op-
erations shown in Figures 7, 8, 9 ,10, 11.

struct {
int nV, nQ;
int *v, *q;
} star;

q5

q1

q2

q3q4

v0

v1

v2

v3 v4

v5

v6v7v8

v9

v10

Figure 6: Vertex star S(v0) highlighting its surrounding
quads and vertices stored clockwise in *v, *q.
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Figure 7: Swap-split process using three quads. Swap-
ping increases the number of irregular vertices but pro-
duces an ideal scenario for a split. This operation is useful
when A = 5 and B ≤ 4 or when A ≥ 4 and B = 3.

Initial Swap Collapse

5 3

4
4

A
B

4

5

4
3

B
A 4 B A

Figure 8: Swap-collapse using two irregular quads. We
require that either B = 3 and A ≥ 4 or A ≥ 5 and
B ≤ 4. Then, after swapping, the top quad is almost
fully irregular and can be collapsed.
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Figure 9: Double split: first split (5) using (3,A) as
links. Then, perform a second split in A through (3, B)
which are three quads distance. For this operation we
need A = 5 and B ≤ 4 or A = 4 and B = 3.
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Figure 10: A double collapse: collapse the left quad
{5, 3, 4, 4}. Now the adjacent quad has {5, 3, B,A} va-
lences and a second collapse is performed. We require
that A = 3 and B ≥ 4 or B ≥ 5 and A ≤ 4.

5

43 A

4 B

Initial

4

34 A

5 B

1st Swap

4

44 A

4 B

2nd Swap

5

4

3

4

A B

4

3

4

5

A B

44

4 44

BA

Figure 11: Double swaps. Adjacent quads (top) need
A = 5 and B ≤ 4 or B = 3 and A ≥ 4. Diagonal swaps
(bottom) need A ≥ 5 and B ≤ 4 or B = 3 and A ≥ 4.



Translation: the swapping operation can be used to
move irregular vertices along the mesh without varying
the total number of elements (as opposed to collapse
and split that remove/ add quads). For example, a
(4, 5) pair swapped with a (3, 4) pair results in (3, 4)
and (4, 5) valences. The total number of irregular ver-
tices has not changed but their position has. In Fig-
ure 12 we show how we can take advantage of this
operation to bring irregular vertices that were not in
close proximity towards each other resulting in a reg-
ular region after two consecutive swaps. Vertex pairs
of valences (3, 5) can be moved indefinitely along the
mesh. If the vertices (3, 5) are linked, together they
move forward (backwards). On the other hand, when
they are opposite vertices (like in Figure 12) they move
upwards (downwards). For pairs of vertices with va-
lences (3, 3) or (5, 5), the swapping operation is more
limited. It can be applied once to change their loca-
tions as shown in Figure 13. Unlike the (3, 5) pairs,
a second swap of (3, 3) or (5, 5) pairs would return to
the original configuration.
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Figure 12: Translation of an irregular vertex pair (3, 5)
upwards along the mesh. After two movements, a suit-
able swap was found producing a regular region.
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Figure 13: Possible swaps during vertex translation for
vertex pairs with valences (3, 3) and (5, 5). The (3, 3)
pair has only one option whereas the other one has two.

4. MESH QUALITY

Changing the mesh topology can lead to vertex con-
figurations with unacceptable element shapes: too flat
or sharp and even self-intersecting. Hence, vertex co-
ordinates are recomputed during regularization ensur-
ing that the entire affected local region remains valid.
The new vertex locations are computed using a modi-
fication of the Laplacian operator which is detailed in
Algorithm 2 and will be discussed later. Note that this
procedure is applied after each topological operation.

Figure 14 illustrates a valid vertex split; in the first im-
age we show the three vertices involved in this opera-
tion. The middle image shows the resulting split where
the highlighted vertices will be (possibly) moved when
considering the step valid. The local region in play are
the vertices involved in the split directly together with
all their neighbors. Notice that surface boundary ver-
tices are not moving since we require the tessellation
to be watertight. The quads affected by a movement of
any of these vertices ares the ones that will be checked
and are highlighted as well. By restricting the number
of moving vertices to this group, the operation remains
local ensuring that we don’t create invalid quads that
will be overlooked. The rightmost image shows the fi-
nal vertex distribution after moving all the necessary
vertices. In the event that invalid elements remain,
the topological operation is rejected and the mesh is
restored from its previous valid configuration. In the
following, we discuss how to detect invalid elements
along the surface.

Figure 14: A vertex split highlighting the moving points
and the quads that are checked when testing that the
mesh remains valid.

4.1 Detecting Invalid Elements

Here we discuss how we ensure mesh validity through-
out the regularization process. At the very least, a
suitable mesh should be made of quads whose internal
angles are less than 180◦ [29]. Preserving this prop-
erty ensures that there are no folds (self-intersecting
quads). The idea is the following: use the underlying
parametrization to obtain the surface normal an use it
to generate the tangent plane at the centroid. Then,
as shown in Figure 15, project all the quad coordinates
onto that plane and calculate the vertex orientations
relative to each other.

A′
B′

C′ D′
B

C

Figure 15: A cylindrical surface showing the tangent
plane centered a particular quad and all its vertices pro-
jected onto such plane.



By construction, vertices forming a quad are always
stored clock-wise (positive) so we can detect obtuse
or self-intersecting elements by looking at the orienta-
tions relative to every vertex. For every three consecu-
tive vertices, the orientations are computed as follows:

ori(ABC) = sign(< ~AB × ~AC,~n >). (5)

Here <,> is the dot product and ~n the normal vector
to the surface at the quad center (see Figure 15). All
positive orientations indicate a valid quad. If there are
at least two pairs with positive orientations, the quad
is obtuse and finally when there are no vertices with
positive orientation, then the quad is self-intersecting.

In Figure 16 we show an obtuse quad together with
each vertex orientations. Notice that at A and C
the orientations change sign (+,−) (−,+) whereas at
B and C we obtain (+,+). For quads that have at
least one boundary vertex, we also check that none of
its sides have crossed the domain bounds. This hap-
pens frequently when performing operations on sur-
faces with internal holes that have sharp corners.
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BDA +
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CDA +
CAB −

D

DAB +
DBC +

Figure 16: An obtuse quad showing each vertex orien-
tations with respect the other vertices. Quads are valid
only when the orientations are (+,+) at every vertex.

4.2 Laplacian using Angles and Ratios

The new coordinates of a particular vertex are cho-
sen depending on the quality of its surrounding quads
which are categorized as shown in Figure 17. In ad-
dition, the vertex relative position to the mesh is also
taken into account; vertices linked to boundary ver-
tices (especially surface holes) have more restricted
movement than those that are internal.

QA0 QA1 QA2

QA3 QACB

Figure 17: Possible quad configurations in descending
order of validity: convex (QA0), concave (QA1), concave
at an internal boundary (QA2), self-intersecting (QA3)
and crossing the domain boundary (QACB).

For each vertex, we use its star to compute all the an-
gles as well as the quad triangle ratios [30] which are
illustrated in Figure 18. The vertex angles are com-
puted at the normal plane using the same methodol-
ogy described in Section 4.1 (see Figure 15) but in this
case we use the surface normal at the central vertex
to generate the plane to which all the other quads are
projected. Irregular vertices (i.e. valence 6= 4) don’t
have an obvious orientation and the internal angles are
computed just to detect detect flat or sharp elements.
For regular vertices, we compute the angle distance
between opposite vertices.

A B

CD

T1

T2 T3

T4

Figure 18: Two set of quads showing for each quad its
two triangle ratios ({T1, T2}, {T3, T4}). Quads should
have both ratios close (equal) to one like the left pair.

The triangle ratios (see Figure 18) are computed as
follows. Let QABCD be an ordered quad, then:

T1 = ||AB ×AC||
T2 = ||AC ×AD||

}
D12(Q) = min

(
T1

T2
,
T2

T1

)
. (6)

Similarly, defining T3 = ||BC×BD|| and T4 = ||BD×
BA|| gives D34(Q). The final quad ratio is given by

R(Q) = min(D12, D34). (7)

The vertex contribution of an obtuse quad is measured
in the following way. Identifying A with the vertex, if
T1 +T2 > T3 +T4 then vertex A can improve / worsen
the large angle and so we take RA(Q) = −DA(Q).
Otherwise (T1 + T2 < T3 + T4), we use the following:

RA(Q) = −T4/T3 if ∠DAB > 180◦ (8)

RA(Q) = D12(Q) otherwise. (9)



In Algorithm 1 we provide details on how the vertex
area function is implemented.

Algorithm 1 Vertex Area

1: INPUT: Vertex ID (p)
2: tot = 0, a = QA0, nr = 1; pr = 1; t = 1;
3: for i = 1 to S(p)->nQ do . S = star
4: q = S(p)->q(i)
5: count = positive_orientation(q)
6: e = get_bound_edges(q)
7: if e > 0 and (e∩BC 6= ∅ or e∩CD 6= ∅) then
8: a = QACB
9: else if count = 0 then a = QA3

10: else
11: if count > 0 then a = QA1
12: end if
13: ratio = quad_ratio(q, v)
14: if ratio < EPS then a = QA1
15: end if
16: angle(i) = ∠(DAB)
17: if angle(i) > 180 and e > 0 then a = QA2
18: end if
19: if ratio < 0 then nr = min(nr, ratio)
20: else np = min(nr, ratio
21: end if
22: end if
23: tot + = a
24: end for
25: for i = 1 to S(p)->nQ do
26: if S(p)->totQ = 4 then
27: t = (180− |angle(i)− angle(i + 2)|)/180
28: else if angle(i) > ANGPASS then
29: t = (1.0− penalty(t))
30: end if
31: pr ∗ = t
32: end for
33: return tot, nr, pr

The actual vertex coordinates are computed using the
centroid (Laplacian), midpoints between two opposite
links and a biased Laplacian where a particular quad
(two vertices) is excluded. This is useful for unfold-
ing elements or reducing large angle sizes arising as a
result of a swap, split, etc. Notice that the average sur-
face parametric coordinates uv does not necessarily re-
sult in the average physical coordinates. The centroid
or mid points are computed in the following way. First
evaluate the physical average (which may not live on
the surface). Then, using an inverse evaluate function
from the geometry kernel, obtain the closest surface
point with its corresponding uv pair.

Vertices linked to internal boundaries (surface holes)
are treated differently. This is done in order to avoid
the Laplacian element shrinking effect; a surface cut-
out that is convex (e.g., a circle) or a sharp corner
is generally incompatible with an averaging method

since such point may be driven towards the hole or
create very large angles. Therefore, boundary vertices
forming sharp angles are flagged and the Laplacian
option is deactivated for any internal vertex linked to
such vertices. This technique is described in Algorithm
2. Recall that S(p) denotes the star at vertex p and
has the structure defined in Figure 6.

Algorithm 2 New Coordinates

1: INPUT: Vertex and Laplacian indeces (p, t)
2: (u, v)← p(u, v)
3: for m = i = 0 to S(p)->nQ do
4: if S(p)->v(2i + 1) = obtuseBound then
5: m = 2i + 1
6: end if
7: end for
8: if t = −1 then
9: if m = 0 then return

10: else p(u, v)← Laplacian(S(p))
11: end if
12: else if area(S(p)) 6= QA0 then
13: (u, v)← Laplacian(S(p) r S(p)->q(t))
14: else if S(p)->totQ = 3 then return (u, v)
15: else if m = 0 then
16: a = S(p)->v(2t + 1)
17: b = S(p)->v(2t + 3)
18: p(u, v)← mid_point(a, b)
19: else
20: a = S(p)->v(m)
21: b = S(p)->v(2t + 1)
22: p(u, v)← mid_point(a, b)
23: end if
24: return (u, v)

Finally, in Algorithm 3 we show how the actual vertex
coordinates are chosen. This function is called itera-
tively at the highest level; during regularization, only
few iterations are allowed since a vertex may undergo
several manipulations and even get deleted. Once the
regularization process is complete we invoke this func-
tion for 50 iterations to improve the final mesh.

The idea is the following: for each vertex, we compute
all the possible vertex coordinates (Algorithm 2) and
recompute the areas, triangle ratios and angles. Then
we assess if the new coordinates have improved the
ratios and angle differences and if so, the coordinates
are stored as best candidate. Since unless the mesh
is fully regular, it is impossible to obtain equal angles
and ratios. Hence, we accept Laplacian coordinates
whenever these values are above a certain tolerance
which we have set to 0.25. In Figure 19 we show two
examples of surfaces before and after regularization us-
ing Algorithm 3 for recomputing coordinates. Surfaces
with sharp internal corners like the star cut-out can
produce large angles and even lead to element folding.
In addition, the average coordinates may even pro-



duce quads crossing the domain boundaries. Notice
that the resulting mesh has quads with angles close
to 90◦ at each star vertex. Further, the sphere hole
in the second image produces a circular edge where
all the boundary vertices have angles > 180◦ with re-
spect to each other. When taking averages, this can
lead to element shrinking and eventually move points
outside the surface, i.e, towards the hole. Notice that
the algorithm overcomes the element shrinking effect
and produces a satisfactory result.

Algorithm 3 Update Vertex

1: INPUT: Moving vertices (n, p)
2: for i = 1 to n do
3: (a0, nr0, pr0)← vertex_area(p(i))
4: pnew(u, v)← p(i)(u, v)
5: pold(u, v)← p(i)(u, v)
6: for update = j = 0 to 2 · S(p(i))->nQ do
7: p(i)(u, v)← new_coordinates(p(i), j − 1)
8: (a1, nr1, pr1)← vertex_area(p(i))
9: k = 0

10: if a1 < a0 then k = 1
11: else if a1 = a0 then
12: if nr0 < 0 or nr1 < 0 then
13: if nr1 > nr0 then k = 1
14: end if
15: else if pr1 > 0.25 and j = 0 then k = 2
16: else if pr1 > pr0 then k = 1
17: end if
18: end if
19: if k = 1 then
20: update = 1
21: pnew(u, v)← p(u, v)
22: (a0, nr0, pr0)← (a1, nr1, pr1)
23: end if
24: if k = 2 then break
25: end if
26: end for
27: if update = 1 then p(i)(u, v)← pnew(u, v)
28: end if
29: end for

5. VALIDATION

The target for these quadrilateral meshes is structural
analysis (specifically Built-up Element Models), and
these results should not be viewed through a CFD lens.
In a real sense, the task at hand is more difficult; it
is harder to produce valid meshes for curved geome-
try when its applications require the element size to
be coarser. We begin by looking at the algorithm per-
formance over basic surfaces including surfaces with
cut-outs. Figure 20 shows a cylinder and a composi-
tion of spheres. For the cylinder case, the final mesh
that resulted was fully regular. We readily admit that
such surface can be tessellated directly into fully regu-

Figure 19: A sphere with two type of cut-outs, a star and
a second sphere. Notice that all the angles at the star
vertices are close to 90◦ and that all the quads around
the sphere hole have not collapsed towards the boundary.
The top figures show the initial meshes.

lar quads and in this case, the triangulation was forced
just for validation purposes. The spherical body is in-
cluded to highlight the strength of the regularization
technique: for example, the concave face contains a
boundary vertex which has valence eighteen.

In Figure 21 we study several surfaces. The first two
consist of a flat and a spherical surfaces with several
cut-outs. The third one was produced by revolving a
spline curve where the pole (top vertex) is singular.
The coloring is based on the quad’s largest angle. We
haven’t colored the initial mesh since we already know
that these meshes are unsuitable. Notice that in all
three cases, only a few angles are over 150◦.



(a);

(b);

Figure 20: A cylinder and spherical body showing the
meshes before and after regularization.

Figure 21: Three surfaces before and after regularization
colored by the quads largest angles. The top (flat) and
middle (spherical) present several cut-outs. The third is
a surface of revolution which has a singularity at the pole.
The highlighted lines denote the surface edges (fixed ver-
tices) and the color map corresponds to the top face.

(a)

(b)

Figure 22: A wing body with two flaps (a) and a full
aircraft (b) before and after regularization.

The wing and aircraft body shown in Figure 22 study
the performance over more curved surfaces. The wing
flaps are introduced to illustrate how the scheme works
over trimmed surfaces. In both cases, the scheme is
able to recover a large number of regular vertices pro-
ducing good quality meshes. Notice that the mesh
quality of the aircraft is especially high at the fuselage
and at the nose where there is high curvature.

5.1 A note on the Triangulation

The performance of our technique clearly depends on
the original tessellation. In particular, since boundary
edges are fixed, the final mesh quality is strongly dic-
tated by the side spacing at the bounds. The initial
triangulations were generated by the tessellator in in
EGADS [31].

It produces watertight triangulations of BReps by first
discretizing the BRep Edges and then performing the
trimmed surface (BRep Face) triangulations. There is
no notion of grading of spacings because the tessellator
is driven by being able to best represent the geome-
try with the fewest number of vertices/triangles. The
technique used simply bifurcates regions that don’t
meet the user input criteria, which can obviously dis-
play abrupt spacing changes of a factor of 2 or more.
In addition, large interior angle deviations between
neighboring triangles as well as large side spacing are



allowed (especially when using coarse tessellation pa-
rameters), thus producing triangulations that are far
from equilateral.

In Figure 23 we show two wing profiles using the
EGADS tessellator directly and applying the quadri-
lateral templating scheme described in [32]. Both
tessellations used the same length criteria producing
the same discretization at the surface bounds (BRep
Edges). Observe that without templating (left), the
initial tessellation has an excessive number of quads
with highly irregular vertices at the leading edge. The
result is that most of those quads are collapsed during
regularization. The right images on the other hand,
have a more realistic starting point and require much
less mesh manipulation.

(a) (b)

Figure 23: A comparison of two tessellations with (a)
and without (b) the quadding template [32] and the re-
sulting meshes after regularization (bottom).

5.2 CPU Time and Regularity

Finally, we focus on the actual performance both in
terms of the number of recovered regular vertices as
well as the computational costs. In Table 1 we show
the results for some of the surface bodies used in the
validation Section. The results are very consistent: the
initial meshes start with ∼ 49% irregular vertices and
after regularization, there are only < 4% left. Also
it is important to note that the number of irregular
vertices relative to the mesh doesn’t grow as the mesh
becomes finer nor is the performance affected as the
surface geometry becomes more complex. In Table 2
we have gathered several surfaces and show results for
the minimum quad triangle ratios [30] as well as min-
imum and maximum angles. It should be noted that
angles are computed at the surface tangent plane and
this may not always be accurate. In high curvature
regions such as the wing leading edge, the projected
coordinates can increase (reduce) the angle magnitude.

Total Vertices Irregular Vertices

Figure Initial Final Initial (%) Final (%)

20 2nd 5799 5401 2843 49.0 188 3.5
22 (a) 4174 1029 1994 47.8 38 3.7
22 (b) 1876 1869 926 49.4 64 3.7
23 (a) 3259 3035 1631 50.0 108 3.6
23 (b) 10347 6169 5105 49.3 226 3.7

Table 1: Results in terms of number of irregular vertices
for several bodies considered in this manuscript.

The computational times are shown in Table 3. It
should be noted that the implementation operates on
a BRep Face at a time and has been threaded provid-
ing scalability based on the number of cores available
(and number of Faces to process). The results are very
promising: even for the finer meshes the total simula-
tion time remains in less than a minute.

Figure Min Ratio Min Angle Max Angle

21 top 0.32 38 151
21 middle 0.29 35 160
21 bottom 0.36 41 147
22-(a) top face 0.31 18 162
22-(b) fuselage 0.18 34 150
23-(a) 0.32 21 158

Table 2: Global minimum ratios and minimum and max-
imum angles for several bodies shown in this paper.

6. CONCLUSIONS AND ONGOING
WORK

We have presented an automatic mesh generation
technique that produces almost regular quadrilat-
eral meshes. Starting with a triangulation and us-
ing the splitting approach from [1], we produce a
fully quadded mesh which then undergoes topologi-
cal changes in order to recover regularity. Our results
show that in general, it is possible to reduce the num-
ber of irregular vertices from around 49% to < 4%.

The regularization process is coupled with a Lapla-
cian based iterative scheme for computing the move-

Figure Faces Time (secs)

20 2nd 6 5
22 (a) 4 1
22 (b) 4 12
23 (a) 10 11
23 (b) 8 46

Table 3: Simulation times using a Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz machine for the examples in Table
1 showing also the number of faces composing each body.



ment of vertex coordinates. The resulting mesh is al-
ways valid but there is no notion of optimal sizing.
Rather, we just attempt to reduce the angle deviation
as well as produce quads with aspect ratio close to one
and updating the new coordinates based on the “best
candidate”. This results in low scalar computational
times (less than one minute) even for meshes starting
with around 10k quads. However, we understand the
tradeoff in this approach and for specific applications,
a quad distribution based on a specific metric should
be introduced.

The initial triangulations were produced using the
EGADS internal tessellator. This tool was designed
for visualization purposes and therefore can produce
poor quality meshes for simulations (see Figure 23 (a))
with excessive number of elements as a starting point.
Since our technique is independent of the tesselator, it
could use as input other triangulations designed specif-
ically for applications in numerical simulations.

Finally, since the computational cost associated to our
regularization scheme is rather low, our results suggest
that the initial input mesh should be relatively coarse.
In this case, the resulting mesh would consist on few
irregular vertices. If a smaller sizing is desired, mesh
refining can be applied directly by subdividing quads
without introducing new irregular vertices.
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