John F. Dannenhoffer, ITI

jfdannen@syr.edu
Syracuse University

updated for v1.25

o User-defined Primitives (UDPs) and Functions (UDF's)

o Difference Between UDPs and UDFs
e Using UDPARG and UDPRIM Statements

e Creating Simple Cross-sections

e Creating a simple NodeBody, WireBody, SheetBody, and
SolidBody

o User-defined Components (UDCs)

o Include-style
e Function-style

e Homework Exercise

 Dannemhofir BSP Training - Session 5 Yy

e Users can add their own user-defined primitives (UDPs)
creates a single* Body

do not consume any Bodys from the Stack

are written in C, C+4, or FORTRAN and are compiled

can be written either top-down or bottom-up or both

have access to the entire suite of methods provided by EGADS
are coupled into ESP dynamically at run time

e Users can add their own user-defined functions (UDFs)

o are the same as UDPs, except they consume one or more
Bodys from the Stack

 Dannemhofir BSP Training - Session 5 T

@ UDPs are called with a UDPRIM statement

UDPRIM $primtype $argNamel argValuel \
$argName2 argValue2 \
$argName3 argValue3 \
$argNamed argValue4d

o $primtype must start with a letter

@ At most 4 name-value pairs can be specified on the UDPRIM
statement

e More name-value pairs can be specified in any number of
UDPARG statements that precede the UDPRIM statement

UDPARG $primtype $argNamel argValuel \
$argName2 argValue2 \
$argName3 argValue3 \
$argName4d argValue4d
@ name-value pairs are processed in order (with possible
over-writing)

 Dannemhofir BSP Training - Session 5 T

e For UDPs that read an external file, one can use << to tell
ESP to create a file from the following lines, up to a line that
starts with >>

e For example:

UDPRIM editAttr filename << verbose 1

NODE ADJ2FACE tagType=spar taglndex=1

AND ADJ2FACE tagType=lower

AND ADJ2EDGE tagType=root

SET capsConstraint=pointConstraintl
>>
SET A 10

has two Branches (UDPRIM and SET)

 Dannemhofir BSP Training - Session 5 Ty

@ The following generate identical Boxes
UDPRIM box dx 1 dy 2 dz 3

e and

UDPARG
UDPRIM

e and

UDPARG
UDPRIM

e and
UDPARG
UDPARG

UDPARG
UDPRIM

box
box

box
box

box
box
box
box

dx 1
dy 2 dz 3

dx 11 dy 22 dz 33
dx 1 dy 2 dz 3

dx 1
dy 2
dz 3

 Dannemhofir BSP Training - Session 5 Yy

e Some UDPs return values to the calling script

@ The returned values have names that are prepended by two
at-signs (for example: volume in the UDP is available as
@@volume after the UDPRIM executes)

@ These values stay in effect until overwritten by another UDP
(or a UDF or a UDC)

 Dannemhofir BSP Training - Session 5 Y

@ bezier

@ biconvex
@ box

@ bspline
@ csm

e ellipse

e eqn2body
o fitcurve

o freeform

hex
import
kulfan
naca4b6
naca
nurbbody
parabaloid
parsec

pod

poly
prop
radwaf
sample
sew
stag
supell
vsp3
waftle

warp

June 2024 8 /89

SP)

Create a Bezier WireBody, SheetBody, or SolidBody

Create a biconvex airfoil SheetBody

s

Create WireBody, SheetBody, or SolidBody centered at origin
(with possibly-rounded corners)

SP

June 2024 11/89

&P

Create WireBody, SheetBody, or SolidBody centered at origin
(with possibly-rounded corners)

SP)

Create a Bspline WireBody or SheetBody

&P

Create an ellipse SheetBody centered at origin

&P

Create a WireBody or SheetBody from given equations

esp

SP)

Fit a Bspline WireBody to a set of points (or file)

&P

Create a freeform WireBody, SheetBody, or SolidBody from a file

i
ii

esp iz

&P

Create general hexahedron SolidBody from its corners

&P

Read a Body (or Bodys) from a file

SP)

Create a NACA 4-series SheetBody airfoil or WireBody
camberline

Create a Body from a series of NURBS

Bs
I
ol |

il

—

P |

Create a parabaloid SolidBody or parabola SheetBody

Sp I

Create a Parsec SheetBody airfoil using either Sobieski’s
parameters or spline parameters

Create an OpenVSP-like SolidBody pod

Create a general SolidBody polyhedron, SheetBody polygon,
WireBody line, or NodeBody

Create a propeller and optional shaft and spinner

- o e vinsos

Create a radial SheetBody waffle

Sew Faces in a step file into a SolidBody

Create a simple turbomachinery SheetBody airfoil

Create a super-ellipse SheetBody or WireBody

&p

Create a super-ellipse SheetBody or WireBody

i

June 2024 39/89

e catmull o flend @ nuscale

@ compare e ganged o offset

e createBEM e guide e printBbox
o createPoly o linalg e printBrep
o deform e matchBodys e printEgo

e droop @ mechanism e shadow

o dumpPmtrs @ nacabmv o slices

o editAttr e nacelle o stiffener

@ UDFs are called in exactly the same way as UDPs are called

© Dannemhofir BSP Training - Session 5 g e

Create Catmull-Clark subdivision surfaces from Body on Stack

Compare points in tessfile and Body on Stack

Create a NASTRAN-type built-up element (BEM) file from Body
on Stack

Create a TETGEN .poly file for volume between 2 Bodys on
Stack

SP)

Deform Bsplines on Body on Stack

Applied leading- and/or trailing-edge droop to SheetBody on
Stack

@
@

Edits Attributes for Body on Stack

June 2024 49 /89

SP)

Create a flend (similar to fillet) that connects the one or two
Bodys on Stack

Create a flend (similar to fillet) that connects the one or two
Bodys on Stack

Performed ganged SUBTRACTSs or UNIONs to Bodys on Stack
back to Mark

&P =

June 2024 52 /89

Performed ganged SUBTRACTSs or UNIONs to Bodys in Stack
back to Mark

&P

Sweep a SheetBody or WireBody along a WireBody guide curve

Perform linear algebra operations

Returns number of Nodes, Edges, and Faces that match for two
Bodys on the Stack

SP -

 Dannemhofir BSP Training - Session 5 g ey

Solves mechanism equations and moves Bodys

Modifies SheetBody on Stack with a group of 6-series NACA
camber distributions

Create a aircraft engine nacelle SolidBody from the SheetBody
profile on the Stack

Convert Body on Stack to Bsplnes and applies scaling in each
coordinate direction

P

Create offset WireBodys or scribes the Body on Stack with offset
curves

SP)

Create offset WireBodys or scribes the Body on Stack with offset
curves

Create SheetBody slices of Body on Stack

-

esp
 Dannemhofir BSP Training - Session 5 pT

Create SheetBody slices of Body on Stack

Adds stiffener that is orthogonal to SheetBody on stack

sp -

 Dannemhofir BSP Training - Session 5 G ey

@ See EngSketchPad/doc/UDP_UDF/udp_udf .pdf

e Demonstrates bottom-up build
e Node—FEdge—Loop—Face—Shell+Body
@ Demonstrates top-down build

e Boolean operations
e appied features

e Written in C

 Dannemhofir BSP Training - Session 5 G STy

e A UDC is a series of statements that are contained in a .udc
file

@ The statements in the UDC can be treated in either one of
two ways:
e Include-style
o statements within the UDC are simply processed as if they
were included in the enclosing .csm or .udc file
o the .udc file must start with an INTERFACE . ALL statement
o Variables and Parameters in the .udc file have the same scope
as its caller (that is, the UDC shares variables with its caller)
e Function-style
e Variables and Parameters in the .udc file have local scope
(that is, the UDC’s variables are private)
o Variables in the UDC get values via
INTERFACE . IN statements
o The UDC can output some of its variables via
INTERFACE . OUT statements
~ Dannenhoffer =~ ESP Training - Session 5 June 2024 71/89

@ The .csm (or .cpc) file is at top-level scope

e Any include-style UDC whose caller has top-level scope also
has top-level scope

e UDCs are called with a UDPRIM statement
e $primtype must start with a slash (/), dollar-slash ($/), or
dollar-dollar-slash ($$/)

e if /, then the UDC file is in the current working directory

e if $/, then the UDC file is in the same directory as the .csm
file

o if $$/, then the UDC file is in ESP_R0O0T/udc directory

o The UDPRIM statement can be preceded by one or more
UDPARG statements

e name-value pairs are processed in order (with possible
over-writing)

 Dannemhofir BSP Training - Session 5 g ey

&P

@ In testl.csm

SET A 1
SET B 10
SET c 0

UDPRIM $/test2
SET D (C°2

@ In test2.udc

INTERFACE . ALL
SET C A+B

e After running, C=11 and D=121

o In test3.csm

SET A 1
SET B 10
SET c 0

UDPRIM $/test4 first A second B
SET D c~2
o In test4.udc
INTERFACE first IN O
INTERFACE second IN O
INTERFACE sum OUT O
SET C 999
SET sum first+second

e After running, C=0, D=0, and @@sum=11

 Dannemhofir BSP Training - Session 5 g Sy

@ applyTparams factor=1
e apply .tParams to the Edges and Faces of the Body on the
top of the Stack

@ biconvex thick=0
e generate a biconvex airfoil
boxudc dx=0 dy=0 dz=0 @@vol
e similar to the box UDP
contains @Q@contains

e determine if either of the two Bodys on the top of the Stack
contains the other
diamond thick=0
e generate a double-diamond airfoil
@ duct diameter=1 length=2 thickness=0.10 camber=0.04

e generate a duct

 Dannemhofir BSP Training - Session 5 G ey

expressions xx yy zz @Qaa Q@bb

e a test UDC that has no other practical use
flapz xflap[] yflap[] theta=15 gap=0.01 openEnd=0
o cut a (deflected) flap in a Body
fuselage xloc zloc width height noselist taillist
o generate a fuselage
gen_rot xbeg=0 ybeg=0 zbeg=0 xend=1 yend=1 zend=1
rotang=0 @@azimuth @Qelevation
e general rotation with two fixed points
overlaps @Q@overlaps

o determine if the two Bodys on the top of the Stack overlap
each other

popupz xbx ybax height=1
e pop up a part of the configuration

 Dannemhofir BSP Training - Session 5 G Sy

@ spoilerz xbox ybox depth=1 thick=0.1 theta=30
overlap=0.002 extend=0.20
e pop up a spoiler
@ strut length=2.0 thickness=0.2 height=1.0 sweep=0
o generate a strut (between a duct and wing)

@ swap
e swaps the two Bodys or Marks on the top of the stack
@ wake mirror=0area=100 aspect=8 taper=0.8 twist=-5
sweep=0 dihedral=0 camber=0.04 wakeLen=3.0
wakeAng=0
e generate a wake
@ wing mirror=0 area=100 aspect=8 taper=0.8 twist=-5
sweep=0 dihedral=0 thickness=0.12 sharpte=0
camber=0.04 inboard=0 outboard=1 pctchord=0
angleft=0 angrite=0 sparl=0 spar2=0 nrib=0 @@span
e generate a wing

~ Dannenhoffer ESP Training - Session 5 June 2024 78 /89

@ Determine if you want include-style or function-style

e If function-style, define the interface

e input variables (with default values)
o output variables (with default values)

e Add assertions to ensure valid inputs

o Make sure all “output” variables are assigned values

 Dannemhofir BSP Training - Session 5 G STy

make sure that there are at least entities on the Stack
IFTHEN G@stack.size LT 2
THROW 999 # not enough entries on Stack
if Mark,Mark on top of Stack
ELSEIF @stack[@stack.size-1] EQ O AND @stack[@stack.size] EQ O
if Body,Mark on top of Stack
ELSEIF @stack[@stack.size] EQ 0
STORE
STORE tempSwap 99
MARK
RESTORE tempSwap 99
if Mark,Body on top of Stack
ELSEIF @stack[@stack.size-1] EQ O
STORE tempSwap 99
STORE
RESTORE tempSwap 99
MARK
if Body,Body on top of Stack
ELSE
STORE tempSwap 98
STORE tempSwap 99
RESTORE tempSwap 98
RESTORE tempSwap 99
ENDIF

 Dannemhofir BSP Training - Session 5 et G

dumbbell

INTERFACE Lbar in O # length of bar
INTERFACE Dbar in O # diameter of bar
INTERFACE Dball in O # diameter of balls
INTERFACE vol out O # volume

ASSERT ifpos(Lbar,1,0) 1

ASSERT ifpos(Dbar,1,0) 1

ASSERT ifpos(Dball,1,0) 1

SET Lhalf "Lbar / 2"

CYLINDER -Lhalf O O +Lhalf O O Dbar

SPHERE -Lhalf O O Dball
UNION

SPHERE +Lhalf O O Dball
UNION

SET vol @volume

END

 Dannemhofir BSP Training - Session 5 g e

SP

jack

UDPARG $/dumbbell Lbar 5.0
UDPARG $/dumbbell Dball 1.0
UDPRIM $/dumbbell Dbar 0.2
SET foo @@vol

STORE dumbbell O 1

RESTORE dumbbell
ROTATEY 90 0 O
UNION

RESTORE dumbbell
ROTATEZ 90 0 O
UNION

show that vol was a local variable in .udc

ASSERT ifnan(vol,1,0) 1
END

ESP (Engineering Sketch Pad,

(©e DRI

Uptodate Help
Undo Edit SaveFile

+

Design Parameters
Local Variables

Branches

Display
Body 13 iz

Grd

X~

ESP has been initialized and is attached to

Turning flying mode ON

'servecsM’

SP

cutter

INTERFACE xx in
INTERFACE yy in
INTERFACE zbeg in
INTERFACE zend in

o O oo

ASSERT ifpos(xx.size-2,1,0) 1
ASSERT ifzero(xx.size-yy.size,1,0) 1

SKBEG xx[1] yy[1] zbeg
PATBEG i xx.size-1
LINSEG xx[i+1] yy[i+1] zbeg
PATEND
LINSEG xx[1] yy[1] zbeg
SKEND 1

EXTRUDE O O zend-zbeg

END

SP

scribeCyl

DIMENSION xpoints 1 3
DIMENSION ypoints 1 3
SET xpoints "-1.; 1.; .0;"
SET ypoints "-.5; -.5; +.5;"

CYLINDER -3 0 0 +3 0 0 2
ROTATEX 90 O O

UDPARG $/cutter xx xpoints
UDPARG $/cutter yy ypoints
UDPARG $/cutter zbeg O
UDPRIM $/cutter zend 3
SUBTRACT

END

ESP (Engineering Sketch Pad,

(©e DRI

Uptodate Help
Undo Edit SaveFile

+

Design Parameters
Local Variables

Branches

Display
Body 12 Viz

Grd

A

ESP has been initialized and is attached to

Turning flying mode ON

'servecsM’

o Reflected cone

o Files in $ESP_RO0T/training/ESP/data/session05 will get
you started

s

CYR-I-IR 2]

Uptodate Help
Undo Edit SaveFile
H L R B T + -

Design Parameters
+ Local Variables

+ Branches

Display
+ Bodys Viz Grd

A

ESP has been initialized and is attached to

Turning flying mode ON

'servecsM’

e Write mirrorDup.udc to
e store a copy of the Body on the top of the Stack
e mirror the Body across a plane whose normal vector and
distance from the origin are given
e union the original and mirrored Bodys
e Apply mirrorDup.udc to a cone
cone base at (5,0,0)
cone vertex at (0,0,0)
cone diameter is 4
reflection across a plane at x =1

 Dannemhofir BSP Training - Session 5 et GO/

