
Engineering Sketch Pad (ESP)

Training Session 3

CSM Language

John F. Dannenhoffer, III
jfdannen@syr.edu

Syracuse University

updated for v1.25

Dannenhoffer ESP Training - Session 3 June 2024 1 / 51

Overview (1)

Format of .csm file

Special characters

Numbers

Parameters

Types
Names
Dimensions
Lower and Upper Bounds

Expressions

Numeric
String

Dannenhoffer ESP Training - Session 3 June 2024 2 / 51

Overview (2)

Looping

PATBEG, PATBREAK, PATEND

Logic

IFTHEN, ELSEIF, ELSE, ENDIF

Signal Handling

THROW, CATBEG, CATEND

Reading Help File

Homework Exercises

Dannenhoffer ESP Training - Session 3 June 2024 3 / 51

Opening Thoughts

All configuration information is contained in .csm (or
possibly .udc) files

.csm files are plain ASCII text that are readable by humans
because they are ASCII files, they can either be written
directly by humans (using any text editor) or by other
programs

When you build a configuration using the ESP user interface,
you are actually building a .csm file

Using the interface can be effective for beginning users who
are building small models

Once a user gets experience with ESP, most of the models are
created by “typing” a .csm directly

Dannenhoffer ESP Training - Session 3 June 2024 4 / 51

Format of the .csm file (1)

The .csm file contains a series of statements.

If a line contains a hash (#), all characters starting at the
hash are ignored.

If a line contains a backslash (\), all characters starting at
the backslash are ignored and the next line is appended;
spaces at the beginning of the next line are treated normally.

All statements begin with a keyword (described below) and
must contain at least the indicated number of arguments.

The keywords may either be all lowercase or all
UPPERCASE (but not MixedCase).

Any CSM statement can be used in a .csm file except the
INTERFACE statement.

Dannenhoffer ESP Training - Session 3 June 2024 5 / 51

Format of the .csm file (2)

Blocks of statements must be properly nested. The Blocks
are bounded by

PATBEG/PATEND

IFTHEN/ELSEIF/ELSE/ENDIF

SKBEG/SKEND

SOLBEG/SOLEND

CATBEG/CATEND

Extra arguments in a statement are discarded. If one wants
to add a comment, it is recommended to begin it with a hash
(#) in case optional arguments are added in future releases.

Any statements after an END statement are ignored.

hint: if debugging, consider THROWing an error instead to
avoid unclosed Blocks

All arguments must not contain any spaces or must be
enclosed in a pair of double quotes (for example, "a + b").

Dannenhoffer ESP Training - Session 3 June 2024 6 / 51

Format of the .csm file (3)

Parameters are evaluated in the order that they appear in the
file, using MATLAB-like syntax (see ’Expression rules’
below).

During the build process, OpenCSM maintains a
last-in-first-out (LIFO) “Stack” that can contain Bodys,
Marks, and Sketches.

The .csm statements are executed in a stack-like way, taking
their inputs from the Stack and depositing their results onto
the Stack.

The default name for each Branch is Brch xxxxxx, where
xxxxxx is a unique sequence number.

Dannenhoffer ESP Training - Session 3 June 2024 7 / 51

Special characters (1)

introduces comment

" ignore spaces until following "

\ ignore this and following characters and

concatenate next line

<space> separates arguments in .csm file (except

between " and ")

0-9 digits used in numbers and in names

A-Z a-z letters used in names

_ : @ characters used in names (see rule for names)

. decimal separator (used in numbers),

introduces dot-suffixes (in names)

, separates function arguments and row/column

in subscripts

; multi-value item separator

Dannenhoffer ESP Training - Session 3 June 2024 8 / 51

Special characters (2)

() groups expressions and function arguments

[] specifies subscripts in form [row,column] or [index]

{ } < > characters used in strings or names

+ - * / ^ arithmetic operators

$ as first character, introduces a string that is

terminated by end-of-line or un-escaped plus,

comma, or close-parenthesis

@ as first character, introduces @-parameters

’ used to escape comma, plus, or close-parenthesis

within strings

! if first character of implicit string, ignore

$! and treat as an expression

| cannot be used (reserved for OpenCSM internals)

& cannot be used (reserved for OpenCSM internals)

Dannenhoffer ESP Training - Session 3 June 2024 9 / 51

Numbers

Start with a digit or decimal (.)

Followed by zero or more digits and/or decimals (.)

There can be at most one decimal in a number

Optionally followed by an e, e+, e-, E, E+, or E-

If there is an e or E, it must be followed by one or more digits

If numbers are in a list, the elements are separated by a
semicolon (;)

Dannenhoffer ESP Training - Session 3 June 2024 10 / 51

Types of Parameters (1)

Design Parameter
values are declared in a DESPMTR statement

in .csm file or
in top-level include-type .udc file

must contain one or more numbers (no strings)
if multi-valued, must be first DIMENSIONed
can contain lower- and upper-bounds, specified in LBOUND

and UBOUND statements
values are only visible at the top-level
values can be changed by a call to ocsmSetValu or
ocsmSetValuD (after ocsmLoad and before ocsmBuild)
values can be read by call to ocsmGetValu

sensitivities can be computed by a call to ocsmSetVel or
ocsmSetVelD

Dannenhoffer ESP Training - Session 3 June 2024 11 / 51

Types of Parameters (2)

Configuration Parameter
values are declared in a CFGPMTR statement

in .csm file or
in top-level include-type .udc file

must contain one or more numbers (no strings)
if multi-valued, must be first DIMENSIONed
can contain lower- and upper-bounds, specified in LBOUND

and UBOUND statements
values are only visible at the top-level
values can be changed by a call to ocsmSetValu or
ocsmSetValuD (after ocsmLoad and before ocsmBuild)
values can be read by call to ocsmGetValu

sensitivities CANNOT be computed for Configuration
Parameters

Dannenhoffer ESP Training - Session 3 June 2024 12 / 51

Types of Parameters (3)

Constant Parameter
values are declared in a CONPMTR statement

in .csm file
in top-level include-type .udc file

must contain only one number (no strings)
values are visible from any .csm or .udc file
values CANNOT be changed by a call to ocsmSetValu or
ocsmSetValuD

sensitivities CANNOT be computed for Constant Parameters

Dannenhoffer ESP Training - Session 3 June 2024 13 / 51

Types of Parameters (4)

Local Variables

is created by a SET, PATBEG or GETATTR statement
can contain one or more numbers or a character string
if multi-valued, must first be DIMENSIONed
can be an @-parameter (described below)
are only usable in .csm or .udc file in which it was defined
(unless the .udc file has INTERFACE . ALL in its preamble)

Output Parameters

declared in a OUTPMTR statement
refers to any local variable whose value is available outside
ESP (such as to CAPS)

Dannenhoffer ESP Training - Session 3 June 2024 14 / 51

Parameter Type Summary

D
E
S
P
M
T
R

C
F
G
P
M
T
R

C
O
N
P
M
T
R

O
U
T
P
M
T
R

L
O
C
A
L
V
A
R

Can be vector or array of numbers Y Y N Y Y
Can have a string value N N N Y Y
Can be restricted by LBOUND or UBOUND Y Y N N N
Scope T T G L L
Defined during ocsmLoad or ocsmLoadDict Y Y Y N N
Can be set via ocsmSetValu(D) Y Y N N N
Defined and set during ocsmBuild N N N Y Y
Can be read via ocsmGetValu(S) Y Y Y Y Y*
Can find associated sensitivity Y N N N N
Y*=Parameter index may be different for different builds
scopes: T=top-level, G=global, L=local

Dannenhoffer ESP Training - Session 3 June 2024 15 / 51

Notes on the DIMENSION Statement

General form is: DIMENSION $pmtrName nrow ncol

Can only be applied once to a DESPMTR or CFGPMTR

Cannot be applied to a CONPMTR

When applied to an OUTPMTR or LOCALVAR
if the new size has fewer elements than the old size

the old values are copied to fill the new size
extra old elements are lost

if the new size has more elements than the old size

the old values are all copied
the last old value is copied into all the remaining new
locations

Dannenhoffer ESP Training - Session 3 June 2024 16 / 51

Valid Parameter Names

Start with a letter, colon (:), or at-sign (@)

Contains letters, digits, at-signs (@), underscores (),
tilde (˜), and colons (:)

Contains fewer than 64 characters

Names that start with an at-sign cannot be set by a CONPMTR,
DESPMTR, CFGPMTR, SET, PATBEG, or GETATTR statement

When listed in the ESP user interface, parameters are
sub-grouped based upon the colons (:)

Dannenhoffer ESP Training - Session 3 June 2024 17 / 51

Dot-suffixes (1)

If a name has a dot-suffix, a property of the parameter (and
not its value) is returned
x.nrow number of rows in x (0 for string)
x.ncol number of columns in x (0 for string)
x.size number of elements or characters in x

x.sum sum of elements in x

x.norm RMS norm of elements in x

x.min minimum value in x

x.max maximum value in x

Dannenhoffer ESP Training - Session 3 June 2024 18 / 51

Dot-suffixes (2)

Example:

DIMENSION myvar 2 3

DESPMTR myvar "1; 2; 3;\

4; 5; 6"

myvar.nrow returns 2
myvar.sum returns 21

To make a copy of array A, use:

DIMENSION copyOfA A.nrow A.ncol

SET copyOfA A

Dannenhoffer ESP Training - Session 3 June 2024 19 / 51

Accessing Element of an Array

Basic format is: name[irow,icol] or name[ielem]

Name must follow rules above

irow, icol, and ielem must be valid (integer) expressions

irow, icol, and ielem start counting at 1

For 2D arrays, either name[irow,icol] or name[ielem] be
used

Values are stored across rows ([1,1], [1,2], ..., [2,1], ...)

Dannenhoffer ESP Training - Session 3 June 2024 20 / 51

@-parameters (1)

Every time a Body gets created, or after a SELECT statement,
readable local variables are set

Dannenhoffer ESP Training - Session 3 June 2024 21 / 51

@-parameters (2)

body face edge node <- last SELECT

@seltype -1 2 1 0 selection type

@selbody x - - - current Body

@sellist -1 x x x list of Nodes/Edges/Faces

@nbody x x x x number of Bodys

@ibody x x x x current Body

@nface x x x x number of Faces in @ibody

@iface -1 x -1 -1 current Face in @ibody

@nedge x x x x number of Edges in @ibody

@iedge -1 -1 x -1 current Edge in @ibody

@nnode x x x x number of Nodes in @ibody

@inode -1 -1 -1 x current Node in @ibody

@igroup x x x x group of current Body

@itype x x x x 0=NodeBody, 1=WireBody,

2=SheetBody, 3=SolidBody

@nbors -1 x - x number of incident Edges

@nbors -1 - x - number of incident Faces

Dannenhoffer ESP Training - Session 3 June 2024 22 / 51

@-parameters (3)

@ibody1 -1 x x -1 first element of ’Body’ Attribute in @ibody

@ibody2 -1 x x -1 second element of ’Body’ Attribute in @ibody

@xmin x x * x x-min of bounding box or x at beg of edge

@ymin x x * x y-min of bounding box or y at beg of edge

@zmin x x * x z-min of bounding box or z at beg of edge

@xmax x x * x x-max of bounding box or x at end of edge

@ymax x x * x y-max of bounding box or y at end of edge

@zmax x x * x z-max of bounding box or z at end of edge

@length 0 0 x 0 length of edge

@area x x 0 0 area of face or surface area of body

@volume x 0 0 0 volume of body (if a solid)

@xcg x x x x location of center of gravity

@ycg x x x x

@zcg x x x x

Dannenhoffer ESP Training - Session 3 June 2024 23 / 51

@-parameters (4)
@Ixx x x x 0 centroidal moment of inertia

@Ixy x x x 0

@Ixz x x x 0

@Iyx x x x 0

@Iyy x x x 0

@Iyz x x x 0

@Izx x x x 0

@Izy x x x 0

@Izz x x x 0

@signal x x x x current signal code

@nwarn x x x x number of warnings

@edata only set up by EVALUATE statement

@stack Bodys on stack: 0=mark, -1=none

@scope scoping level (at last SELECT)

@version version number

in above table:

x -> value is set

- -> value is unchanged

* -> special value is set (if edge)

0 -> value is set to 0

-1 -> value is set to -1

Dannenhoffer ESP Training - Session 3 June 2024 24 / 51

Expression Rules (Valid operators)

Valid operators (in order of precedence):
() parentheses, inner-most evaluated first
func(a,b) function arguments, then function itself
∧ exponentiation (evaluated left to right)
* / multiply and divide (evaluated left to right)
+ - add and subtract (evaluated left to right)

Dannenhoffer ESP Training - Session 3 June 2024 25 / 51

String Variables

Contains the sequence of characters starting after a
dollar-sign($) and ending with a space, plus-sign (+), comma
(,), or closed-parenthesis ())

If escaped with an apostrophe (’), can contain a plus-sign
(’+), comma (’,) or closed-parenthesis (’))

for example:

$thisStringContainsAComma(’,’)

returns thisStringContainsAComma(,)

Can never contain a space

Are parsed left-to-right, as is any expression

for example:

SET one 1

SET mystr $thereIsA+one+$inThisString

returns (in mystr) thereIsA1inThisString

Dannenhoffer ESP Training - Session 3 June 2024 26 / 51

Functions (1)

pi(x) 3.14159...*x
min(x,y) minimum of x and y
max(x,y) maximum of x and y
sqrt(x) square root of x
abs(x) absolute value of x
int(x) integer part of x (3.5→ 3, −3.5→ −3)

produces derivative=0
nint(x) nearest integer to x

produces derivative=0
ceil(x) smallest integer not less than x

produces derivative=0
floor(x) largest integer not greater than x

produces derivative=0

Dannenhoffer ESP Training - Session 3 June 2024 27 / 51

Functions (2)

mod(a,b) modulus(a/b), with same sign as a and b≥0
sign(test) returns -1, 0, or +1

produces derivative=0
exp(x) exponential of x
log(x) natural logarithm of x
log10(x) common logarithm of x

Dannenhoffer ESP Training - Session 3 June 2024 28 / 51

Functions (3)

sin(x) sine of x (in radians)
sind(x) sine of x (in degrees)
asin(x) arc-sine of x (in radians)
asind(x) arc-sine of x (in degrees)
cos(x) cosine of x (in radians)
cosd(x) cosine of x (in degrees)
acos(x) arc-cosine of x (in radians)
acosd(x) arc-cosine of x (in degrees)

Dannenhoffer ESP Training - Session 3 June 2024 29 / 51

Functions (4)

tan(x) tangent of x (in radians)
tand(x) tangent of x (in degrees)
atan(x) arc-tangent of x (in radians)
atand(x) arc-tangent of x (in degrees)
atan2(y,x) arc-tangent of y/x (in radians)
atan2d(y,x) arc-tangent of y/x (in degrees)

hypot(x,y) hypotenuse:
√

x2 + y2

hypot3(x,y,z) hypotenuse:
√

x2 + y2 + z2

Dannenhoffer ESP Training - Session 3 June 2024 30 / 51

Functions (5)

Xcent(xa,ya,dab,xb,yb) X-center of circular arc
produces derivative=0

Ycent(xa,ya,dab,xb,yb) Y -center of circular arc
produces derivative=0

Xmidl(xa,ya,dab,xb,yb) X-point at midpoint of circular arc
produces derivative=0

Ymidl(xa,ya,dab,xb,yb) Y -point at midpoint of circular arc
produces derivative=0

seglen(xa,ya,dab,xb,yb) length of segment
produces derivative=0

Dannenhoffer ESP Training - Session 3 June 2024 31 / 51

Functions (6)

incline(xa,ya,dab,xb,yb) inclination of chord (in degrees)
produces derivative=0

radius(xa,ya,dab,xb,yb) radius of curvature (or 0 for linseg)
produces derivative=0

sweep(xa,ya,dab,xb,yb) sweep angle of circular arc (in degs)
produces derivative=0

turnang(xa,ya,dab,...

xb,yb,dbc,xc,yc) turning angle at b (in degrees)
produces derivative=0

dip(xa,ya,xb,yb,rad) acute dip between arc and chord
produces derivative=0

smallang(x) ensures −180 ≤ x ≤ 180

Dannenhoffer ESP Training - Session 3 June 2024 32 / 51

Functions (7)

val2str(num,digits) convert num to a string
str2val(string) convert string to a number
findstr(str1,str2) finds location of str2 in str1

(bias-1) or 0 if not found
slice(str,ibeg,iend) substring of str from ibeg

to iend (bias-1)
path($pwd) returns present working directory
path($csm) returns directory of current .csm file
path($root) returns $ESP ROOT
path($file) returns name of .csm file

Dannenhoffer ESP Training - Session 3 June 2024 33 / 51

Functions (8)

ifzero(test,ifTrue,ifFalse) if test = 0, return ifTrue,
else return ifFalse

ifpos(test,ifTrue,ifFalse) if test > 0, return ifTrue,
else return ifFalse

ifneg(test,ifTrue,ifFalse) if test < 0, return ifTrue,
else return ifFalse

ifnan(test,ifTrue,ifFalse) if test is NaN, return ifTrue,
else return ifFalse

Dannenhoffer ESP Training - Session 3 June 2024 34 / 51

Patterns (1)

Patterns are like “for” or “do” loops

the Branches between the PATBEG and PATEND are executed a
known number of times
at the beginning of each “instance”, the pattern number is
incremented (from 1 to the number of copies)
one can break out of the pattern early with a PATBREAK
statement

breaks out if argument evaluates to a positive number

patterns can be nested within other patterns

Dannenhoffer ESP Training - Session 3 June 2024 35 / 51

Patterns (2)

Example pattern (indentation optional):
PATBEG i 3

SET j i-1

BOX j 0 0 1 1 1

ROTATEX j*10 0 0

PATEND

is the same as:

BOX 0 0 0 1 1 1

ROTATEX 0 0 0

BOX 1 0 0 1 1 1

ROTATEX 10 0 0

BOX 2 0 0 1 1 1

ROTATEX 20 0 0

Dannenhoffer ESP Training - Session 3 June 2024 36 / 51

If/then (1)

If/then constructs are used to make a choice within a .csm
script

start with IFTHEN statement
has zero or more ELSEIF statements
has zero or one ELSE statement
has exactly one ENDIF statement

The IFTHEN and ELSEIF statements have arguments, which
can be specified in lowercase or UPPERCASE

val1 — an expression
op1 — can be lt, le, eq, ge, gt, ne, LT, . . .
val2 — an expression
op2 — can be or, xor, and, OR, . . . (defaults to and)
val3 — an expression (defaults to 0)
op3 — can be lt, le, eq, ge, gt, ne, LT, or . . . (defaults to
eq)
val4 — an expression (defaults to 0)

Dannenhoffer ESP Training - Session 3 June 2024 37 / 51

If/then (2)

Example (indentation optional):
IFTHEN a eq 4 or b ne 2

BOX 0 0 0 1 1 1

ELSEIF c eq sqrt(9)

BOX 2 2 2 2 2 2

ELSE

BOX 3 3 3 3 3 3

ENDIF

Note that only one of the BOX commands will be executed

Dannenhoffer ESP Training - Session 3 June 2024 38 / 51

Throw/catch (1)
Throw/catch constructs are used to generate and react to
signals (errors)
Signals can be generated by

executing a THROW command
ESP uses negative signal numbers, so users should generally
use positive signal numbers to avoid collisions

a run-time error encountered elsewhere (see “help” for more
info)

When a signal is generated, all Branches are skipped until a
matching CATBEG statement is encountered

the signal is cancelled
processing continues at the statement following the CATBEG

If a CATBEG statement is encountered when there is no
pending signal (or the pending signal does not match the
CATBEG)

all Branches up to, and including the matching CATEND

statement, are skipped
Dannenhoffer ESP Training - Session 3 June 2024 39 / 51

Throw/catch (2)

1: BOX 0 0 0 1 1 1

2: THROW 99

3: SPHERE 0 0 0 1

4: CATBEG 98

5: SPHERE 0 0 0 2

6: CATEND

7: SPHERE 0 0 0 3

8: CATBEG 99

9: BOX 1 0 0 1 1 1

10: CATEND

11: CATBEG 99

12: SPHERE 0 0 0 4

13: CATEND

14: END

BOX in line 1 is generated

SPHERE in line 3 is skipped (since
there is an active signal)

CATBEG/CATEND in lines 4–6 are
skipped (since they do not match
99)

SPHERE in line 7 is skipped

BOX in line 9 is generated

CATBEG/CATEND in lines 11–13 are
skipped (since the signal was
cancelled when it was caught in
line 8)

Dannenhoffer ESP Training - Session 3 June 2024 40 / 51

Special Note on Programming Blocks

Programming Blocks are delineated by

PATBEG and PATEND

IFTHEN, ELSEIF, ELSE, and ENDIF

SOLBEG and SOLEND

CATBEG and CATEND

Any programming Block can be nested fully within any other
programming Block (up to 20 levels deep)

Dannenhoffer ESP Training - Session 3 June 2024 41 / 51

Reading Help File (1)

STORE $name index=0 keep=0

use: stores Group on top of Stack

pops: any

pushes: -

notes: Sketch may not be open

Solver may not be open

$name is used directly (without evaluation)

previous Group in name/index is overwritten

if $name=. then Body is popped off stack

but not actually stored

if $name=.. then pop Bodys off stack back

to the Mark

if $name=... then the stack is cleared

if keep==1, the Group is not popped off stack

cannot be followed by ATTRIBUTE or CSYSTEM

signals that may be thrown/caught:

$insufficient_bodys_on_stack

Dannenhoffer ESP Training - Session 3 June 2024 42 / 51

Reading Help File (2)

If argument starts with dollar-sign ($), then the argument is
assumed to be string, and the user does not need to prepend
the argument with a dollar-sign ($)

if an expression is given that should be evaluated (to a string
value), prepend the argument with an exclamation point (!),
as in:

SET i 10

STORE !$ThisIsBody+i+$.

stores the Body in a location named ThisIsBody10.

For arguments that are listed with an equal-sign (=), the
value after the equal sign is the default value

Dannenhoffer ESP Training - Session 3 June 2024 43 / 51

Homework Exercises

Rectangular plate with holes

Round plate with holes

Determine if two Bodys overlap

Files in $ESP ROOT/training/ESP/data/session03 will get
you started

Dannenhoffer ESP Training - Session 3 June 2024 44 / 51

Rectangular Plate with Holes (1)

Dannenhoffer ESP Training - Session 3 June 2024 45 / 51

Rectangular Plate with Holes (2)

nx number of holes in X-direction 3.00
ny number of holes in Y -direction 2.00
rad radius of each hole 0.30
space distance between hole centers 1.00
edge distance between holes and plate edge 0.50
thick plate thickness 1.00

Dannenhoffer ESP Training - Session 3 June 2024 46 / 51

Rectangular Plate with Holes (3)

Which parameter(s) should be a DESPMTR and which
should be a CFGPMTR?

What if you make the radius of the hole too big?

What happens if you make the plate thickness zero?

Dannenhoffer ESP Training - Session 3 June 2024 47 / 51

Round Plate with Holes (1)

Dannenhoffer ESP Training - Session 3 June 2024 48 / 51

Round Plate with Holes (2)

Rplate radius of plate 4.50
thick thickness of plate 0.20
space distance between hole centers 2.00
Rhole radius of holes 0.80

number of holes selected
automatically

Dannenhoffer ESP Training - Session 3 June 2024 49 / 51

Overlapping Bodys (1)

Dannenhoffer ESP Training - Session 3 June 2024 50 / 51

Overlapping Bodys (2)

Write .csm file to:

set overlap1 to 1 if Bodys 1 and 4 overlap, otherwise set it
to 0
set overlap2 to 1 if Bodys 2 and 4 overlap, otherwise set it
to 0
set overlap3 to 1 if Bodys 3 and 4 overlap, otherwise set it
to 0

Try to use a pattern to do this compactly

Dannenhoffer ESP Training - Session 3 June 2024 51 / 51

