John F. Dannenhoffer, ITI

jfdannen@syr.edu
Syracuse University

updated for v1.25

&P

e Format of .csm file
@ Special characters
e Numbers

e Parameters

Types

Names

Dimensions
Lower and Upper Bounds

o
"]
°
"]
e Expressions

o Numeric
e String

e Looping

o PATBEG, PATBREAK, PATEND
o Logic

o IFTHEN, ELSEIF, ELSE, ENDIF
e Signal Handling

o THROW, CATBEG, CATEND
e Reading Help File

e Homework Exercises

e All configuration information is contained in .csm (or
possibly .udc) files
o .csm files are plain ASCII text that are readable by humans
e because they are ASCII files, they can either be written
directly by humans (using any text editor) or by other
programs

@ When you build a configuration using the ESP user interface,
you are actually building a .csm file

e Using the interface can be effective for beginning users who
are building small models

e Once a user gets experience with ESP, most of the models are
created by “typing” a .csm directly

" Dannemhofier BSP Training - Session 3 e T——

@ The .csm file contains a series of statements.

e If a line contains a hash (#), all characters starting at the
hash are ignored.

o If a line contains a backslash (\), all characters starting at
the backslash are ignored and the next line is appended;
spaces at the beginning of the next line are treated normally.

o All statements begin with a keyword (described below) and
must contain at least the indicated number of arguments.

o The keywords may either be all lowercase or all
UPPERCASE (but not MixedCase).

e Any CSM statement can be used in a .csm file except the
INTERFACE statement.

" Dannemhofier BSP Training - Session 3 Ty

@ Blocks of statements must be properly nested. The Blocks
are bounded by

PATBEG/PATEND

IFTHEN/ELSEIF/ELSE/ENDIF

SKBEG/SKEND

SOLBEG/SOLEND

CATBEG/CATEND

e Extra arguments in a statement are discarded. If one wants
to add a comment, it is recommended to begin it with a hash
(#) in case optional arguments are added in future releases.

e Any statements after an END statement are ignored.
e hint: if debugging, consider THROWing an error instead to
avoid unclosed Blocks
e All arguments must not contain any spaces or must be
enclosed in a pair of double quotes (for example, "a + b").

" Dannemhofier BSP Training - Session 3 Ty T

e Parameters are evaluated in the order that they appear in the
file, using MATLAB-like syntax (see 'Expression rules’
below).

@ During the build process, OpenCSM maintains a
last-in-first-out (LIFO) “Stack” that can contain Bodys,
Marks, and Sketches.

@ The .csm statements are executed in a stack-like way, taking
their inputs from the Stack and depositing their results onto
the Stack.

@ The default name for each Branch is Brch_xxxxxx, where
XXXXXX IS a unique sequence number.

" Dannemhofier BSP Training - Session 3 T

\
<space>
0-9

A-Z a-z

introduces comment

ignore spaces until following "

ignore this and following characters and
concatenate next line

separates arguments in .csm file (except
between " and ")

digits used in numbers and in names

letters used in names

characters used in names (see rule for names)

decimal separator (used in numbers),
introduces dot-suffixes (in names)

separates function arguments and row/column
in subscripts

multi-value item separator

" Dannemhofier BSP Training - Session 3 Ty

groups expressions and function arguments
specifies subscripts in form [row,column] or [index]
> characters used in strings or names
/ = arithmetic operators
as first character, introduces a string that is
terminated by end-of-line or un-escaped plus,
comma, or close-parenthesis
Q as first character, introduces @-parameters
’ used to escape comma, plus, or close-parenthesis
within strings
! if first character of implicit string, ignore
$! and treat as an expression

)
]
X

* A

(
L
{
+
$

| cannot be used (reserved for OpenCSM internals)
& cannot be used (reserved for OpenCSM internals)

" Dannemhofier BSP Training - Session 3 Ty

e Start with a digit or decimal (.)

e Followed by zero or more digits and/or decimals (.)

@ There can be at most one decimal in a number

e Optionally followed by an e, e+, e-, E, E+4, or E-

o If there is an e or E, it must be followed by one or more digits

e If numbers are in a list, the elements are separated by a
semicolon (;)

" Dannemhofier BSP Training - Session 3 P Y

@ Design Parameter
o values are declared in a DESPMTR statement
e in .csm file or
o in top-level include-type .udc file
e must contain one or more numbers (no strings)
o if multi-valued, must be first DIMENSIONed
e can contain lower- and upper-bounds, specified in LBOUND
and UBOUND statements
e values are only visible at the top-level
e values can be changed by a call to ocsmSetValu or
ocsmSetValuD (after ocsmLoad and before ocsmBuild)
e values can be read by call to ocsmGetValu
e sensitivities can be computed by a call to ocsmSetVel or
ocsmSetVelD

" Dannemhofier BSP Training - Session 3 gy

e Configuration Parameter
o values are declared in a CFGPMTR statement
e in .csm file or
o in top-level include-type .udc file
e must contain one or more numbers (no strings)
o if multi-valued, must be first DIMENSIONed
e can contain lower- and upper-bounds, specified in LBOUND
and UBOUND statements
e values are only visible at the top-level
e values can be changed by a call to ocsmSetValu or
ocsmSetValuD (after ocsmLoad and before ocsmBuild)
e values can be read by call to ocsmGetValu
o sensitivities CANNOT be computed for Configuration
Parameters

" Dannemhofier BSP Training - Session 3 g

o Constant Parameter
e values are declared in a CONPMTR statement

o in .csm file
o in top-level include-type .udc file
e must contain only one number (no strings)
e values are visible from any .csm or .udc file
o values CANNOT be changed by a call to ocsmSetValu or
ocsmSetValuD
o sensitivities CANNOT be computed for Constant Parameters

" Dannemhofier BSP Training - Session 3 gy

e Local Variables

is created by a SET, PATBEG or GETATTR statement

can contain one or more numbers or a character string

if multi-valued, must first be DIMENSIONed

can be an @-parameter (described below)

are only usable in .csm or .udc file in which it was defined
(unless the .udc file has INTERFACE . ALL in its preamble)

e Output Parameters

e declared in a OUTPMTR statement
e refers to any local variable whose value is available outside
ESP (such as to CAPS)

" Dannemhofier BSP Training - Session 3 gy vy

Can be vector or array of numbers

Can have a string value

Can be restricted by LBOUND or UBOUND
Scope

Defined during ocsmLoad or ocsmLoadDict
Can be set via ocsmSetValu(D)

Defined and set during ocsmBuild

Can be read via ocsmGetValu(S)

Can find associated sensitivity
Y*=Parameter index may be different for different builds
scopes: T=top-level, G=global, L=local

~ Dannenhoffer = ESP Training - Session 3 June 2024 15/51

Z. < < 2 'Z 2 < <| QUTPMTR
Z " = 2 Z = 'Z = ~<| LOCALVAR

= = 2 = = 3 < Z ~<| DESPMTR
Z = Z = = 3 < Z = CFGPMTR

Z =<2 Z =< Q 2 'Z Z| CONPMTR

o General form is: DIMENSION $pmtrName nrow ncol
e Can only be applied once to a DESPMTR or CFGPMTR
e Cannot be applied to a CONPMTR

@ When applied to an OUTPMTR or LOCALVAR
o if the new size has fewer elements than the old size

o the old values are copied to fill the new size
o extra old elements are lost

o if the new size has more elements than the old size

o the old values are all copied
o the last old value is copied into all the remaining new
locations

" Dannemhofier BSP Training - Session 3 gy

e Start with a letter, colon (:), or at-sign (@)

o Contains letters, digits, at-signs (@), underscores (_),
tilde (7), and colons (:)

o Contains fewer than 64 characters

o Names that start with an at-sign cannot be set by a CONPMTR,
DESPMTR, CFGPMTR, SET, PATBEG, or GETATTR statement

@ When listed in the ESP user interface, parameters are
sub-grouped based upon the colons (:)

" Dannemhofier BSP Training - Session 3 gy

e If a name has a dot-suffix, a property of the parameter (and
not its value) is returned

X.
.ncol
.size
.sum
.norm
.min
.max

Mo oK MW M X

nrow

number of rows in x (0 for string)
number of columns in x (0 for string)
number of elements or characters in x
sum of elements in x

RMS norm of elements in x
minimum value in x

maximum value in x

" Dannemhofier BSP Training - Session 3 gy T

e Example:

DIMENSION myvar 2 3
DESPMTR myvar "1; 2; 3;\
4; 5; 6"

e myvar.nrow returns 2

e myvar.sum returns 21

e To make a copy of array A, use:

DIMENSION copyOfA A.nrow A.ncol
SET copyOfA A

@ Basic format is: name[irow,icol] or name[ielem]

e Name must follow rules above

@ irow, icol, and ielem must be valid (integer) expressions

@ irow, icol, and ielem start counting at 1

e For 2D arrays, either name [irow,icol] or name[ielem] be
used

e Values are stored across rows ([1,1], [1,2], ..., [2,1], ...)

" Dannemhofier BSP Training - Session 3 gy T

e Every time a Body gets created, or after a SELECT statement,
readable local variables are set

body face edge node <- last SELECT
@seltype -1 2 1 0 selection type
@selbody x - - - current Body

@sellist -1 x b3 x list of Nodes/Edges/Faces
@nbody X X X x number of Bodys
@ibody X X X x current Body
@nface X X b x number of Faces in Qibody
@iface -1 x -1 -1 current Face in @ibody
@nedge X X b x number of Edges in Qibody
Q@iedge -1 -1 x -1 current Edge in Qibody
@nnode X X x number of Nodes in Qibody
@inode -1 -1 -1 x current Node in Qibody
@igroup x X X x group of current Body
Q@itype X X b x 0=NodeBody, 1=WireBody,
2=SheetBody, 3=SolidBody
@nbors -1 X - x number of incident Edges
@nbors -1 - X - number of incident Faces

" Dannemhofier BSP Training - Session 3 gy

@ibodyl -1 X x -1 first element of ’Body’ Attribute in Q@ibody
@ibody2 -1 X x -1 second element of ’Body’ Attribute in @ibody
@xmin X X * x x-min of bounding box or x at beg of edge
Qymin X X * x y-min of bounding box or y at beg of edge
@zmin X X * x z-min of bounding box or z at beg of edge
@xmax X X * x x-max of bounding box or x at end of edge
Qymax X X * x y-max of bounding box or y at end of edge
@zmax X X * x z-max of bounding box or z at end of edge
Q@length 0 0 X 0 length of edge

™
»
o
o

Qarea area of face or surface area of body
@volume x 0 0 0 volume of body (if a solid)

@xcg X X X x location of center of gravity
Qycg b4 b X X
Qzcg X X X X

" Dannemhofier BSP Training - Session 3 gy

@Ixx bd X X 0
QIxy X X X 0
QIxz X bd bd 0
QIyx X X X 0
QIyy X X X 0
QIyz X X X 0
QIzx b4 X X 0
QIzy X X X 0
QIzz X X X 0
@signal x X X X
Onwarn b4 b4 X bd
Qedata

@stack

@scope

Qversion

in above table:
x —-> value is set
- -> value is unchanged

centroidal moment of inertia

current signal code
number of warnings

only set up by EVALUATE statement
Bodys on stack: O=mark, -1=none
scoping level (at last SELECT)
version number

* -> special value is set (if edge)

0 -> value is set to O
-1 -> value is set to -1

" Dannemhofier BSP Training - Session 3 gy vy

e Valid operators (in order of precedence):

()
func(a,b)
A\

*/

+ -

parentheses, inner-most evaluated first
function arguments, then function itself
exponentiation (evaluated left to right)
multiply and divide (evaluated left to right)
add and subtract (evaluated left to right)

" Dannemhofier BSP Training - Session 3 gy

e Contains the sequence of characters starting after a
dollar-sign($) and ending with a space, plus-sign (+), comma
(,), or closed-parenthesis ())

o If escaped with an apostrophe (), can contain a plus-sign
(’+), comma (’,) or closed-parenthesis (7))

o for example:
$thisStringContainsAComma(’,’)
returns thisStringContainsAComma(,)
e Can never contain a space
o Are parsed left-to-right, as is any expression
o for example:

SET omne 1
SET mystr $therelsA+one+$inThisString

returns (in mystr) thereIsAlinThisString

" Dannemhofier BSP Training - Session 3 gy T

pi(x)
min(x,y)
max (x,y)
sqrt(x)
abs(x)
int(x)

nint (x)
ceil(x)

floor (x)

3.14159... *x

minimum of x and y

maximum of x and y

square root of x

absolute value of x

integer part of z (3.5 — 3, —3.5 — —3)
produces derivative=0

nearest integer to x

produces derivative=0

smallest integer not less than x
produces derivative=0

largest integer not greater than x
produces derivative=0

" Dannemhofier BSP Training - Session 3 gy

mod(a,b)
sign(test)

exp (x)
log(x)
logl0(x)

modulus(a/b), with same sign as a and b>0
returns -1, 0, or +1

produces derivative=0

exponential of z

natural logarithm of x

common logarithm of x

sin(x)

sind(x)
asin(x)
asind(x)
cos (x)

cosd(x)
acos(x)
acosd(x)

sine of =
sine of x
arc-sine of x
arc-sine of x
cosine of x
cosine of x

arc-cosine of z
arc-cosine of x

(in radians)
(in degrees)
(in radians)
(in degrees)
(in radians)
(in degrees)
(in radians)
(in degrees)

June 2024

29 /51

tan(x) tangent of x
tand (x) tangent of x
atan(x) arc-tangent of x
atand(x) arc-tangent of x

atan2(y,x) arc-tangent of y/x
atan2d(y,x) arc-tangent of y/z

hypot (x,y) hypotenuse: +/x2 + y?

hypot3(x,y,z) hypotenuse: \/x? + y? + 22

in radians

(i)
(in degrees)
(in radians)
(in degrees)
(in radians)
(i)

June 2024

30 /51

Xcent (xa,ya,dab,xb,yb)
Ycent (xa,ya,dab,xb,yb)
Xmidl(xa,ya,dab,xb,yb)
Ymidl (xa,ya,dab,xb,yb)

seglen(xa,ya,dab,xb,yb)

X-center of circular arc

produces derivative=0

Y -center of circular arc

produces derivative=0

X-point at midpoint of circular arc
produces derivative=0

Y -point at midpoint of circular arc
produces derivative=0

length of segment

produces derivative=0

" Dannemhofier BSP Training - Session 3 g

incline(xa,ya,dab,xb,yb) inclination of chord (in degrees)
produces derivative=0
radius(xa,ya,dab,xb,yb) radius of curvature (or 0 for linseg)
produces derivative=0
sweep(xa,ya,dab,xb,yb) sweep angle of circular arc (in degs)
produces derivative=0
turnang(xa,ya,dab, ...

xb,yb,dbc,xc,yc) turning angle at b (in degrees)
produces derivative=0
dip(xa,ya,xb,yb,rad) acute dip between arc and chord
produces derivative=0
smallang(x) ensures —180 < z < 180

" Dannemhofier BSP Training - Session 3 g

val2str(num,digits)
str2val(string)
findstr(strl,str2)

slice(str,ibeg,iend)

path($pwd)
path($csm)
path($root)
path($file)

convert num to a string

convert string to a number

finds location of str2 in stril
(bias-1) or 0 if not found

substring of str from ibeg

to iend (bias-1)

returns present working directory
returns directory of current .csm file
returns $ESP_ROOT

returns name of .csn file

" Dannemhofier BSP Training - Session 3 g -

ifzero(test,ifTrue,ifFalse)
ifpos(test,ifTrue,ifFalse)
ifneg(test,ifTrue,ifFalse)

ifnan(test,ifTrue,ifFalse)

if test = 0, return ifTrue,
else return ifFalse

if test > 0, return ifTrue,
else return ifFalse

if test < 0, return ifTrue,
else return ifFalse

if test is NaN, return ifTrue,
else return ifFalse

" Dannemhofier BSP Training - Session 3 gy

o Patterns are like “for” or “do” loops

o the Branches between the PATBEG and PATEND are executed a
known number of times

e at the beginning of each “instance”, the pattern number is

incremented (from 1 to the number of copies)
e one can break out of the pattern early with a PATBREAK
statement

o breaks out if argument evaluates to a positive number

e patterns can be nested within other patterns

" Dannemhofier BSP Training - Session 3 gy -y

&P

indentation optional):
3

i-1

0

0

e Example pattern

PATBEG
SET
BOX
ROTATEX j*10

PATEND

@ is the same as:

BOX 0 0 0 1 1 1
ROTATEX O

e B —

0
0

«

o
o

BOX 1 0 0 1 1 1
ROTATEX 10

o
o

BOX 2 0 0 1 1 1
ROTATEX 20

o
o

e If/then constructs are used to make a choice within a .csm
script

start with IFTHEN statement

has zero or more ELSEIF statements
has zero or one ELSE statement

has exactly one ENDIF statement

@ The IFTHEN and ELSEIF statements have arguments, which
can be specified in lowercase or UPPERCASE

vall — an expression

opl — can be 1t, le, eq, ge, gt, ne, LT, ...

val2 — an expression

op2 — can be or, xor, and, OR, ... (defaults to and)

val3 — an expression (defaults to 0)

op3 — can be 1t, le, eq, ge, gt, ne, LT, or ... (defaults to

eq)
vald — an expression (defaults to 0)

" Dannemhofier BSP Training - Session 3 g -

e Example (indentation optional):
IFTHEN a eq 4 or b ne 2

BOX 0 O 0 1 11
ELSEIF c eq sqrt(9)

BOX 2 2 2 2 2 2
ELSE

BOX 3 3 3 3 3 3
ENDIF

@ Note that only one of the BOX commands will be executed

e Throw/catch constructs are used to generate and react to
signals (errors)
e Signals can be generated by
e executing a THROW command

o ESP uses negative signal numbers, so users should generally
use positive signal numbers to avoid collisions

e a run-time error encountered elsewhere (see “help” for more
info)
e When a signal is generated, all Branches are skipped until a
matching CATBEG statement is encountered
e the signal is cancelled
e processing continues at the statement following the CATBEG
o If a CATBEG statement is encountered when there is no
pending signal (or the pending signal does not match the
CATBEG)
e all Branches up to, and including the matching CATEND
statement, are skipped

 Dannemhofir BSP Training - Session 3 g -

11:
12:
13:

14:

: BOX 000111

: THROW 99

: SPHERE 0 0 0 1

: CATBEG 98

SPHERE 0 0 0 2
: CATEND
: SPHERE 0 0 0 3

: CATBEG 99

BOX 100111

: CATEND

CATBEG 99
SPHERE 0 0 0 4
CATEND

END

BOX in line 1 is generated
SPHERE in line 3 is skipped (since
there is an active signal)

CATBEG/CATEND in lines 4-6 are
skipped (since they do not match
99)

SPHERE in line 7 is skipped

e BOX in line 9 is generated

CATBEG/CATEND in lines 11-13 are
skipped (since the signal was

cancelled when it was caught in
line 8)

 Dannemhofir BSP Training - Session 3 gy Y T

@ Programming Blocks are delineated by
PATBEG and PATEND

IFTHEN, ELSEIF, ELSE, and ENDIF
SOLBEG and SOLEND

CATBEG and CATEND

e Any programming Block can be nested fully within any other
programming Block (up to 20 levels deep)

" Dannemhofier BSP Training - Session 3 gy

STORE $name index=0 keep=0
use: stores Group on top of Stack
pops: any
pushes: -

notes: Sketch may not be open
Solver may not be open
$name is used directly (without evaluation)
previous Group in name/index is overwritten

if $name=. then Body is popped off stack
but not actually stored

if $name=.. then pop Bodys off stack back
to the Mark

if $name=... then the stack is cleared

if keep==1, the Group is not popped off stack

cannot be followed by ATTRIBUTE or CSYSTEM

signals that may be thrown/caught:
$insufficient_bodys_on_stack

" Dannemhofier BSP Training - Session 3 gy

o If argument starts with dollar-sign ($), then the argument is
assumed to be string, and the user does not need to prepend
the argument with a dollar-sign ($)

o if an expression is given that should be evaluated (to a string
value), prepend the argument with an exclamation point (!),
as in:

SET i 10
STORE !$ThisIsBody+i+$.
stores the Body in a location named ThisIsBody10.

e For arguments that are listed with an equal-sign (=), the
value after the equal sign is the default value

" Dannemhofier BSP Training - Session 3 gy

e Rectangular plate with holes

@ Round plate with holes
e Determine if two Bodys overlap

e Files in $ESP_RO0T/training/ESP/data/session03 will get
you started

ESP (Engineering Sketch Pad,

On e L Dressl=

Uptodate Help
Undo Edit SaveFile

- Design Parameters
nx 3
ny 2
rad 03

+ Local Variables
+ Branches

- Display
+ Body 19 Viz Grd

X

e S ESP has been initialized and is attached to 'serveCsM'

nx
ny
rad
space
edge
thick

number of holes in X-direction
number of holes in Y-direction

radius of each hole

distance between hole centers
distance between holes and plate edge
plate thickness

3.00
2.00
0.30
1.00
0.50
1.00

June 2024

46 /51

e Which parameter(s) should be a DESPMTR and which
should be a CFGPMTR?

e What if you make the radius of the hole too big?
e What happens if you make the plate thickness zero?

Vue ¥ h|=

Uptodate Help

Undo Edit SaveFile

H L R B

Design Parameters
Rplate
thick
space
Rhole
+ Local Variables
+ Branches

Display
+ Body27

T

+

45
02

2
08

Viz Grd

€S

(e

'

ESP has been initialized and is attached to 'serveCsM'

June 2024 48 /51

Rplate
thick
space
Rhole

radius of plate

thickness of plate

distance between hole centers
radius of holes

number of holes selected
automatically

4.50
0.20
2.00
0.80

(@ tmi e @t Lo @

o
.
= e
SE—w=
=
B
EI
DisplayType
S

P Toggling grid of Bodyd Face 2

Toggling grid of Body4 Face 1

o Write .csmn file to:

e set overlap1l to 1 if Bodys 1 and 4 overlap, otherwise set it
to 0

e set overlap?2 to 1 if Bodys 2 and 4 overlap, otherwise set it
to 0

e set overlap3 to 1 if Bodys 3 and 4 overlap, otherwise set it
to 0

e Try to use a pattern to do this compactly

