
CAPS Example AIM for AVL

Bob Haimes

March 13, 2015

1 Goals
The use of lower-dimensional design tools is clearly desirable in a multidisciplinary/multi-fidelity aero design
optimization setting. This is the crux of the Computational Aircraft Prototype Syntheses (CAPS) program.
In many ways describing geometry appropriate for AVL (the Athena Vortex Lattice) code is more cumbersome
than higher fidelity codes that require an Outer Mold Line.

The goal is to make a CAPS AIM (Analysis Input Module) that directly feeds input to AVL and extracts
the output quantities of interest from AVL’s execution. This needs to be consistent with a build description
that is hierarchical and multi-fidelity. That is, the build description that generates the geometric data at
this level can be further enhanced to produce the complete OML of the aircraft design under consideration.

As for the geometric description, AVL requires airfoil section data specified at the appropriate locations
that describe the skeleton of the aircraft. These sections when lofted as groups and finally unioned together
builds the OML. Clearly, intercepting the state of the geometry before these higher-level operations are
applied provides the data appropriate for AVL. This naturally constructs a hierarchal geometric view where
a design can progress into higher fidelities and feedback can be achieved where we can go back to this level
of description when need be.

2 Assumptions
The AVL coordinate system assumption (X – downstream, Y – out the right wing, Z – up) needs to be
followed.

Within OpenCSM there are a number of airfoil generation UDPs (User Defined Primitives). These include
NACA 4 series, a more general NACA 4/5/6 series generator, Sobieczky’s PARSEC parameterization and
Kulfan’s CST parameterization. All of these UDPs generate EGADS FaceBodies where the Face’s underlying
Surface is planar and the bounds of the Face is a closed set of Edges whose underlying Curves contain the
airfoil shape. In all cases there is a Node that represents the Leading Edge point and one or two Nodes at
the Trailing Edge – one if the representation is for a sharp TE and the other if the definition is open or
blunt. If there are 2 Nodes at the back, then there are 3 Edges all together and closed, even though the
airfoil definition was left open at the TE. All of this information will be used to automatically fill in the AVL
geometry description.

It should be noted that general construction in either OpenCSM or even EGADS will be supported as long
as the topology described above is used. But care should be taken when constructing the airfoil shape so
that a discontinuity (i.e., simply C0) is not generated at the Node representing the Leading Edge. This can
be done by splining the entire shape as one and then intersecting the single Edge to place the LE Node.

The rest of the information and options required to fill out the AVL geometry input file (xxx.avl) will
be found in the attributes attached to the FaceBody itself. The conventions used will be described in the
next section.

1



3 Attribute Use for the construction of xxx.avl
The following list of attributes drives the AVL geometric definition. Each FaceBody which relates to AVL
Sections will be marked up in an appropriate manner to drive the input file construction. Many attributes
are required and those that are optional are marked so in the description:

• capsFidelity. This attribute is a CAPS requirement to indicate the Body’s fidelity and in this case
should refer to AVL-like usage.

• avlSurface. This string attribute labels the FaceBody as to which AVL Surface the section is assigned.
This should be something like: Main_Wing, Horizontal_Tail, and etc.

This informs the AVL AIM to collect all FaceBodies that match this attribute into a single AVL Surface.

• avlComponent [optional]. This integer (or real) attribute is examined for the AVL Component index.
This may be on any or all FaceBodies associated with the AVL Surface.

• avlKeyword [optional]. This string attribute may contain the word (or words): NOWAKE, NOALBE
and/or NOLOAD. Multiple keywords need to be delimited by a colon (‘:’). This is associated with the
AVL Surface.

• avlSecValues. This real valued attribute must be of at least 5 doubles in length and contain:

1. Nchord – The number of chordwise horseshoe vortices placed on the surface.

2. Cspace – The chordwise vortex spacing parameter.

3. Nspan – The number of spanwise horseshoe vortices placed on the surface.

4. Sspace – The spanwise vortex spacing parameter.

5. iYdup – The Y symmetry for this Surface (0 – do nothing, 1 – duplicate about the Y=0.0 plane).

It should be noted that the first 2 (and last) values refer to the entire AVL Surface and therefore the
first occurrence of the avlSurface attribute in the list of bodies sets these values in the AVL input file
(though iYdup can be set in any Section).

• avlCntrlName [optional]. This optional numerical attribute indicates that this FaceBody Section is
a member of the control surface named as part of the attribute name (for example: avlCntrlAileron
specifies that this Section is part of the Aileron control surface). This real valued attribute must be of
at least 6 doubles in length and contain:

1. gain – The control deflection gain.

2. Xhinge – The x/c location of hinge.

3. Xhvec – The first component of the vector giving hinge axis about which surface rotates.

4. Yhvec – The second component.

5. Zhvec – The third component.

6. SgnDup – The signed magnitude (or simply the scale factor) for the deflection of the duplicated
surface.

The AVL Sections are automatically generated, one from each FaceBody and the details extracted from
the geometry. Xle, Yle, and Zle, are taken from the Node Associated with the Leading Edge. The Chord is
computed by getting the distance between the LE and TE (if there are 3 Edges in the FaceBody the TE point
is considered the mid-position on that third Edge). Ainc is computed by registering the chordal direction
of the FaceBody against the X-Z plane. The airfoil shapes are generated by sampling the Curves and put
directly in the input file via the AIRFOIL keyword after being normalized.

Also note that this first implementation is not intended to provide complete control over AVL. In par-
ticular, there is no mention above of the BODY, DESIGN, CLAF, or CDCL AVL keywords.

2


