
Engineering Sketch Pad (ESP) Training
Session 4: CSM Scripts

John F. Dannenho↵er, III
Syracuse University

Bob Haimes
Massachusetts Institute of Technology

Revised for v1.09

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 1 / 37

Overview

Format of the .csm file

Special characters

Valid CSM statements

Number rules

Parameter rules

Expression rules

Attribute and Csystem rules

Patterns, If/then, and Throw/catch

Hands-on exercise
rectangular plate

round plate

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 2 / 37

Format of the .csm file (1)

The .csm file contains a series of statements.

If a line contains a hash (#), all characters starting at the hash
are ignored.

If a line contains a backslash, all characters starting at the
backslash are ignored and the next line is appended; spaces at
the beginning of the next line are treated normally.

All statements begin with a keyword (described below) and must
contain at least the indicated number of arguments.

The keywords may either be all lowercase or all UPPERCASE.

Any CSM statement can be used except the INTERFACE statement.

Blocks of statements must be properly nested. The Blocks are bounded
by PATBEG/PATEND, IFTHEN/ELSEIF/ELSE/ENDIF, SOLBEG/SOLEND,
and CATBEG/CATEND.

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 3 / 37

Format of the .csm file (2)

Extra arguments in a statement are discarded. If one wants to add
a comment, it is recommended to begin it with a hash (#) in case
optional arguments are added in future releases.

Any statements after an END statement are ignored.

All arguments must not contain any spaces or must be enclosed
in a pair of double quotes (for example, "a + b").

Parameters are evaluated in the order that they appear in the
file, using MATLAB-like syntax (see ’Expression rules’ below).

During the build process, OpenCSM maintains a LIFO ’Stack’ that
can contain Bodys and Sketches.

The csm statements are executed in a stack-like way, taking their
inputs from the Stack and depositing their results onto the Stack.

The default name for each Branch is ’Brch_xxxxxx’, where xxxxxx
is a unique sequence number.

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 4 / 37

Special characters

introduces comment
" ignore spaces until following "
\ ignore this and following characters and concatenate next line
<space> separates arguments in .csm file (except between " and ")

0-9 digits used in numbers and in names
A-Z a-z letters used in names
_ : @ characters used in names (see rule for names)
. decimal separator (used in numbers), introduces dot-suffixes

(in names)
, separates function arguments and row/column in subscripts
; multi-value item separator
() groups expressions and function arguments
[] specifies subscripts in form [row,column] or [index]
+ - * / ^ arithmetic operators
$ as first character, forces argument not to be evaluated

(used internally)
@ as first character, introduces @-parameters (see below)
! evaluate before setting attribute

~ % & = ’ not used
{ } < > ? not used

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 5 / 37

Number Rules

Numbers: start with a digit or decimal (.) followed by zero or more digits and/or decimals (.)

there can be at most one decimal in a number optionally followed by an e, e+, e-, E, E+, or E-

if there is an e or E, it must be followed by one or more digits

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 6 / 37

Parameter Rules (1)

Valid names:
start with a letter, colon (:), or at-sign (@)
contains letters, digits, at-signs (@), underscores (_), and colons (:)
contains fewer than 32 characters
names that start with an at-sign cannot be set by a CONPMTR, DESPMTR,

or SET statement
if a name has a dot-suffix, a property of the name (and not its value) is

returned
x.nrow number of rows in x
x.ncol number of columns in x
x.size number of elements in x (=x.nrow*x.ncol)
x.sum sum of elements in x
x.norm norm of elements in x (=sqrt(x[1]^2+x[2]^2+...))
x.min minimum value in x
x.max maximum value in x

Array names:
basic format is: name[irow,icol] or name[ielem]
name must follow rules above
irow, icol, and ielem must be valid expressions
irow, icol, and ielem start counting at 1
values are stored across rows ([1,1], [1,2], ..., [2,1], ...)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 7 / 37

Parameter Rules (2)

Types:
CONSTANT

declared and defined by a CONPMTR statement
must be a scalar
is only available at the .csm file level
can be set outside ocsmBuild by a call to ocsmSetValu
can be read outside ocsmBuild by a call to ocsmGetValu

EXTERNAL
if a scalar, declared and defined by a DESPMTR statement
if an array, declared by a DIMENSION statement (with despmtr=1)

values defined by one or more DESPMTR statements
each value can only be defined in one DESPMTR statement
can have an optional lower bound
can have an optional upper bound
is only available at the .csm file level
can be set outside ocsmBuild by a call to ocsmSetValu
can be read outside ocsmBuild by a call to ocsmGetValu

INTERNAL
if a scalar, declared and defined by a SET statement
if an array, declared by a DIMENSION statement (with despmtr=0)

values defined by one or more SET statements
values can be overwritten by subsequent SET statements
are created by an INTERFACE statement in a .udc file
see scope rules (below)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 8 / 37

Parameter Rules (3)

@-parameters depend on the last SELECT statement.
each time a new Body is added to the Stack, ’SELECT body’ is

implicitly called
depending on last SELECT statement, the values of the

@-parameters are given by:

body face edge node <- last SELECT

@nbody x x x x number of Bodys
@ibody x x x x current Body
@nface x x x x number of Faces in @ibody
@iface -1 x -1 -1 current Face in @ibody
@nedge x x x x number of Edges in @ibody
@iedge -1 -1 x -1 current Edge in @ibody
@nnode x x x x number of Nodes in @ibody
@inode -1 -1 -1 x current Node in @ibody
@igroup x x x x group of current Body

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 9 / 37

Parameter Rules (4)

@ibody1 -1 x x -1 first element of ’Body’ Attribute in @ibody
@ibody2 -1 x x -1 second element of ’Body’ Attribute in @ibody

@xmin x x * x x-min of bounding box or x at beg of edge
@ymin x x * x y-min of bounding box or y at beg of edge
@zmin x x * x z-min of bounding box or z at beg of edge
@xmax x x * x x-max of bounding box or x at end of edge
@ymax x x * x y-max of bounding box or y at end of edge
@zmax x x * x z-max of bounding box or z at end of edge

@length 0 0 x 0 length of edge
@area x x 0 0 area of face or surface area of body
@volume x 0 0 0 volume of body (if a solid)

@xcg x x x x location of center of gravity
@ycg x x x x
@zcg x x x x

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 10 / 37

Parameter Rules (5)

@Ixx x x x 0 centroidal moment of inertia
@Ixy x x x 0
@Ixz x x x 0
@Iyx x x x 0
@Iyy x x x 0
@Iyz x x x 0
@Izx x x x 0
@Izy x x x 0
@Izz x x x 0

in above table:
x -> value is set
* -> special value is set (if edge)
0 -> value is set to 0

-1 -> value is set to -1

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 11 / 37

Parameter Rules (6)

Scope:
CONSTANT parameters are available everywhere
EXTERNAL parameters are only usable within the .csm file
INTERNAL within a .csm file

created by a DIMENSION or SET statement
values are usable only within the .csm file

within a .udc file
created by an INTERFACE of SET statament
values are usable only with the current .udc file

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 12 / 37

Expression Rules (1)

Valid operators (in order of precedence):
() parentheses, inner-most evaluated first
func(a,b) function arguments, then function itself
^ exponentiation (evaluated left to right)
* / multiply and divide (evaluated left to right)
+ - add and subtract (evaluated left to right)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 13 / 37

Expression Rules (2)

Valid function calls:
pi(x) 3.14159...*x
min(x,y) minimum of x and y
max(x,y) maximum of x and y
sqrt(x) square root of x
abs(x) absolute value of x
int(x) integer part of x (3.5 -> 3, -3.5 -> -3)

produces derivative=0
nint(x) nearest integer to x

produces derivative=0
ceil(x) smallest integer not less than x

produces derivative=0
floor(x) largest integer not greater than x

produces derivative=0
mod(a,b) modulus(a/b), with same sign as a and b>=0
sign(test) returns -1, 0, or +1

produces derivative=0
exp(x) exponential of x
log(x) natural logarithm of x
log10(x) common logarithm of x

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 14 / 37

Expression Rules (3)

sin(x) sine of x (in radians)
sind(x) sine of x (in degrees)
asin(x) arc-sine of x (in radians)
asind(x) arc-sine of x (in degrees)
cos(x) cosine of x (in radians)
cosd(x) cosine of x (in degrees)
acos(x) arc-cosine of x (in radians)
acosd(x) arc-cosine of x (in degrees)
tan(x) tangent of x (in radians)
tand(x) tangent of x (in degrees)
atan(x) arc-tangent of x (in radians)
atand(x) arc-tangent of x (in degrees)
atan2(y,x) arc-tangent of y/x (in radians)
atan2d(y,x) arc-tangent of y/x (in degrees)
hypot(x,y) hypotenuse: sqrt(x^2+y^2)
hypot3(x,y,z) hypotenuse: sqrt(x^2+y^2+z^2)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 15 / 37

Expression Rules (4)

Xcent(xa,ya,dab,xb,yb) X-center of circular arc
produces derivative=0

Ycent(xa,ya,dab,xb,yb) Y-center of circular arc
produces derivative=0

Xmidl(xa,ya,dab,xb,yb) X-point at midpoint of circular arc
produces derivative=0

Ymidl(xa,ya,dab,xb,yb) Y-point at midpoint of circular arc
produces derivative=0

seglen(xa,ya,dab,xb,yb) length of segment
produces derivative=0

incline(xa,ya,dab,xb,yb) inclination of chord (in degrees)
produces derivative=0

radius(xa,ya,dab,xb,yb) radius of curvature (or 0 for linseg)
produces derivative=0

sweep(xa,ya,dab,xb,yb) sweep angle of circular arc (in degrees)
produces derivative=0

turnang(xa,ya,dab,xb,yb,...
dbc,xc,yc) turnnig angle at b (in degrees)

produces derivative=0
dip(xa,ya,xb,yb,rad) acute dip between arc and chord

produces derivative=0
smallang(x) ensures -180<=x<=180

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 16 / 37

Expression Rules (5)

ifzero(test,ifTrue,ifFalse) if test=0, return ifTrue, else ifFalse
ifpos(test,ifTrue,ifFalse) if test>0, return ifTrue, else ifFalse
ifneg(test,ifTrue,ifFalse) if test<0, return ifTrue, else ifFalse
ifnan(test,ifTrue,ifFalse) if test is NaN, return ifTrue, else ifFalse

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 17 / 37

Attribute Rules (1)

Attributes are defined for any Branch that produces a Body

Attributes are defined by an attribute statement

Attribute names must not start with a period (which is reserved
for EGADS) or an underscore (which is reserved for OpenCSM)

If the first character of the value is a dollar-sign, then the
Attribute will contain a character string

Otherwise the Attribute will contain one or more real (double)
values

if the value is the name of a multi-valued Parameter, then the

Attribute will be multi-valued

if the value is a semi-colon-separated list of expressions, then

the Attribute will be multi-valued

otherwise the Attribute will be a single real (double)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 18 / 37

Attribute Rules (2)

EGADS attributes assigned to Bodys:
body Body index (bias-1)
brch Branch index (bias-1)
<any> all global attributes
<any> all attributes associated with Branch that created Body
<any> all attributes associated with "select $body" statement

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 19 / 37

Attribute Rules (3)

EGADS attributes assigned to Faces:
body non-unique 2-tuple associated with first Face creation

[0] Body index in which Face first existed (bias-1)
[1] face-order associated with creation (see above)

brch non-unique even-numbered list associated with Branches
that are active when the Face is created (most
recent Branch is listed first)

[2*i] Branch index (bias-1)
[2*i+1] (see below)

Branches that contribute to brch attribute are
primitive (for which brch[2*i+1] is face-order)
udprim.udc (for which brch[2*i+1] is 1)
grown (for which brch[2*i+1] is face-order)
applied (for which brch[2*i+1] is face-order)
sketch (for which brch[2*i+1] is Sketch primitive if

making WIRE)
patbeg (for which brch[2*i+1] is pattern index)
recall (for which brch[2*i+1] is 1)
restore (for which brch[2*i+1] is Body number stored)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 20 / 37

Attribute Rules (4)

faceID unique 3-tuple that is assigned automatically
[0] body[0]
[1] body[1]
[2] sequence number

if multiple Faces have same faceID[0] and faceID[1],
then the sequence number is defined based upon the
first rule that applies:
* Face with smaller xcg has lower sequence number
* Face with smaller ycg has lower sequence number
* Face with smaller zcg has lower sequence number
* Face with smaller area has lower sequence number

<any> all attributes associated with Branch that first created Face
<any> all attributes associated with "select $face" statement

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 21 / 37

Attribute Rules (5)

EGADS attributes assigned to Edges:

body non-unique 2-tuple associated with first Edge creation
[0] Body index in which Edge first existed (bias-1)
[1] 100 * min(body[1][ileft],body[1][irite])

+ max(body[1][ileft],body[1][irite])
(or -3 if non-manifold)

edgeID unique 5-tuple that is assigned automatically
[0] faceID[0] of Face 1 (or 0 if non-manifold)
[1] faceID[1] of Face 1 (or 0 if non-manifold)
[2] faceID[0] of Face 2 (or 0 if non-manifold)
[3] faceID[1] of Face 2 (or 0 if non-manifold)
[4] sequence number

edgeID[0]/[1] swapped with edge[2]/[3]
100*edgeID[0]+edgeID[1] > 100*edgeID[2]+edgeID[3]

if multiple Edges have same edgeID[0], edgeID[1],
edgeID[2], and edgeID[3], then the sequence number
is defined based upon the first rule that applies:
* Edge with smaller xcg has lower sequence number
* Edge with smaller ycg has lower sequence number
* Edge with smaller zcg has lower sequence number
* Edge with smaller length has lower sequence number

<any> all attributes associated with "select $edge" statement
jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 22 / 37

Attribute Rules (6)

EGADS attributes assigned to Nodes:
nodeID not assigned at this time
<any> all attributes associated with "select $node" statement

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 23 / 37

Csystem rules (1)

Csystems (coordinate systems) are generated by the csystem
statement and are applied to the Body on the top of the Stack

Csystems are treated in many ways like Attributes
Csystem names must not be the same as a Attribute name

Csystems are found in ESP in same place as Attributes

Csystems are transformed along with any transformations that
are applied to their Body

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 24 / 37

Csystem rules (2)

Format of the csystem statement is:
If argument to csystem contains 9 entries:

{x0, y0, z0, dx1, dy1, dz1, dx2, dy2, dz3}
origin is at (x0,y0,q0)
dirn1 is in (dx1, dy1,dz1) direction
dirn2 is in (dx2,dy2,dz2) direction

If argument to csystem contains 5 entries and first is positive:

{+iface, ubar0, vbar0, du2, dv2}
origin is at normalized (ubar0,vbar0) in iface
dirn1 is normal to Face
dirn2 is in (du2,dv2) direction

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 25 / 37

Csystem rules (3)

Format of the csystem statement is:
If argument to csystem contains 5 entries and first is negative:

{-iedge, tbar, dx2, dy2, dz2}
origin is at normalized (tbar) in iedge
dirn1 is tangent to Edge
dirn2 is in (dx2,dy2,dz2) direction

If argument to csystem contains 7 entries:

{inode, dx1, dy1, dz1, dx2, dy2, dz2}
origin is at Node inode
dirn1 is in (dx1,dy1,dz1) direction
dirn2 is in (dx1,dy2,dz2) direction

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 26 / 37

Patterns

Patterns are like “for” or “do” loops
the Branches between the patbeg and patend are executed a

known number of times

at the beginning of each “instance”, the pattern number is

incremented (from 1 to the number of copies)

one can break out of the pattern early with a patbreak

statement

Example pattern (indentation optional):
PATBEG i 7

SET j i-1
BOX j 0 0 1 1 1
ROTATEX j*10 0 0

PATEND

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 27 / 37

If/then (1)

If/then constructs are used to make choice within a .csm script
start with ifthen statement

has zero or more elseif statements

has zero or one else statement

has exactly one endif statement

The ifthen and elseif options have arguments
val1 — an expression

op1 — can be lt, le, eq, ge, gt, or ne

val2 — an expression

op2 — can be or or and (defaults to and)

val3 — an expression (defaults to 0)

op3 — can be lt, le, eq, ge, gt, or ne (defaults to eq)

val4 — an expression (defaults to 0)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 28 / 37

If/then (2)

Example (indentation optional):
IFTHEN a eq 4 or b ne 2

BOX 0 0 0 1 1 1
ELSEIF c eq sqrt(9)

BOX 2 2 2 2 2 2
ELSE

BOX 3 3 3 3 3 3
ENDIF

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 29 / 37

Throw/catch

Throw/catch constructs are used to generate and react to
signals (errors)
Signals can be generated by

executing a throw command

a run-time error encountered elsewhere (see “help” for more

info)

When a signal is generated, all Braches are skipped until a
matching catbeg statement is encountered

the signal is cancelled

processing continues at the statement following the catbeg

If a catbeg statement is encountered when there is no pending
signal (or the pending signal does not match the catbeg)

all Branches up to, and including the matching catend

statement are skipped

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 30 / 37

Special Note on Programming Blocks

Programming Blocks are delineated by
patbeg and patend

ifthen, elseif, else, and endif

catbeg and catend

Any programming Block can be nested fully within any other
programming Block (up to 10 levels deep)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 31 / 37

Hands-on Exercises

Rectangular pattern
holes in rows and columns

Round plate with holes
holes in regular 2D pattern

requires additional pattern to determine if candidate hole is

“within” the plate

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 32 / 37

Rectangular Pattern (1)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 33 / 37

Rectangular Pattern (2)

nx number of holes in X -direction 3.00
ny number of holes in Y -direction 2.00
rad radius of each hole 0.30

distance between hole centers 1.00

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 34 / 37

Round Plate with Holes (1)

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 35 / 37

Round Plate with Holes (2)

Rplate radius or plate 4.50
thick thickness of plate 0.20
space distance between hole centers 2.00
Rhole radius of holes 0.80

number of holes selected
automatically

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 36 / 37

Muddy Cards

Are there any items that still confuse you

Is it clear how to make decisions using a pattern?

Is there anything else that is unclear

jfdannen@syr.edu / haimes@mit.edu ESP Training - Session 4 August 2016 37 / 37

