John F. Dannenhoffer, 111

jfdannen@syr.edu
Syracuse University

Bob Haimes Marshall Galbraith

haimes@mit.edu galbramc@mit.edu
Massachusetts Institute of Technology

e Manipulating the Stack

o GROUP
o STORE, RESTORE

e Looping

o PATBEG, PATBREAK, PATEND
e Logic

o IFTHEN, ELSEIF, ELSE, ENDIF
e Signal Handling

o THROW, CATBEG, CATEND
o User-defined Components (UDCs)

e Include-style
e Function-style

 Dannemhofier ESP Training - Session 2.3 P

@ During the build process, OpenCSM maintains a
last-in-first-out (LIFO) “Stack” that can contain Bodys and
Sketches.

@ The .csm statements are executed in a stack-like way, taking
their inputs from the Stack and depositing their results onto
the Stack.

e Bodys can be grouped with the GROUP statement

o all the Bodys back to the Mark (or the beginning of the
Stack) are put into a single Group

e some operations, such as the transformations, ATTRIBUTE,
STORE, and DUMP operate on all Bodys in the Group
simultaneously

 Dannemhofier ESP Training - Session 2.3 PR

@ The Group on the top of the Stack can be “popped” off the
stack with a STORE command

o if the name is alpha-numeric, the Group is stored in a named
storage location

o if the name is a dot (.), the Group is not stored (just popped
off the Stack)

o if the name is two dots (..), all the Groups back to the Mark
are popped off the Stack (and not stored)

o if the name is three dots (...), everything is popped off the
Stack

 Dannemhofier ESP Training - Session 2.3 P

e Groups can be read from a named storage location and
“pushed” onto the Stack with the RESTORE command

@ The RESTORE command is considered a primitive, so its
Attributes are put on all the Bodys and all their Faces

 Dannemhofier ESP Training - Session 2.3 PRy

e Patterns are like “for” or “do” loops

o the Branches between the PATBEG and PATEND are executed a
known number of times

e at the beginning of each “instance”, the pattern number is
incremented (from 1 to the number of copies)

e one can break out of the pattern early with a PATBREAK
statement

e Example pattern

PATBEG
SET
BOX
ROTATEX j*10

PATEND

indentation optional):
7

i-1

0

0

e e —

0
0

(]

 Dannemhofier ESP Training - Session 2.3 PR

o If/then constructs are used to make a choice within a .csm
script

start with IFTHEN statement

has zero or more ELSEIF statements

has zero or one ELSE statement

has exactly one ENDIF statement

@ The IFTHEN and ELSEIF statements have arguments

vall — an expression

opl — can be 1t, le, eq, ge, gt, or ne

val2 — an expression

op2 — can be or, xor, or and (defaults to and)

val3 — an expression (defaults to 0)

op3 — can be 1t, le, eq, ge, gt, or ne (defaults to eq)
vald — an expression (defaults to 0)

 Dannemhofier ESP Training - Session 2.3 P

e Example (indentation optional):

IFTHEN
BOX
ELSEIF
BOX
ELSE
BOX
ENDIF

a

N o O

eq
0

eq
2

3

4
0

sqrt (9)

2

3

or
1

2

3

b
1

2

3

ne
1

2

3

2

e Throw/catch constructs are used to generate and react to
signals (errors)
e Signals can be generated by
e executing a THROW command
e a run-time error encountered elsewhere (see “help” for more
info)
e When a signal is generated, all Branches are skipped until a
matching CATBEG statement is encountered
e the signal is cancelled
e processing continues at the statement following the CATBEG
o If a CATBEG statement is encountered when there is no
pending signal (or the pending signal does not match the
CATBEG)
e all Branches up to, and including the matching CATEND
statement, are skipped

 Dannemhofier ESP Training - Session 2.3 P a—

11:
12:
13:

14:

: BOX 000111

: THROW -99

: SPHERE 0 0 0 1

: CATBEG -98

SPHERE 0 0 0 2

: CATEND

: SPHERE 0 0 0 3

CATBEG -99
BOX 100111

: CATEND

CATBEG -99
SPHERE 0 0 0 4
CATEND

END

BOX in line 1 is generated
SPHERE in line 3 is skipped (since
there is an active signal)

CATBEG/CATEND in lines 4-6 are
skipped (since they do not match
-99)

SPHERE in line 7 is skipped

e BOX in line 9 is generated

CATBEG/CATEND in lines 11-13 are
skipped (since the signal was

cancelled when it was caught in
line 8)

 Dannemhofier ESP Training - Session 2.3 P TRy

e Programming Blocks are delineated by
PATBEG and PATEND

IFTHEN, ELSEIF, ELSE, and ENDIF
SOLBEG and SOLEND

CATBEG and CATEND

e Any programming Block can be nested fully within any other
programming Block (up to 10 levels deep)

 Dannemhofier ESP Training - Session 2.3 P TR

e A UDC is a series of statements that are contained in a .udc
file

@ The statements in the UDC can be treated in two ways:
o Include-style

o statements within the UDC are simply processed as if they
were included in the enclosing .csm or .udc file
o the .udc file must start with an INTERFACE . ALL statement
e Variables and Parameters in the .udc file have the same scope
as its caller (that is, the UDC shares variables with its caller)
e Function-style

o Variables and Parameters in the .udc file have local scope
(that is, the UDC’s variable are private)

o Variables in the UDC get values via
INTERFACE . IN statements

o The UDC can output some of its variables via
INTERFACE . 0OUT statements

 Dannemhofier ESP Training - Session 2.3 g TR

biconvex — generate a biconvex airfoil

boxudc — similar to the box UDP

diamond — generate a double-diamond airfoil
flapz — cut a (deflected) flap in a Body
gen_rot — general rotation with two fixed points
popupz — pop up a part of the configuration
spoilerz — pop up a spoiler

duct — generate a duct

fuselage — generate a fuselage

strut — generate a strut (between a duct and wing)

wing — generate a wing

 Dannemhofier ESP Training - Session 2.3 P TR

e UDCs are called with a UDPRIM statement
e $primtype must start with a slash (/), dollar-slash ($/), or
dollar-dollar-slash ($$/)

e if /, then the UDC file is in the current working directory

e if $/, then the UDC file is in the same directory as the .csm
file

o if $8/, then the UDC file is in ESP_RO0T/udc

o The UDPRIM statement can be preceded by one or more
UDPARG statements

e name-value pairs are processed in order (with possible
over-writing)

 Dannemhofier ESP Training - Session 2.3 g T R

@ Define the interface

e input variables (with default values)
e output variables (with default values)
o dimensioned variables (which all default to 0)

e Add assertions to ensure valid inputs

e Make sure all “output” variables are assigned values

dumbbell

INTERFACE Lbar in O # length of bar
INTERFACE Dbar in O # diameter of bar
INTERFACE Dball in O # diameter of balls
INTERFACE vol out O # volume

ASSERT ifpos(Lbar,1,0) 1

ASSERT ifpos(Dbar,1,0) 1

ASSERT ifpos(Dball,1,0) 1

SET Lhalf "Lbar / 2"

CYLINDER -Lhalf O O +Lhalf O O Dbar

SPHERE -Lhalf 0 O Dball
UNION

SPHERE +Lhalf O O Dball
UNION

SET vol @volume

END

 Dannemhofier ESP Training - Session 2.3 g TR

jack

UDPARG $/dumbbell Lbar 5.0
UDPARG $/dumbbell Dball 1.0
UDPRIM $/dumbbell Dbar 0.2
SET foo @@vol

STORE dumbbell O 1

RESTORE dumbbell
ROTATEY 90 0 O
UNION

RESTORE dumbbell
ROTATEZ 90 0 O
UNION

show that vol was a local variable in .udc

ASSERT ifnan(vol,1,0) 1
END

ESP (Engineering Sketch Pad,

@)O] (8- oo YR-31-I 2 3 ‘

Uptodate Help

Undo Edt Save File

HJ[LJ(RJ B T+ -
Design Parameters.

+ Local Variables

+ Branches

- Display

+ Body 13 Viz Grd

ESP has been initialized and is attached to 'serveCsh'

< S Turning flying mode ON

cutter

INTERFACE xx in
INTERFACE yy in
INTERFACE zbeg in
INTERFACE zend in

o O O o

ASSERT ifpos(xx.size-2,1,0) 1
ASSERT ifzero(xx.size-yy.size,1,0) 1

SKBEG xx[1] yy[1] zbeg
PATBEG i xx.size-1
LINSEG xx[i+1] yy[i+1] zbeg
PATEND
LINSEG xx[1] yy[1] zbeg
SKEND 1

EXTRUDE O O =zend-zbeg

END

scribeCyl

DIMENSION xpoints 1 3
DIMENSION ypoints 1 3

SET xpoints "-1.; 1.; .0;"
SET ypoints "-.5; -.5; +.5;"

CYLINDER -3 0 0 +3 0 0 2
ROTATEX 90 O O

UDPARG $/cutter xx xpoints
UDPARG $/cutter yy ypoints
UDPARG $/cutter zbeg O
UDPRIM $/cutter zend 3
SUBTRACT

END

ESP (Engineering Sketch Pad,

(©8s ¢ | (@ coose DRI

Uptodate Help

Undo Edit Save File
W] LJ(R) B T+~
Design Parameters
+ Local Variables
+ Branches
- Display
+ Bodyl2 Viz Grd

ESP has been initialized and is attached to 'serveCsh'

< S Turning flying mode ON

o Rectangular plate with holes

@ Round plate with holes
@ Reflected cone

e Files in $ESP_RO0T/training/session2.3 will get you
started

Uptodate Help
Undo Edt SaveFile
H] L] RJ(B] T

- Design Parameters
nx
ny
rad

+ Local Variables

+ Branches

Display
+ Body 19

e S ESP has been initialized and is attached to 'serveCsi'

nx

ny
rad

number of holes in X-direction
number of holes in Y-direction
radius of each hole

distance between hole centers

3.00
2.00
0.30
1.00

e Can you make a single hole in the center of the plate?

e Can you change your solution to have the holes spaced so
that they fill the plate?

e What if you make the radius of the hole too big?

ESP (Engineering Sketch P

Q) wE A

Uptodate Help
Undo Edit SaveFile
H] L] RJ(BJ TJ +

- Design Parameters
Rplate 45
thick 02
space 2!
Rhole 08

+ Local Variables
+ Branches

- Display
+ Body27 Viz Grd

&P

'8

ESP has been initialized and is attached to

4 June 2019

26 /29

Rplate | radius or plate 4.50

thick | thickness of plate 0.20

space | distance between hole centers | 2.00

Rhole | radius of holes 0.80
number of holes selected
automatically

(<)o) & (@ coose DRI N

Uptodate Help
Undo Edit Save File
H/ LR B T [+ -

Design Parameters.
+ Local Variables

+ Branches

- Display
+ Body5 Viz Grd

A

ESP has been initialized and is attached to 'serveCsh'

< S Turning flying mode ON

@ Write mirrorDup.udc to
e store a copy of the Body on the top of the stack
e mirror the Body across a plane whose normal vector and
distance from the origin are given
e union the original and mirrored Bodys
e Apply mirrorDup.udc to a cone
cone base at (5,0,0)
cone vertex at (0,0,0)
cone diameter is 4
reflection across a plane at x =1

 Dannemhofier ESP Training - Session 2.3 P TR

