
Computational Aircraft Prototype Syntheses:
The CAPS API

Part of ESP Revision 1.15

Bob Haimes
haimes@mit.edu

Aerospace Computational Design Lab
Massachusetts Institute of Technology

Note: Sections in red are changes in CAPS from Revision 1.14.

Haimes CAPS API 17 May 2019 1 / 47

CAPS Infrastructure in ESP

ESP
UI

pyCAPS

User

——–

MDO
Framework

Sorcer

OpenMDAO

ModelCenter
Analysis

tools

Computa-
tional

Aircraft
Prototype
Syntheses

(CAPS)
API

Problem
Database

Analysis
Subsystem

Geometry
Subsystem

—
OpenCSM

EGADS

Analysis
I/O Files

Analysis
Interface

& Meshing
(AIM)

Geometry
Database

Haimes CAPS API 17 May 2019 2 / 47

CAPS Definitions

Problem Object
The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data
associated with the run(s), which can be both multi-fidelity and multidisciplinary.
There can be multiple Problems in a single execution of CAPS and each Problem is
designed to be thread safe allowing for multi-threading of CAPS at the highest level.

Value Object
A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both.
Also Value Objects can refer to mission parameters that are stored at the top-level of
the CAPS database. The values contained in any input Value Object can be bypassed
by the linkage connection to another Value (or DataSet) Object of the same shape.
Attributes are also cast to temporary (User) Value Objects.

Haimes CAPS API 17 May 2019 3 / 47

CAPS Definitions

Analysis Object
The Analysis Object refers to an instance of running an analysis code. It holds the
input and output Value Objects for the instance and a directory path in which to
execute the code (though no explicit execution is initiated). Multiple various
analyses can be utilized and multiple instances of the same analysis can be handled
under the same Problem.

Bound Object
A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the “outer surface of the wing”). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body).

Dimensionally:
1D – Collection of Edges
2D – Collection of Faces

Haimes CAPS API 17 May 2019 4 / 47

CAPS Definitions

VertexSet Object
A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
it’s data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object
A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

Haimes CAPS API 17 May 2019 5 / 47

CAPS Objects

Object SubTypes Parent Object
capsProblem Parametric, Static
capsValue GeometryIn, GeometryOut, capsProblem,

Branch, Parameter, User capsValue
capsAnalysis capsProblem
capsValue AnalysisIn, AnalysisOut capsAnalysis,

capsValue
capsBound capsProblem
capsVertexSet Connected, Unconnected capsBound

capsDataSet User, Analysis, Interpolate, capsVertexSet
Conserve, Builtin, Sensitivity

Body Objects are EGADS Objects (egos)

Haimes CAPS API 17 May 2019 6 / 47

CAPS Body Filtering

Filtering the active CSM Bodies occurs at two different stages, once in
the CAPS framework, and once in the AIMs. The filtering in the CAPS
framework creates sub-groups of Bodies from the CSM stack that are
passed to the specified AIM. Each AIM instance is then responsible for
selecting the appropriate Bodies from the list it has received.

The filtering is performed by using two Body attributes:
“capsAIM” and “capsIntent”.

Filtering within AIM Code
Each AIM can adopt it’s own filtering scheme for down-selecting how to use each
Body it receives. The “capsIntent” string is accessible to the AIM, but it is for
information only.

Haimes CAPS API 17 May 2019 7 / 47

CAPS Body Filtering
CSM AIM targeting: “capsAIM”
The CSM script generates Bodies which are designed to be used by specific AIMs.
The AIMs that the Body is designed for is communicated to the CAPS framework via
the “capsAIM” string attribute. This is a semicolon-separated string with the list of
AIM names. Thus, the CSM author can give a clear indication to which AIMs should
use the Body. For example, a body designed for a CFD calculation could have:

ATTRIBUTE capsAIM $su2AIM;fun3dAIM;cart3dAIM

CAPS AIM Instantiation: “capsIntent”
The “capsIntent” Body attribute is used to disambiguate which AIM instance should
receive a given Body targeted for the AIM. An argument to caps load accepts a
semicolon-separated list of keywords when an AIM is instantiated in CAPS/pyCAPS.
Bodies from the “capsAIM” selection with a matching string attribute “capsIntent”
are passed to the AIM instance. The attribute “capsIntent” is a semicolon-separated
list of keywords. If the string to caps load is NULL, all Bodies with a “capsAIM”
attribute that matches the AIM name are given to the AIM instance.

Haimes CAPS API 17 May 2019 8 / 47

Other Reserved CAPS Attribute names

capsLength
This string Attribute must be applied to an EGADS Body to indicate the length units
used in the geometric construction.

capsBound
This string Attribute must be applied to EGADS BRep Objects to indicate which
CAPS Bound(s) are associated with the geometry. A entity can be assigned to
multiple Bounds by having the Bound names separated by a semicolon. Face
examples could be “Wing”, “Wing;Flap”, “Fuselage”, and etc.

Note: Bound names should not cross dimensional lines.

capsGroup
This string Attribute can be applied to EGADS BRep Objects to assist in grouping
geometry into logical sets. A geometric entity can be assigned to multiple groups in
the same manner as the capsBound attribute.

Note: CAPS does not internally use this, but is suggested of classifying geometry.

Haimes CAPS API 17 May 2019 9 / 47

CAPS Execution

pyCAPS

MDO
Framework

—
Sorcer

ModelCenter
OpenMDAO

Analysis
tools

Computa-
tional

Analysis
Prototype
Syntheses

(CAPS)
Executive

Problem
Database

Analysis
Subsystem

Geometry
Subsystem

—
OpenCSM

EGADS

Analysis
I/O Files

Analysis
Interface

& Meshing
(AIM)

Geometry
Database

Setup (or read) the Problem:

Initialize Problem with csm (or static) file
GeomIn and GeomOut parameters

Specify mission parameters

Make Analysis instances
AnalysisIn and AnalysisOut params

Create Bounds, VetrexSets & DataSets

Establish linkages between parameters

Run the Problem:

Adjust the appropriate parameters

Regenerate Geometry (if dirty)

Call for Analysis Input file generation

Framework/user runs each solver

Inform CAPS that an Analysis has run
fills AnalysisOut params & DataSets (lazy)

Generate Objective Function

Save the Problem DB (checkpointing)

Haimes CAPS API 17 May 2019 10 / 47

CAPS API – Utilities
Open CAPS Problem
icode = caps open(char *name, char *pname, capsObj *problem)

name the input file name – action based on file extension:
*.caps read the saved CAPS problem file
*.csm initialize the project using the specified OpenCSM file

*.egads initialize the project based on the static geometry

pname the input CAPS problem process name

problem the returned CAPS problem Object

Set Verbosity Level
icode = caps outLevel(capsObj problem, int outLevel)

problem the CAPS problem object

outLevel 0 - minimal, 1 - standard (default), 2 - debug

icode the integer return code / old outLevel

Close CAPS Problem
icode = caps close(capsObj problem)

problem the input CAPS problem to close and perform a memory cleanup

Haimes CAPS API 17 May 2019 11 / 47

CAPS API – Utilities
Save Problem file
icode = caps save(capsObj problem, char *name)

problem the input CAPS problem Object to write

name the save file name – no extension (added by this function)

icode the integer return code

Information about an Object
icode = caps info(capsObj object, char **name, enum *type, enum *stype,

capsObj *link, capsObj *parent, capsOwn *last)

object the input CAPS Object

name the returned Object name pointer (if any)

type the returned data type: Problem, Value, Analysis, Bound, VertexSet, DataSet

stype the returned subtype (depending on type)

link the returned linkage Value Object (NULL – no link)

parent the returned parent Object (NULL for a Problem or an Attribute generated User Value)

last the returned last owner to touch the Object

icode integer return code

Haimes CAPS API 17 May 2019 12 / 47

CAPS API – Utilities
Children Sizing info from a Parent Object
icode = caps size(capsObj object, enum type, enum stype, int *size)

object the input CAPS Object

type the data type to size: Bodies, Attributes, Value, Analysis, Bound, VertexSet, DataSet

stype the subtype to size (depending on type)

size the returned size

icode integer return code

Get Child by Index
icode = caps childByIndex(capsObj object, enum type, enum stype,

int index, capsObj *child)

object the input parent Object

type the Object type to return: Value, Analysis, Bound, VertexSet, DataSet

stype the subtype to find (depending on type)

index the index [1-size]

child the returned CAPS Object

icode integer return code

Haimes CAPS API 17 May 2019 13 / 47

CAPS API – Utilities

Get Child by Name
icode = caps childByName(capsObj object, enum type, enum stype,

char *name, capsObj *child)

object the input parent Object

type the Object type to return: Value, Analysis, Bound, VertexSet, DataSet

stype the subtype to find (depending on type)

name a pointer to the index character string

child the returned CAPS Object

icode integer return code

Delete an Object
icode = caps delete(capsObj object)

object the Object to be deleted
Note: only Value Objects of subtype User and Bound Objects may be deleted!

icode integer return code

Haimes CAPS API 17 May 2019 14 / 47

CAPS API – Utilities

Get Body by index
icode = caps bodyByIndex(capsObj obj, int ind, ego *body, char **unit)

obj the input CAPS Problem or Analysis Object

ind the index [1-size]

body the returned EGADS Body Object

units pointer to the string declaring the length units – NULL for unitless values

icode integer return code

Set Owner Data
icode = caps setOwner(capsObj prob, char *pname, capsOwn *owner)

prob the input CAPS Problem Object

pname a pointer to the process name character string

owner a pointer to the CAPS Owner structure to fill

icode integer return code

Notes: (1) This increases the Problem’s sequence number
(2) This does not return the owner pointer, but uses the address to fill
(3) The internal strings can be freed up with caps freeOwner

Haimes CAPS API 17 May 2019 15 / 47

CAPS API – Utilities

Free Owner Information
caps freeOwner(capsOwn *owner)

owner a pointer to the CAPS Owner structure to free up the members pname, pID and user

Get Owner Information
icode = caps ownerInfo(capsOwn owner, char **pname, char **pID,

char **userID, short datetime[6], long *sNum)

owner the input CAPS Owner structure

pname the returned pointer to the process name

pID the returned pointer to the process ID

userID the returned pointer to the user ID

datetime the filled date/time stamp info [year, month, day, hour, minute, second]

sNum the sequence number (always increasing)

icode integer return code

Haimes CAPS API 17 May 2019 16 / 47

CAPS API – Utilities
Get Error Information
icode = caps errorInfo(capsErrs *errors, int eindex, capsObj *errObj,

int *nLines, char ***lines)

errors the input CAPS Error structure

eindex the index into error (1 bias)

errObj the offending CAPS Object

nLines the returned number of comment lines to describe the error

lines a pointer to a list of character strings with the error description

icode integer return code

Free Error Structure
icode = caps freeError(capsErrs *errors)

errors the CAPS Error structure to be freed

icode integer return code

Free memory in Value Structure
caps freeValue(capsValue *value)

value a pointer to the Value structure to be cleaned up

Haimes CAPS API 17 May 2019 17 / 47

CAPS API – Value Objects

Create A Value Object
icode = caps makeValue(capsObj problem, char *vname, enum subtype,

enum vtype, int nrow, int ncol, void *data,
char *units, capsObj *val)

problem the input CAPS Problem Object where the Value to to reside

vname the Value Object name to be created

subtype the Object subtype: Parameter or User

vtype the value data type:
0 Boolean 2 Double 4 String Tuple
1 Integer 3 Character String

nrow number of rows (not needed for Character Strings)

ncol number of columns (not needed for strings) – vlen = nrow * ncol

data pointer to the appropriate block of memory
must be a pointer to a capsTuple structure(s) when vtype is a Tuple

units pointer to the string declaring the units – NULL for unitless values

val the returned CAPS Value Object

icode integer return code

Haimes CAPS API 17 May 2019 18 / 47

CAPS API – Value Objects

Retrieve Values
icode = caps getValue(capsObj val, enum *vtype, int *vlen, void **data,

char **units, int *nErr, capsErrs **errs)

val the input Value Object

vtype the returned data type:
0 Boolean 2 Double 4 String Tuple
1 Integer 3 Character String 5 Value Object

vlen the returned value length

data a filled pointer to the appropriate block of memory (NULL – don’t fill)
Can use childByIndex to get Value Objects

units the returned pointer to the string declaring the units

nErr the returned number of errors generated – 0 means no errors

errs the returned CAPS error structure – NULL with no errors

icode integer return code

Use the structure capsTuple when casting data if a Tuple (4)

Haimes CAPS API 17 May 2019 19 / 47

CAPS API – Value Objects
Reset A Value Object
icode = caps setValue(capsObj val, int nrow, int ncol, void *data)

val the input CAPS Value Object (not for GeometryOut or AnalysisOut)
nrow number of rows (not needed for Character Strings)
ncol number of columns (not needed for strings) – vlen = nrow * ncol
data pointer to the appropriate block of memory used to reset the values

Get Valid Value Range
icode = caps getLimits(capsObj val, void **limits)

val the input Value Object
limits an returned pointer to a block of memory containing the valid range [2*sizeof(vtype)

in length] – or – NULL if not yet filled

Set Valid Value Range
icode = caps setLimits(capsObj val, void *limits)

val the input Value Object (only for the User & Parameter subtypes)
limits a pointer to the appropriate block of memory which contains the minimum and

maximum range allowed (2 in length)
icode integer return code

Haimes CAPS API 17 May 2019 20 / 47

CAPS API – Value Object

Get Value Shape/Dimension
icode = caps getValueShape(capsObj val, int *dim, enum *lfixed,

enum *sfixed, enum *ntype,
int *nrow, int *ncol)

val the input Value Object

dim the returned dimensionality:
0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

lfixed 0 – the length(s) can change, 1 – the length is fixed

sfixed 0 – the Shape can change, 1 – Shape is fixed

ntype 0 – NULL invalid, 1 – not NULL, 2 – is NULL

nrow number of rows – parent index for Value vtypes

ncol number of columns
Note: vlen = nrow * ncol

icode integer return code

Haimes CAPS API 17 May 2019 21 / 47

CAPS API – Value Object

Set Value Shape/Dimension
icode = caps setValueShape(capsObj val, int dim, enum lfixed,

enum sfixed, enum ntype)

val the input Value Object (only for the User & Parameter subtypes)

dim the dimensionality:
0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

lfixed 0 – the length(s) can change, 1 – the length is fixed

sfixed 0 – the Shape can change, 1 – Shape is fixed

ntype 0 – NULL invalid, 1 – not NULL, 2 – is NULL

Units conversion
icode = caps convert(capsObj val, char *units, double in, double *out)

val the reference Value Object

units the pointer to the string declaring the source units

in the source value to be converted

out the returned converted value in the Value Object’s units

Haimes CAPS API 17 May 2019 22 / 47

CAPS API – Value Object

Transfer Values
icode = caps transferValues(capsObj src, enum tmethod, capsObj dst,

int *nErr, capsErrs **errs)

src the source input Value Object (not for Value or Tuple vtypes) – or –
DataSet Object

tmethod 0 – copy, 1 – integrate, 2 – weighted average – (1 & 2 only for DataSet src)

dst the destination Value Object to receive the data
Notes:

Must not be GeometryOut or AnalysisOut
Shapes must be compatible
Overwrites any Linkage

nErr the returned number of errors generated – 0 means no errors

errs the returned CAPS error structure – NULL with no errors

icode integer return code

Haimes CAPS API 17 May 2019 23 / 47

CAPS API – Value Object

Establish Linkage
icode = caps makeLinkage(capsObj link, enum tmethod, capsObj trgt)

link linking Value Object (not for Value or Tuple vtypes or Value subtype User) – or –
DataSet Object

tmethod 0 – copy, 1 – integrate, 2 – weighted average – (1 & 2 only for DataSet link)

trgt the target Value Object which will get its data from link
Notes:

Must not be GeometryOut or AnalysisOut
Shapes must be compatible
link = NULL removes any Linkage

icode integer return code

Note: circular linkages are not allowed!

Haimes CAPS API 17 May 2019 24 / 47

CAPS API – Attributes

Get Attribute by name
icode = caps attrByName(capsObj object, char *name, capsObj *attr)

object any CAPS Object

name a string referring to the Attribute name

attr the returned User Value Object (must be deleted when no longer needed)

icode integer return code

Get Attribute by index
icode = caps attrByIndex(capsObj object, int in, capsObj *attr)

object any CAPS Object

in the index (bias 1) to the list of Attributes

attr the returned User Value Object (must be deleted when no longer needed)
Attribute name is the Value Object name

icode integer return code

Note: The shape of the original Value Object is not maintained, but the length is correct.

Haimes CAPS API 17 May 2019 25 / 47

CAPS API – Attributes

Set an Attribute
icode = caps setAttr(capsObj object, char *name, capsObj attr)

object any CAPS Object

name a string referring to the Attribute name – NULL: use name in attr
Note: an existing Attribute of this name is overwritten with the new value

attr the Value Object containing the attribute
The attribute will not maintain the Value Object’s shape

icode integer return code

Delete an Attribute
icode = caps deleteAttr(capsObj object, char *name)

object any CAPS Object

name a string referring to the Attribute to delete
NULL deletes all attributes attached to the Object

icode integer return code

Haimes CAPS API 17 May 2019 26 / 47

CAPS API – Analysis
Query Analysis – Does not ‘load’ or create an object
icode = caps queryAnalysis(capsObj problem, char *aname,

int *nIn, int *nOut, int *execution)

problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name
Note: this causes the the DLL/Shared-Object to be loaded (if not already resident)

nIn the returned number of Inputs

nOut the returned number of Outputs

execution the returned execution flag: 0 – no execution, 1 – AIM performs analysis

icode integer return code

Get Bodies
icode = caps getBodies(capsObj analysis, int *nBody, ego **bodies)

analysis the Analysis Object

nBody the returned number of EGADS Body Objects that match the Analysis’ intent

bodies the returned pointer to a list of EGADS Body/Node Objects,
Tessellation Objects (set by aim setTess) follow (length – 2*nBody)

icode integer return code

Haimes CAPS API 17 May 2019 27 / 47

CAPS API – Analysis
Query Analysis Input Information
icode = caps getInput(capsObj problem, char *aname, int index,

char **ainame, capsValue *default)
problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name

index the Input index [1-nIn]

ainame a pointer to the returned Analysis Input variable name (use EG free to free memory)

default a pointer to the filled default value(s) and units – use caps freeValue to cleanup

Query Analysis Output Information
icode = caps getOutput(capsObj problem, char *aname, int index,

char **aoname, capsValue *form)
problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name

index the Output index [1-nOut]

aoname a pointer to the returned Analysis Output variable name (use EG free)

form a pointer to the Value Shape & Units information – returned
use caps freeValue to cleanup

Haimes CAPS API 17 May 2019 28 / 47

CAPS API – Analysis

Load Analysis into a Problem
icode = caps load(capsObj problem, char *aname, char *apath,

char *unitSys, char *intent, int naobj,
capsObj *aobjs, capsObj *analysis)

problem a CAPS Problem Object

aname the Analysis (and AIM plugin) name
Note: this causes the the DLL/Shared-Object to be loaded (if not already resident)

apath the absolute filesystem path to both read and write files
this is required even if the AIM does not use the the filesystem, so that the combination
of aname and apath is unique

unitSys pointer to string describing the unit system to be used by the AIM (can be NULL)
see specific AIM documentation for a list of strings for which the AIM will respond

intent the intent character string used to pass Bodies to the AIM, NULL – no filtering

naobj the number of parent Analysis Object(s)

aobjs a list of the parent Analysis Object(s) – may be NULL if naobj == 0

analysis the resultant Analysis Object

icode integer return code

Haimes CAPS API 17 May 2019 29 / 47

CAPS API – Analysis
Initialize Analysis from another Analysis Object
icode = caps dupAnalysis(capsObj from, char *apath, int naobj,

capsObj *aobjs, capsObj *analysis)

from an existing CAPS Analysis Object

apath the absolute filesystem path to both read and write files
required so that the combination of aname and apath is unique

naobj the number of parent Analysis Object(s)

aobjs a list of the parent Analysis Object(s) – may be NULL if naobj == 0

analysis the resultant Analysis Object

icode integer return code

Get Dirty Analysis Object(s)
icode = caps dirtyAnalysis(capsObj object, int *nAobj, capsObj **aobjs)

problem a CAPS Problem, Bound or Analysis Object

nAobjs the returned number of dirty Analysis Objects

aobjs a returned pointer to the list of dirty Analysis Objects (freeable)

icode integer return code

Haimes CAPS API 17 May 2019 30 / 47

CAPS API – Analysis

Get Info about an Analysis Object
icode = caps analysisInfo(capsObj analysis, char **apath,

char **unitSys, char **intent, int *naobj,
capsObj *aobjs, int *nfields, char ***fnames,
int **ranks, int *exec, int *status)

analysis the input Analysis Object

apath a returned pointer to the string specifying the filesystem path for file I/O

unitSys returned pointer to string describing the unit system used by the AIM (can be NULL)

intent the returned pointer to the intent character string used to pass Bodies to the AIM

naobj the returned number of parent Analysis Object(s)

aobjs a returned pointer to a list of the parent Analysis Object(s)

nfields the returned number of fields for DataSet filling

fnames a returned pointer to a list of character strings with the field/DataSet names

ranks a returned pointer to a list of ranks associated with each field

exec the returned execution flag: 0 – no execution, 1 – AIM performs analysis

status 0 – up to date, 1 – dirty Analysis inputs, 2 – dirty Geometry inputs
3 – both Geometry & Analysis inputs are dirty , 4 – new geometry,
5 – post Analysis required, 6 – Execution & post Analysis required

Haimes CAPS API 17 May 2019 31 / 47

CAPS API – Analysis

Generate Analysis Inputs
icode = caps preAnalysis(capsObj analysis, int *nErr, capsErrs **errs)

analysis the Analysis (or Problem) Object
a Geometry-only regen is forced when this is a Problem Object

nErr the returned number of errors generated – 0 means no errors

errs the returned CAPS error structure – NULL with no errors

icode integer return code

Mark Analysis as Run
icode = caps postAnalysis(capsObj analysis, capsOwn current, int *nErr,

capsErrs **errors)

analysis the Analysis Object
Note: this clears all Analysis Output Objects to force reloads/recomputes

current the CAPS owner structure information for the run

nErr the returned number of errors generated – 0 means no errors

errors the returned CAPS error structure – NULL with no errors

icode integer return code

Haimes CAPS API 17 May 2019 32 / 47

CAPS API – Analysis Data

Create a Bound – Open until completeBound
icode = caps makeBound(capsObj problem, int dim, char *bname,

capsObj *bound)

problem a CAPS Problem Object

dim the dimensionality of the Bound (1 – 3)

bname the Bound name (matching the capsBound Attribute)

bound the resultant open Bound Object

icode integer return code

Complete a Bound
icode = caps completeBound(capsObj bound)

bound the CAPS Bound Object to close after creating all of the VertexSets & DataSets
make calls to makeVertexSet and makeDataSet in between these 2 functions

icode integer return code

Haimes CAPS API 17 May 2019 33 / 47

CAPS API – Analysis Data

Get Information about a Bound
icode = caps boundInfo(capsObj bound, enum *state, int *dim,

double *plims)

bound the CAPS Bound Object

state the returned Bound state:
-1 Open
0 Empty & Closed
1 single BRep entity
2 multiple BRep entities

-2 multiple BRep entities – Error in reparameterization!

dim the returned dimensionality of the Bound (1 – 3)

plims the filled parameterization limits (2 values when dim is 1, 4 when dim is 2)

icode integer return code

Haimes CAPS API 17 May 2019 34 / 47

CAPS API – Analysis Data
Make a VertexSet
icode = caps makeVertexSet(capsObj bound, capsObj analysis,

char *vname, capsObj *vset)

bound an input open CAPS Bound Object

analysis the Analysis Object (NULL – Unconnected)

vname a character string naming the VertexSet (can be NULL for a Connected VertexSet)

vset the returned VertexSet Object

icode integer return code

Get Info about a VertexSet
icode = caps vertexSetInfo(capsObj vset, int *nGpts, int *nDpts,

capsObj *bound, capsObj *analysis)

vset the VertexSet Object

nGpts the returned number of Geometry points in the VertexSet

nDpts the returned number of point Data positions in the VertexSet

bound the returned associated Bound Object

analysis the returned associated Analysis Object (NULL – Unconnected)

icode integer return code

Haimes CAPS API 17 May 2019 35 / 47

CAPS API – Analysis Data

Fill VertexSets for cyclic/incremental transfers
icode = caps fillVertexSets(capsObj bound, int *nErr, capsErrs **errs)

bound an input closed CAPS Bound Object

nErr the returned number of errors generated – 0 means no errors

errs the returned CAPS error structure – NULL with no errors

icode integer return code
Note: Causes the filling of the VertexSets owned by the Bound by forcing the invocation of the appropriate
aimDiscr functions in the AIM. Under normal circumstances this is deferred to the last postAnalysis
call of the collected VertexSets.

Fill an Unconnected VertexSet
icode = caps fillUnVertexSet(capsObj vset, int npts, double *xyzs)

vset the input Unconnected VertexSet Object

npts the number of points in the VertexSet

xyzs the point positions (3*npts in length)

icode integer return code

Haimes CAPS API 17 May 2019 36 / 47

CAPS API – Analysis Data

Output a VertexSet for Plotting/Debugging
icode = caps outputVertexSet(capsObj vset, char *filename)

vset the VertexSet Object

filename the VertexSet filename (should have the extension “.vs”)

icode integer return code
The CAPS application vVS can be used to interactively view the file generated by this function.

Haimes CAPS API 17 May 2019 37 / 47

CAPS API – Analysis Data
DataSet Naming Conventions

Multiple DataSets in a Bound can have the same Name
Allows for automatic data transfers
One source (from either Analysis or User Methods)
Reserved Names:

DSet Name rank Meaning Comments
xyz 3 Geometry Positions
xyzd 3 Data Positions Not for vertex-based

discretizations
param* 1/2 t or [u,v] data for Geometry

Positions
paramd* 1/2 t or [u,v] for Data Positions Not for vertex-based

discretizations
GeomIn* 3 Sensitivity for the Geometry can have [irow, icol] in

Input GeomIn name
* Note: not valid for 3D Bounds

Haimes CAPS API 17 May 2019 38 / 47

CAPS API – Analysis Data

Create a DataSet
icode = caps makeDataSet(capsObj vset, char *dname, enum method,

int rank, capsObj *dset)

vset the VertexSet Object – associated Bound must be open

dname a pointer to a string containing the name of the DataSet (i.e., pressure)

method the method used for data transfers: (Sensitivity, Analysis, Interpolate, Conserve, User)

rank the rank of the data (e.g., 1 – scalar, 3 – vector)

dset the returned DataSet Object

Initialize DataSet for cyclic/incremental startup
icode = caps initDataSet(capsObj dset, int rank, double *startup)

dset the DataSet Object (Method must be Interpolate or Conserve)

rank the rank of the data (e.g., 1 – scalar, 3 – vector)

startup the pointer to the constant startup data (rank in length)
Note: invocations of caps getData and aim getDataSet will return this data (and a length of 1)
until properly filled.

Haimes CAPS API 17 May 2019 39 / 47

CAPS API – Analysis Data
Get Data from a DataSet
icode = caps getData(capsObj dset, int *npts, int *rank,

double **data, char **units)

dset the DataSet Object

npts the returned number of points in the DataSet

rank the returned rank of the data (e.g., 1 – scalar, 3 – vector)

data the returned pointer to the data (rank*npts in length)

units the returned pointer to the string declaring the units

icode integer return code

Get History of a DataSet
icode = caps getHistory(capsObj dset, capsObj *vset, int *nhist,

capsOwn **hist)

dset the DataSet Object

vset the returned associated VertexSet Object

nhist the returned length of the history list

hist the returned pointer to the list (nhist in length)

icode integer return code

Haimes CAPS API 17 May 2019 40 / 47

CAPS API – Analysis Data
Put User Data into a DataSet
icode = caps setData(capsObj dset, int nverts, int rank, double *data,

char *units)

dset the DataSet Object

nverts the number of points in data – must match declared npts

rank the rank of the data – must match declared rank (e.g., 1 – scalar, 3 – vector)

data a pointer to the data (rank*nverts in length)

units the pointer to the string declaring the units

icode integer return code

Get DataSet Objects by Name
icode = caps getDataSets(capsObj bound, char *dname, int *nobj,

capsObj **dsets)

bound an input CAPS Bound Object

dname a pointer to a string containing the name of the DataSet

nobj the returned number of Objects with the name

dsets a returned pointer to the list of DataSet Objects (freeable)

icode integer return code

Haimes CAPS API 17 May 2019 41 / 47

CAPS API – Analysis Data

Get Triangulations for a 2D VertexSet
icode = caps triangulate(capsObj vset, int *nGtris, int **Gtris,

int *nDtris, int **Dtris)

vset the input CAPS Connected VertexSet Object

nGtris the returned number of Geometry-based Triangles

Gtris the returned pointer to a list of indices (bias 1) referencing Geometry-based points
(3*nGtris in length) – freeable

nDtris the returned number of Data-based Triangles (0 if discretization is vertex based)

Dtris the returned pointer to a list of indices (bias 1) referencing Data-based points
(3*nDtris in length) – freeable

icode integer return code

Haimes CAPS API 17 May 2019 42 / 47

CAPS API – Analysis (AIM) Debug

Backdoor AIM Specific Communication
icode = caps AIMbackdoor(capsObj analysis, char *JSONin,

char **JSONout)

analysis the Analysis Object

JSONin a pointer to a character string that AIM function aimBackdoor will respond to.

JSONout a returned pointer to a character string that AIM function aimBackdoor creates and
passes back as the result to the request (may be freeable – depending on the AIM).

icode integer return code

Note: Look at the specific AIM documentation to determine if it will
respond and to what JSONin commands.

Haimes CAPS API 17 May 2019 43 / 47

CAPS Return Codes

CAPS SUCCESS 0
CAPS BADRANK -301
CAPS BADDSETNAME -302
CAPS NOTFOUND -303
CAPS BADINDEX -304
CAPS NOTCHANGED -305
CAPS BADTYPE -306
CAPS NULLVALUE -307
CAPS NULLNAME -308
CAPS NULLOBJ -309
CAPS BADOBJECT -310
CAPS BADVALUE -311
CAPS PARAMBNDERR -312
CAPS NOTCONNECT -313
CAPS NOTPARMTRIC -314
CAPS READONLYERR -315
CAPS FIXEDLEN -316
CAPS BADNAME -317
CAPS BADMETHOD -318

CAPS CIRCULARLINK -319
CAPS UNITERR -320
CAPS NULLBLIND -321
CAPS SHAPEERR -322
CAPS LINKERR -323
CAPS MISMATCH -324
CAPS NOTPROBLEM -325
CAPS RANGEERR -326
CAPS DIRTY -327
CAPS HIERARCHERR -328
CAPS STATEERR -329
CAPS SOURCEERR -330
CAPS EXISTS -331
CAPS IOERR -332
CAPS DIRERR -333
CAPS NOTIMPLEMENT -334
CAPS EXECERR -335
CAPS CLEAN -336
CAPS BADINTENT -337

Haimes CAPS API 17 May 2019 44 / 47

Bounds and the use of Intermediate Results

The Population of the VertexSets
Bounds needed to be fully populated (i.e., the VertexSets need to be filled for all
analyses) before they can be used. This is due to the requirement to have all points
available to ensure that there is a single UV space (either by construction or by
re-parameterization).

By default this is done in the “post” phase of the last analysis in the Bound to be
updated, which makes it basically impossible to have an intermediate result for the
first iteration (such as in Fluid/Structure Interaction). This issue is mitigated by using
the function caps fillVertexSets before the first analysis is invoked. What
this does is call the AIM to fill the aimDiscr structure (basically the VertexSet) before
the “pre” phase but requires the mesh (or performs the meshing) at that time.

NOTE: An analysis AIM that supports aimDiscr and also generates meshes “on the
fly” must be able to generate meshes and call aim setTess from both aimDiscr
and aimPreAnalysis (whenever and wherever the mesh gets generated).

Haimes CAPS API 17 May 2019 45 / 47

Bounds and the use of Intermediate Results

Fluid/Structure Interaction Pseudocode
caps_load TetGen aim -> mobj
caps_load fluids aim -> fobj
caps_load structures -> sobj
caps_makeBound "srf" -> bobj
caps_makeVertexSet(bobj, fobj) -> vfobj
caps_makeVertexSet(bobj, sobj) -> vsobj
caps_makeDataSet(vfobj, "Pressure", Analysis, 1) -> dpfobj
caps_makeDataSet(vsobj, "Pressure", Conserve, 1) -> dpsobj
caps_makeDataSet(vsobj, "Displace", Analysis, 3) -> ddsobj
caps_makeDataSet(vfobj, "Displace", Conserve, 3) -> ddfobj
caps_completeBound(bobj)

caps_preAnalysis(mobj)
caps_postAnalysis(mobj) /* generate fluids mesh */
caps_fillVertexSets(bobj) /* Note #1 */
caps_initDataSet(ddfobj, 3, zeros) /* Note #2 */

for (iter = 0; iter < nIter; iter++) {
caps_getData(ddfobj, ...) /* Note #3 */
caps_preAnalysis(fobj)
/* execute fluids analysis */
caps_postAnalysis(fobj)

caps_getData(dpsobj, ...) /* Note #3 */
caps_preAnalysis(sobj)
/* execute structures analysis */
caps_postAnalysis(sobj)

}

Haimes CAPS API 17 May 2019 46 / 47

Bounds and the use of Intermediate Results

Pseudocode Notes
The fluids AIM requires the “Displace” values during its “pre” phase, just as the structural analysis AIM
requires “Pressure” (i.e., loads) during its “pre” phase to fill in all the inputs.

1 caps fillVertexSets calls aimDiscr in the fluids AIM, so that AIM must transfer the data
from the TetGen AIM to populate the aimDiscr structure. The structures AIM can still do the
tessellation in its aimDiscr function, but it will be invoked before any “pre” phase. Care must be
taken so that any tessellation input data can be taken from the AIM inputs.

2 caps initDataSet gets called to set the first displacement data to zeros, in that no structural
analysis will have been run at start, but is needed by the fluids.

3 caps getData is currently required to actually do the interpolation/conservative data transfer
(i.e., it cannot be done in the AIM by the invocation of aim getDataSet). This will be changed
in the future, so these calls will not be required, but current scripts and code will still function.

4 The lines in red now cause aimUsesDataSet to be invoked to determine if the DataSet is
required by the Analysis (and will make it dirty).

Haimes CAPS API 17 May 2019 47 / 47

