
Computational Aircraft Prototype Syntheses
AIM Development

Part of ESP Revision 1.15

Bob Haimes
haimes@mit.edu

Aerospace Computational Design Lab
Massachusetts Institute of Technology

Note: Sections in red are changes in CAPS from Revision 1.14.

Haimes Aim Development 17 May 2019 1 / 50

CAPS Infrastructure in ESP

ESP
UI

pyCAPS

User

——–

MDO
Framework

Sorcer

OpenMDAO

ModelCenter
Analysis

tools

Computa-
tional

Aircraft
Prototype
Syntheses

(CAPS)
API

Problem
Database

Analysis
Subsystem

Geometry
Subsystem

—
OpenCSM

EGADS

Analysis
I/O Files

Analysis
Interface

& Meshing
(AIM)

Geometry
Database

Haimes Aim Development 17 May 2019 2 / 50

CAPS Objects

Object-based Not Object Orientated
Like egos in EGADS
Pointer to a C structure – allows for an function-based API
Treated as blind pointers (i.e., not meant to be dereferenced)
Header info used to determine how to dereference the pointer
API Functions

Returns an int error code or CAPS SUCCESS
Usually have one (or more) input Objects
Can have an output Object (usually at the end of the argument list)

Can interface with multiple compiled languages

See $ESP ROOT/doc/CAPSapi.pdf

Haimes Aim Development 17 May 2019 3 / 50

CAPS Definitions

Problem Object
The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data
associated with the run(s), which can be both multi-fidelity and multidisciplinary.
There can be multiple Problems in a single execution of CAPS and each Problem is
designed to be thread safe allowing for multi-threading of CAPS at the highest level.

Value Object
A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both.
Also Value Objects can refer to mission parameters that are stored at the top-level of
the CAPS database. The values contained in any input Value Object can be bypassed
by the linkage connection to another Value (or DataSet) Object of the same shape.
Attributes are also cast to temporary (User) Value Objects.

Haimes Aim Development 17 May 2019 4 / 50

CAPS Definitions

Analysis Object
The Analysis Object refers to an instance of running an analysis code. It holds the
input and output Value Objects for the instance and a directory path in which to
execute the code (though no explicit execution is initiated). Multiple various
analyses can be utilized and multiple instances of the same analysis can be handled
under the same Problem.

Bound Object
A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the “outer surface of the wing”). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body).

Dimensionally:
1D – Collection of Edges
2D – Collection of Faces

Haimes Aim Development 17 May 2019 5 / 50

CAPS Definitions

VertexSet Object
A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
it’s data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

DataSet Object
A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

Haimes Aim Development 17 May 2019 6 / 50

CAPS Objects

Object SubTypes Parent Object
capsProblem Parametric, Static
capsValue GeometryIn, GeometryOut, capsProblem,

Branch, Parameter, User capsValue
capsAnalysis capsProblem
capsValue AnalysisIn, AnalysisOut capsAnalysis,

capsValue
capsBound capsProblem
capsVertexSet Connected, Unconnected capsBound

capsDataSet User, Analysis, Interpolate, capsVertexSet
Conserve, Builtin, Sensitivity

Body Objects are EGADS Objects (egos)

Haimes Aim Development 17 May 2019 7 / 50

CAPS Body Filtering

Filtering the active CSM Bodies occurs at two different stages, once in
the CAPS framework, and once in the AIMs. The filtering in the CAPS
framework creates sub-groups of Bodies from the CSM stack that are
passed to the specified AIM. Each AIM instance is then responsible for
selecting the appropriate Bodies from the list it has received.

The filtering is performed by using two Body attributes:
“capsAIM” and “capsIntent”.

Filtering within AIM Code
Each AIM can adopt it’s own filtering scheme for down-selecting how to use each
Body it receives. The “capsIntent” string is accessible to the AIM, but it is for
information only.

Haimes Aim Development 17 May 2019 8 / 50

CAPS Body Filtering
CSM AIM targeting: “capsAIM”
The CSM script generates Bodies which are designed to be used by specific AIMs.
The AIMs that the Body is designed for is communicated to the CAPS framework via
the “capsAIM” string attribute. This is a semicolon-separated string with the list of
AIM names. Thus, the CSM author can give a clear indication to which AIMs should
use the Body. For example, a body designed for a CFD calculation could have:

ATTRIBUTE capsAIM $su2AIM;fun3dAIM;cart3dAIM

CAPS AIM Instantiation: “capsIntent”
The “capsIntent” Body attribute is used to disambiguate which AIM instance should
receive a given Body targeted for the AIM. An argument to caps load accepts a
semicolon-separated list of keywords when an AIM is instantiated in CAPS/pyCAPS.
Bodies from the “capsAIM” selection with a matching string attribute “capsIntent”
are passed to the AIM instance. The attribute “capsIntent” is a semicolon-separated
list of keywords. If the string to caps load is NULL, all Bodies with a “capsAIM”
attribute that matches the AIM name are given to the AIM instance.

Haimes Aim Development 17 May 2019 9 / 50

Analysis Interface & Meshing – Intro 1/2

Hides all of the individual Analysis details (and peculiarities)
Individual plugin functions translate from the Analysis’
perspective back and forth to CAPS
Provides a direct connection to BRep geometry and attribution
through EGADS

Outside the CAPS Object infrastructure
Use of C structures
AIM Utility library (with the context enbedded in aimInfo)

An AIM plugin is required for each Analysis code at:
a specific intent
a specific mode (i.e., where the inputs may be different)

Haimes Aim Development 17 May 2019 10 / 50

Analysis Interface & Meshing – Intro 2/2

AIMs can be hierarchical
Parent Analysis Objects specified at CAPS Analysis load
Parent and child AIMs can directly communicate

Dynamically loaded at runtime – extendibility and extensibility
Windows Dynamically Loaded Libraries (name.dll)

LINUX Shared Objects (name.so)
MAC Bundles, CAPS will use the so file extension

Plugin names must be unique – loaded by the name

† indicates memory handled by CAPS in the following functions
i.e., CAPS will free these memory blocks when necessary

Haimes Aim Development 17 May 2019 11 / 50

capsValue Structure 1/5
The capsValue Structure is simply the data found within a CAPS Value Object.
aimInputs and aimOutputs must fill the structure with the type, form and
optionally units of the data. aimInputs also sets the default value(s) in the vals
member. The structure’s members listed below must be filled (most have defaults).

Value Type – no default
The value type can be one of:
enum capsvType {Boolean, Integer, Double, String, Tuple, Value};

Note:
The Value type in a capsValue is only supported at the CAPS level and not in AIMs

The tuple structure
typedef struct {
char *name; /* the name */
char *value; /* the value for the pair */

} capsTuple;

Haimes Aim Development 17 May 2019 12 / 50

capsValue Structure 2/5

Shape of the Value – 0 is the default
dim can be one of:

0 scalar only
1 vector or scalar
2 scalar, vector or 2D array

Value Dimensions – 1 is the default
nrow and ncol set the dimension of the Value. If both are 1 this has a scalar shape.
If either nrow or ncol are one then the shape is vector. If both are greater than 1
then this represents a 2D array of values.

Other enumerated constants
enum capsFixed {Change, Fixed};
enum capsNull {NotAllowed, NotNull, IsNull};
enum capstMethod {Copy, Integrate, Average};

Haimes Aim Development 17 May 2019 13 / 50

capsValue Structure 3/5

Varying Length – the default is “Fixed”
The member lfixed indicates whether the length of the Value is allowed
to change.

Varying Shape – the default is “Fixed”
The member sfixed indicates whether the shape of the Value is allowed
to change.

Can Value be NULL? – the default is “NotAllowed”
The member nullVal indicates whether the Value is or can be NULL
Options are found in enum capsNULL

Haimes Aim Development 17 May 2019 14 / 50

capsValue Structure 4/5

capsValue Member Usage Notes
sfixed & dim
If the shape is “Fixed” then nrow and ncol must fit that shape (or a lesser
dimension). [Note that the length can change if lfixed is “Change”.] If sfixed is
“Change” then you change dim before changing nrow and ncol to a higher
dimension than the current setting.

lfixed & nrow/ncol
If the length is “Fixed” then all updates of the Value(s) must match in both
nrow and ncol (which presumes a “Fixed” shape).

nullVal & nrow/ncol
nrow and ncol should remain at their values even if the Value is NULL to
maintain the dimension (and possibly length) when “Fixed”. To indicate a
NULL all that is necessary is to set nullVal to “IsNull”. The actual allocated
storage can remain in the vals member or set to NULL.

Use EG alloc to allocate any memory required for the vals member.

Haimes Aim Development 17 May 2019 15 / 50

capsValue Structure 5/5
/*
* structure for CAPS object -- VALUE

*/
typedef struct {

int type; /* value type -- capsvType */
int length; /* number of values */
int dim; /* the dimension */
int nrow; /* number of rows */
int ncol; /* the number of columns */
int lfixed; /* length is fixed -- capsFixed */
int sfixed; /* shape is fixed -- capsFixed */
int nullVal; /* NULL handling -- capsNull */
int pIndex; /* parent index for vType = Value */
union {

int integer; /* single int -- length == 1 */
int *integers; /* multiple ints */
double real; /* single double -- length == 1 */
double *reals; /* mutiple doubles */
char *string; /* character string (no single char) */
capsTuple *tuple; /* tuple (no single tuple) */
capsObject *object; /* single object -- not used in AIMs*/
capsObject **objects; /* multiple objects -- not used in AIMs */

} vals;
union {

int ilims[2]; /* integer limits */
double dlims[2]; /* double limits */

} limits;
char *units; /* the units for the values */
capsObject *link; /* the linked object (or NULL) */
int linkMethod; /* the link method -- capstMethod */

} capsValue;

Haimes Aim Development 17 May 2019 16 / 50

AIM Plugin Functions

Registration & Declaring Inputs / Outputs
Pre-Analysis & Retrieving Output
Write and read files – or – use Analyses API if available
Discrete Support – Interpolation & Integration

Haimes Aim Development 17 May 2019 17 / 50

AIM – Registration/Initialization

icode = aimInitialize(int ngIn, capsValue *gIn, int *qeFlg,
const char *unitSys, int *nIn, int *nOut,
int *nFields, char ***fnames, int **ranks)

ngIn the number of Geometry Input value structures

gIn a pointer to the list of Geometry Input value structures

qeFlg on Input: 1 indicates a query and not an analysis instance;
on Output: 1 specifies that the AIM executes the analysis

unitSys a pointer to a character string declaring the unit system – can be NULL

nIn the returned number of Inputs (minimum of 1)∗

nOut the returned number of possible Outputs∗

nFields the returned number of fields to responds to for DataSet filling

fnames a returned pointer to a list of character strings with the field/DataSet names †
ranks a returned pointer to a list of ranks associated with each field †
icode integer return code (-) or AIM instance counter

∗nIn & nOut should not depend on the intent

Haimes Aim Development 17 May 2019 18 / 50

AIM – Initialization

icode = aimInputs(int inst, void *aimInfo, int index, char **ainame,
capsValue *defval)

inst the AIM instance index

aimInfo the AIM context – NULL if called from caps getInput

index the Input index [1-nIn]

ainame a returned pointer to the returned Analysis Input variable name

defval a pointer to the filled default value(s) and units – CAPS will free any allocated memory

icode integer return code

icode = aimOutputs(int inst, void *aimInfo, int index, char **aonam,
capsValue *form)

inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)

index the Output index [1-nOut]

aonam a returned pointer to the returned Analysis Output variable name

form a pointer to the Value Shape & Units information – to be filled
any actual values stored are ignored/freed

icode integer return code

Haimes Aim Development 17 May 2019 19 / 50

AIM – Dependent DataSet

Is the DataSet required by aimPreAnalysis – Optional
icode = aimUsesDataSet(int inst, void *aimInfo, const char *bname,

const char *dname, enum capsdMethod dMethod)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)

bname the Bound name

dname the DataSet name

dMethod the data method used (either Interpolate or Conserve)

icode integer return code – use CAPS NOTNEEDED if not required

Called at caps makeDataSet, when the data method used is either Interpolate or
Conserve, for possible dependent VertexSets with dname. If it is dependent then the
Analysis Object is made dirty when the DataSet needs updating.

Haimes Aim Development 17 May 2019 20 / 50

AIM – PreAnalysis

Parse Input data & Optionally Generate Input File(s)
icode = aimPreAnalysis(int inst, void *aimInfo, const char *apath,

capsValue *inputs, capsErrs **errs)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)

apath the filesystem path where the input file(s) are to be written

inputs the complete suite of Analysis inputs (nIn in length)

errs a pointer to the returned structure where input error(s) occurred – NULL no errors

icode integer return code

Called to prepare the input to an Analysis or prepare the input and
execute the Analysis (based on qeFlg).

Haimes Aim Development 17 May 2019 21 / 50

AIM – PostAnalysis & Termination

Perform any processing after the Analysis is run – Optional
icode = aimPostAnalysis(int inst, void *aimInfo, const char *apath,

capsErrs **errs)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)

apath the filesystem path where the file(s) have been written

errs a pointer to the returned structure where error(s) may have occurred – NULL no errors

icode integer return code

Free up any memory the AIM has stored

void aimCleanup()

Haimes Aim Development 17 May 2019 22 / 50

AIM – Output Parsing

Calculate/Retrieve Output Information
icode = aimCalcOutput(int inst, void *aimInfo, const char *apath,

int index, capsValue *val, capsErrs **errors)
inst the AIM instance index

aimInfo the AIM context (used by the Utility Functions)

apath the filesystem path where the Analysis output file(s) should be read

index the Output index [1-nOut] for this single result

val a pointer to the capsValue data to fill – CAPS will free any allocated memory

errors a pointer to the returned error structure where output parsing error(s) occurred
NULL with no errors

icode integer return code

Called in a lazy manner and only when the output is needed (and after
the Analysis is run).

Haimes Aim Development 17 May 2019 23 / 50

AIM – Discrete Structure 1/5

Discrete Structure – Used to define a VertexSet
The CAPS Discrete data structure holds the spatial discretization information for a
Bound. It defines reference positions for the location of the vertices that support the
geometry and optionally the positions for the data locations (if these differ). This
structure can contain a homogeneous or heterogeneous collection of element types
and optionally specifies match positions for conservative data transfers.

EGADS Tessellation Object
Not a requirement – but useful in dealing with sensitivities
Requires triangles
Can be constructed from an external mesh generator

Look at EG initTessBody, EG setTessEdge,
EG setTessFace & EG statusTessBody
Make it part of CSM & CAPS by aim setTess

Haimes Aim Development 17 May 2019 24 / 50

AIM – Discrete Structure 2/5
/* defines the element discretization type by the number of reference positions

* (for geometry and optionally data) within the element.

* simple tri: nref = 3; ndata = 0; st = {0.0,0.0, 1.0,0.0, 0.0,1.0}

* simple quad: nref = 4; ndata = 0; st = {0.0,0.0, 1.0,0.0, 1.0,1.0, 0.0,1.0}

* internal triangles are used for the in/out predicates and represent linear

* triangles in [u,v] space.

* ndata is the number of data referece positions, which can be zero for simple

* nodal or isoparametric discretizations.

* match points are used for conservative transfers. Must be set when data

* and geometry positions differ, specifically for discontinuous mappings.

* For example:

* neighbors neighbors

* 2 tri-side vertices 4 side vertices

* / \ 0 1 2 / \ 0 1 2

* / \ 1 2 0 5 3 1 2 3

* / \ 2 0 1 / 6 \ 2 3 4

* 0-------1 / \ 3 4 5

* 0----1----2 4 5 0

* neighbors 5 0 1

* 3-------2 quad-side vertices nref = 7

* | | 0 1 2

* | | 1 2 3 6 neighbors

* | | 2 3 0 3---.---2 quad-side vertices

* 0-------1 3 0 1 | | 0 1 2

* 7. 8 .5 1 2 3

* neighbors | | 2 3 0

* 4-------3 side vertices 0---.---1 3 0 1

* | | 0 1 2 4

* | 2 1 2 3

* | | 2 3 4 nref = 9

* 0-------1 3 4 0

* 4 0 1

* nref = 5

Haimes Aim Development 17 May 2019 25 / 50

AIM – Discrete Structure 3/5

*/

typedef struct {
int nref; /* number of geometry reference points */
int ndata; /* number of data ref points -- 0 data at ref */
int nmat; /* number of match points (0 -- match at

geometry reference points) */
int ntri; /* number of triangles to represent the elem */
double *gst; /* [s,t] geom reference coordinates in the

element -- 2*nref in length */
double *dst; /* [s,t] data reference coordinates in the

element -- 2*ndata in length */
double *matst; /* [s,t] positions for match points - NULL

when using reference points (2*nmat long) */
int *tris; /* the triangles defined by geom reference indices

(bias 1) -- 3*ntri in length */
} capsEleType;

You will usually have only a small number of element types.

Haimes Aim Development 17 May 2019 26 / 50

AIM – Discrete Structure 4/5

/*
* defines the element discretization for geometric and optionally data

* positions.

*/
typedef struct {

int bIndex; /* the Body index (bias 1) */
int tIndex; /* the element type index (bias 1) */
int eIndex; /* element owning index -- dim 1 Edge, 2 Face */
int *gIndices; /* local indices (bias 1) geom ref positions,

tess index -- 2*nref in length */
int *dIndices; /* the vertex indices (bias 1) for data ref

positions -- ndata in length or NULL */
union {

int tq[2]; /* tri or quad (bias 1) for ntri <= 2 */
int *poly; /* the multiple indices (bias 1) for ntri > 2 */

} eTris; /* triangle indices that make up the element */
} capsElement;

See AIAA paper 2014-0294 in the distribution for a more complete
description ($ESP ROOT/doc/Papers/AIAApaper2014-0294.pdf).

Haimes Aim Development 17 May 2019 27 / 50

AIM – Discrete Structure 5/5

/* defines a discretized collection of Elements

*
* specifies the connectivity based on a collection of Element Types and the

* elements referencing the types.

*/
typedef struct {

int dim; /* dimensionality [1-3] */
int instance; /* analysis instance */
void *aInfo; /* AIM info */

/* below handled by the AIMs: */
int nPoints; /* number of entries in the point definition */
int *mapping; /* tessellation indices to the discrete space

2*nPoints in len (body, global tess index) */
int nVerts; /* number of data ref positions or unconnected */
double *verts; /* data ref (3*nVerts) -- NULL if same as geom */
int *celem; /* element containing vert (nVerts in len) or NULL */
int nTypes; /* number of Element Types */
capsEleType *types; /* the Element Types (nTypes in length) */
int nElems; /* number of Elements */
capsElement *elems; /* the Elements (nElems in length) */
int nDtris; /* number of triangles to plot data */
int *dtris; /* NULL for NULL verts -- indices into verts */
void *ptrm; /* pointer for optional AIM use */

} capsDiscr;

See $ESP ROOT/doc/capsDiscr.pdf for a more complete description.

Haimes Aim Development 17 May 2019 28 / 50

AIM – Discrete Support

Fill-in the Discrete data for a Bound Object – Optional
icode = aimDiscr(char *tname, capsDiscr *discr)

tname the Bound name
Note: all of the BRep entities are examined for the attribute capsBound. Any that
match tname must be included when filling this capsDiscr.

discr the Discrete structure to fill
Note: the AIM instance, AIM info pointer and the dimensionality have been filled in
before this function is invoked.

icode integer return code

Frees up data in a Discrete Structure – Optional
icode = aimFreeDiscr(capsDiscr *discr)

discr the Discrete Structure to have its members freed

icode integer return code

Haimes Aim Development 17 May 2019 29 / 50

AIM – Discrete Support

Return Element in the Mesh – Optional
icode = aimLocateElement(capsDiscr *discr, double *params,

double *param, int *eIndex, double *bary)
discr the input Discrete Structure

params the input global parametric space (at all of the geometry support positions)
rank is the dimensionality (t for 1D, [u, v] for 2D and [x, y, z] for 3D)

param the input requested parametric position in params (dimensionality in length)

eIndex the returned element index in the discr where the position was found (1 bias)

bary the resultant Barycentric/reference position in the element eIndex

icode integer return code

Haimes Aim Development 17 May 2019 30 / 50

AIM – Data Transfers

Data Associated with the Discrete Structure – Optional
icode = aimTransfer(capsDiscr *discr, const char *fname, int npts,

int rank, double *data, char **units)
discr the input Discrete Structure

fname the field name to that corresponds to the fill

npts the number of points to be filled

rank the rank of the data

data a pointer associated with the data to be filled (rank*npts in length)

units the returned pointer to the string declaring the units †
return NULL to indicate unitless values

icode integer return code

Fills in the DataSet Object

Haimes Aim Development 17 May 2019 31 / 50

AIM – Data Transfers
Interpolation on the Bound – Optional
icode = aimInterpolation(capsDiscr *discr, const char *name,

int eIndex, double *bary, int rank,
double *data, double *result)

icode = aimInterpolateBar(capsDiscr *discr, const char *name,
int eIndex, double *bary, int rank,
double *r bar, double *d bar)

discr the input Discrete Structure

name a pointer to the input DataSet name string

eIndex the input target element index (1 bias) in the Discrete Structure

bary the input Barycentric/reference position in the element eIndex

rank the input rank of the data

data values at the data (or geometry) positions

result the filled in results (rank in length)

r bar input d(objective)/d(result)

d bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
Haimes Aim Development 17 May 2019 32 / 50

AIM– Data Transfers

Element Integration on the Bound – Optional
icode = aimIntegration(capsDiscr *discr, const char *name,

int eIndex, int rank,
double *data, double *result)

icode = aimIntegrateBar(capsDiscr *discr, const char *name,
int eIndex, int rank,
double *r bar, double *d bar)

discr the input Discrete Structure

name a pointer to the input DataSet name string

eIndex the input target element index (1 bias) in discr

rank the input rank of the data

data values at the data (or geometry) positions – NULL length/area/volume of element

result the filled in results (rank in length)

r bar input d(objective)/d(result)

d bar returned d(objective)/d(data)

icode integer return code

Forward and reverse differentiated functions
Haimes Aim Development 17 May 2019 33 / 50

AIM – Data Transfers

Data Transfer to Child AIM – Optional
icode = aimData(int inst, const char *name, enum *vtype, int *rank,

int *nrow, int *ncol, void **data, char **units)
inst the AIM instance index

name the agreed-upon data name to transfer

vtype value data type – returned

rank the rank of the data – returned (negative – child should free data)

nrow the number of rows – returned

ncol the number of columns – returned

data a void pointer associated with the data – returned

units the pointer to the string declaring the units (will be free’d by child) – returned

Haimes Aim Development 17 May 2019 34 / 50

AIM – Backdoor

AIM specific Communication – Optional
icode = aimBackdoor(int inst, void *aimInfo, const char *JSONin,

char **JSONout)
inst the AIM instance index

aimInfo the AIM context

JSONin a pointer to a character string that represents the inputs.

JSONout a returned pointer to a character string that is the output of the request.

Haimes Aim Development 17 May 2019 35 / 50

AIM Helper Functions

provides useful functions for the AIM programmer
gives access to CAPS Object data
note that all function names begin with aim
if any of these functions are used, then the library must be
included in the AIM so/DLL build

Haimes Aim Development 17 May 2019 36 / 50

AIM Utility Library – Body handling

Get Bodies
icode = aim getBodies(void *aimInfo, char **intent, int *nBody,

ego **bodies)
aimInfo the AIM context

intent the returned pointer to the capsIntent string used to filter the Bodies

nBody the returned number of EGADS Body Objects that match the intent

bodies the returned pointer to a list of EGADS Body/Node Objects,
Tessellation Objects (set by aim setTess) follow (length – 2*nBody)

icode integer return code

Is Node Body
icode = aim isNodeBody(ego body, double *xyz)

body the EGADS Body Objects to query

xyz the returned XYZ of the Node (if a Node Body)

icode integer return code

Haimes Aim Development 17 May 2019 37 / 50

AIM Utility Library – Units

Units conversion
icode = aim convert(void *aimInfo, char *inUnits, double inValue,

char *outUnits, double *outValue)
aimInfo the AIM context

inUnits the pointer to the string declaring the source units

inValue the value to be converted

outUnits the pointer to the string declaring the desired units

outValue the returned converted value

icode integer return code

Haimes Aim Development 17 May 2019 38 / 50

AIM Utility Library – Units

Units multiplication
icode = aim unitMultiply(void *aimInfo, char *inUnits1, char *inUnits2,

char **outUnits)
aimInfo the AIM context

inUnits1 the pointer to the string declaring left units

inUnits2 the pointer to the string declaring right units

outUnits the returned string units = inUnits1*inUnits2 (freeable)

icode integer return code

Units division
icode = aim unitDivision(void *aimInfo, char *inUnits1, char *inUnits2,

char **outUnits)
aimInfo the AIM context

inUnits1 the pointer to the string declaring numerator units

inUnits2 the pointer to the string declaring denominator units

outUnits the returned string units = inUnits1/inUnits2 (freeable)

icode integer return code

Haimes Aim Development 17 May 2019 39 / 50

AIM Utility Library – Units

Units invert
icode = aim unitInvert(void *aimInfo, char *inUnits,

char **outUnits)
aimInfo the AIM context

inUnits the pointer to the string declaring units

outUnits the returned string units = 1/inUnits (freeable)

icode integer return code

Units raise to power
icode = aim unitRaise(void *aimInfo, char *inUnits, const int power,

char **outUnits)
aimInfo the AIM context

inUnits the pointer to the string declaring units

outUnits the returned string units = inUnits ˆ power (freeable)

icode integer return code

Haimes Aim Development 17 May 2019 40 / 50

AIM Utility Library – Conversions

Name to Index lookup
icode = aim getIndex(void *aimInfo, char *name, enum stype)

aimInfo the AIM context

name the pointer to the string specifying the name to look-up
NULL returns the total number of members in the subtype

stype GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

icode index (1 bias) or negative integer return code

Index to Name lookup
icode = aim getName(void *aimInfo, int index, enum stype, char **name)

aimInfo the AIM context

index the index to use (1 bias)

stype GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

name the returned pointer to the string specifying the name

icode integer return code

Haimes Aim Development 17 May 2019 41 / 50

AIM Utility Library

Get Discretization State
icode = aim getDiscrState(void *aimInfo, char *bname)

aimInfo the AIM context

bname the Bound name

icode integer return code – CAPS SUCCESS is clean

Get Value Structure
icode = aim getValue(void *aimInfo, int index, enum stype,

capsValue *value)
aimInfo the AIM context

index the index to use (1 bias)

stype GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or ANALYSISOUT

value the returned pointer to the capsValue structure

icode integer return code

Haimes Aim Development 17 May 2019 42 / 50

AIM Utility Library – Conversions

Data Transfer from Parent AIM(s)
icode = aim getData(void *aimInfo, char *name, enum *vtype, int *rank,

int *nrow, int *ncol, void **data, char **units)
aimInfo the AIM context

name the requested agreed-upon name to fill

vtype the returned value data type

rank the returned rank of the data (negative – data should be free’d when done)

nrow the returned number of rows

ncol the returned number of columns

data a returned void pointer associated with the data

units the returned pointer to the string declaring the units (should be free’d)
NULL indicates unitless values

icode integer return code

Notes: All parent AIMs are queried. If none properly respond, this function returns
CAPS NOTFOUND. If multiple parents respond then this function returns
CAPS SOURCEERR. Parents must not be dirty.

Haimes Aim Development 17 May 2019 43 / 50

AIM Utility Library

Establish Linkage from Parent or Geometry
icode = aim link(void *aimInfo, char *name, enum stype,

capsValue *default)
aimInfo the AIM context

name the requested Value Object name to link

stype Value subtype (GEOMETRYIN, GEOMETRYOUT, ANALYSISIN or
ANALSYSOUT)

default the pointer from aimInputs

icode integer return code

Note: For ANALYSISIN or ANALYSISOUT subtypes all parent Analyses are
queried. If none is found in the parent hierarchy, this function returns
CAPS NOTFOUND. The query is performed from the oldest ancestor down. The first
match is used.

Haimes Aim Development 17 May 2019 44 / 50

AIM Utility Library

Get Geometry State WRT the Analysis
icode = aim newGeometry(void *aimInfo)

aimInfo the AIM context

icode CAPS SUCCESS for new, CAPS CLEAN if not regenerated since last here

Set Tessellation for a Body
icode = aim setTess(void *aimInfo, ego object)

aimInfo the AIM context

object the EGADS Tessellation Object to use for the associated Body –or –
the Body Object to remove and delete an existing tessellation
Note that the Body Object is part of the Tessellation Object

icode integer return code

An error is raised when trying to set a Tessellation Object when one exists.

If the Problem is STATIC then the AIM (or CAPS application) is responsible for
deleting the Tessellation Object. Otherwise removal of the Tessellation Object is
controlled internally during Body operations. If a Tessellation Object is removed (no
longer associated with the Body) then CAPS deletes the Tessellation Object.

Haimes Aim Development 17 May 2019 45 / 50

AIM Utility Library

Get Discretization Structure
icode = aim getDiscr(void *aimInfo, char *bname, capsDiscr **discr)

aimInfo the AIM context

bname the Bound name

discr pointer to the returned Discrete structure

icode integer return code

Get Data from Existing DataSet
icode = aim getDataSet(capsDiscr *discr, char *dname, enum *method,

int *npts, int *rank, double **data)
discr the input Discrete Structure

dname the requested DataSet name

method the returned method used for data transfers

npts the returned number of points in the DataSet

rank the returned rank of the DataSet

data a returned pointer to the data within the DataSet

icode integer return code

Haimes Aim Development 17 May 2019 46 / 50

AIM Utility Library

Get Bound Names
icode = aim getBounds(void *aimInfo, int *nBname, char ***bnames)

aimInfo the AIM context

nBname returned number of Bound names

bnames returned pointer to list of Bound names (freeable)

icode integer return code

Get Unit System
icode = aim unitSys(void *aimInfo, char **unitSys)

aimInfo the AIM context

unitSys a returned pointer to a character string declaring the unit system – can be NULL

icode integer return code

Haimes Aim Development 17 May 2019 47 / 50

AIM Utility Library – Sensitivities

Setup for Sensitivities
icode = aim setSensitivity(void *aimInfo, char *GIname, int *irow,

int *icol)
aimInfo the AIM context

GIname the pointer to the string that matches the Geometry Input Parameter name

irow the parameter row to use – 1 bias

icol the parameter column to use – 1 bias

icode integer return code

Notes: (1) aim setTess must have been invoked sometime before calling this function to set the
tessellations for the Bodies of interest.

(2) Call aim setSensitivity before call(s) to aim getSensitivity.

Haimes Aim Development 17 May 2019 48 / 50

AIM Utility Library – Sensitivities

Get Sensitivities based on Tessellation Components
icode = aim getSensitivity(void *aimInfo, ego tess, int ttype,

int index, int *npts, double **dxyz)
aimInfo the AIM context

tess the EGADS Tessellation Object

ttype topological type – 0 - NODE, 1 - EDGE, 2 - FACE
Configuration Sensitivities – -1 - EDGE, -2 - FACE

index the index in the Body (associated with the tessellation) based on the type

npts the returned number of sensitivities (number of tessellation points)

dxyz a pointer to the returned sensitivities – 3*npts in length (freeable)

icode integer return code

Note: Call aim setSensitivity before call(s) to aim getSensitivity.

Haimes Aim Development 17 May 2019 49 / 50

AIM Utility Library – Sensitivities

Get Global Tessellation Sensitivities
icode = aim sensitivity(void *aimInfo, char *GIname, int irow,

int icol, ego tess, int *npts, double **dxyz)
aimInfo the AIM context

GIname the pointer to the string that matches the Geometry Input Parameter name

irow the parameter row to use – 1 bias

icol the parameter column to use – 1 bias

tess the EGADS Tessellation Object

npts the returned number of sensitivities (number of global vertices)

dxyz a pointer to the returned sensitivities – 3*npts in length (freeable)

icode integer return code

Note: Used to get the tessellation sensitivities for the entire Tessellation Object. The
number of points is the global number of vertices in the tessellation.

Haimes Aim Development 17 May 2019 50 / 50

