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1 Overview

1.1 Code structure

The HSM software suite is a collection of routines for solution of general shell elasticity problems
with arbitrarily large deformations. The routines are intended to be embedded in other programs,
and hence a general input-preparation program is not provided. Graphical post-processing pro-
grams are also not provided for the same reason. What is provided is a few routines to assist in
the more complex parts of problem setup, such as stiffness matrix calculation. Also provided is an
example driver program (HSMRUN) whose code fragments can serve as templates for implementing
the various HSM routines in a user’s own application.

1.2 Capabilities

Currently, HSM can perform only a direct analysis of a static structural problem, defined as one
whose loading and acceleration (if any) are steady in the geometry’s xyz coordinate system.

The routines already contain much of the code, specifically the Jacobian calculation, which is needed
for also computing the following problems of interest:

• Unsteady structural response to . . .

– General reference-frame motion (e.g. maneuvering aircraft)

– Time-domain (e.g. nonlinear time-marching)

– Frequency domain (e.g. linearized Bode response)

– Eigenmode analysis (e.g. structural instability, flutter)

• Parametric sensitivities to . . .

– Undeformed geometry

– Mass distribution

– Stiffness property distribution

– Loading distribution

These capabilities will be enabled in future HSM versions.

1.3 Solution method

HSM uses the Newton method with an exact Jacobian matrix, and solves the Newton system with
a direct sparse block matrix solver to drive the discrete equation residuals to zero. The main solver
routine HSMSOL can accept a current solution as the initial guess, so that in a gradual parametric
sweep the runtime per solution will be considerably smaller than for a single isolated solution.

Currently, the matrix ordering is the same as the unstructured mesh ordering, so that the matrix
bandwidth and the runtime will be sensitive to the node order and connectivity. A matrix-reordering
algorithm will reduce the sensitivity to ordering, is planned to be implemented in the next HSM
version.

Even with optimal ordering, the runtime will still scale roughly as the cube of the number of nodes,
which can make large problems costly. Because the HSM formulation has only elliptic Poisson-type
equations, its Jacobian matrix is well-conditioned, and hence it is very well suited for an iterative
solution method which will reduce the runtime scaling with problem size. Iterative solvers will be
considered for future HSM versions.
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2 Quick Start

2.1 Program HSMRUN

Program HSMRUN is an ad-hoc example driver program which:

• sets up the inputs for a variety of typical shell elasticity test cases
• calls the main solution routine HSMSOL to compute the primary unknowns
• calls the post-processing routine HSMDEP to compute the dependent unknowns
• calls the output routine HSMOUT which writes the primary and dependent unknowns to for-

matted files which can be plotted manually.

Therefore, it should serve as a useful template for incorporation of HSM into another application.
The input setup for each individual test case is hard-wired in its own commented section, which
can be modified as desired.

The program is executed with the following command.

% hsmrun [ icase imf ni nj itmax fload ]

The arguments are optional, and can be used to modify the case to be run, as described below.
Omitting or specifying “-” for an argument will result in its hard-wired default value to be used.

icase case index (see comments in hsmrun.f for list of cases implemented)
(if icase < 0, then use triangular mesh, otherwise use quad mesh)

imf case variant index, in some cases also specifies that a manufactured solution is to be used
as the initial guess

ni,nj number of cells in i,j directions

itmax max number of Newton iterations, or . . .
= 0 perform one system setup and solve, but skip Newton update
= -1 perform one system setup, but skip the solve and Newton update
= -2 only calculate the required size of the work arrays amat,ipp

fload scale factor for all imposed loads

All HSM routines assume a general unstructured mesh, consisting of any mix of quad or triangle
elements. However, for simplicity HSMRUN initially defines the geometry using one or more logically-
rectangular ij surfaces of size specified by ni, nj, and then converts these to the unstructured
data arrays.

For itmax = 0 or -1, the initial guess will be output as the “solution”. This allows an exact
manufactured solution to be output, for use as a comparison reference in plotting. It also allows
the input geometry and parameters to be examined, which should be useful for debugging of the
case setup code.

The hard-wired cases can be set up with either a quad or a triangle mesh, which is selected by the
sign of icase as indicated above. This argument sign is merely used set logical flag lquad, which
is what actually controls the mesh type in HSMSOL.
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The program prints out the following convergence information for each Newton iteration:

iter dr dd dp rlx max

1 0.566E+00 0.157E+00 0.452E-01 0.353 drz @ ( 0.80 5.00 0.00)

1* 0.468E-02 0.000E+00 0.000E+00 1.000 dry @ ( 0.80 5.00 0.00)

1* 0.102E-04 0.000E+00 0.000E+00 1.000 dry @ ( 0.80 5.00 -0.00)

2 0.364E+00 0.101E+00 0.295E-01 0.549 drz @ ( 0.80 5.00 -0.00)

2* 0.460E-02 0.000E+00 0.000E+00 1.000 dry @ ( 0.69 5.00 -0.03)

2* 0.948E-05 0.000E+00 0.000E+00 1.000 dry @ ( 0.21 5.00 -0.04)

3 0.181E+00 0.500E-01 0.143E-01 1.000 drz @ ( 0.80 5.00 0.00)

.

.

The iter value is the iteration number, with the attached * denoting that it’s a membrane-only
sub-iteration in which all the d̂ and ψ variables are held fixed. These sub-iterations are relatively
quick, since they have only 3 rather than 6 variables per node, and greatly improve convergence
robustness for large-deformation cases.

Each dr,dd,dp value is the maximum absolute value of all the Newton changes of that variable at
all the nodes, with the vector xyz components conflated. Specifically,

dr = max
k

(
|δrxk | , |δryk | , |δrzk |

)
dd = max

k

(
|δdxk | , |δdyk | , |δdzk |

)
dp = max

k

(
|δψk|

)
The rlx value is the under-relaxation factor used for that iteration to keep the largest Newton
change within the specified limits. The printout also indicates which variable triggered the under-
relaxation (if any), and where it is located on the undeformed geometry. For example, in the first
iteration above, the under-relaxation factor value rlx = 0.353 was set to limit δrz at location
r0 = (0.8, 5.0, 0.0).
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2.2 Example cases

2.2.1 Pinned square plate (case 4)

Generate manufactured solution 1 for case 4 on fine mesh, and write to output text files:

% hsmrun 4 1 40 40 -1

Move the output files to a new directory for use as a comparison reference:

% mkdir ref4

% mv fort.* ref4/

Compute FE solution on coarse mesh, and write to output text files:

% hsmrun 4 1 8 8 20

Use gnuplot to compare numerical and exact deformed geometry, preferably in another window to
allow easy re-plotting:

% gnuplot

> splot "fort.4" u 4:5:6 w l, "ref4/fort.4" u 4:5:6 w l
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2.2.2 Quarter of clamped square plate, with two symmetry planes (case 6)

Generate manufactured solution 2 for case 6 on fine mesh, and write to output text files:

% hsmrun 6 2 40 40 -1

Move the output files to a new directory for use as the reference in comparison plots:

% mkdir ref6

% mv fort.* ref6/

Compute FE solution on coarse mesh, and write to output text files:

% hsmrun 6 2 5 5 20

Save one of the coarse solution files for comparisons:

% mv fort.4 fort.4c

Compute FE solution on medium mesh, and write to output text files:

% hsmrun 6 2 10 10 20

Use gnuplot to compare coarse, medium, and exact deformed geometry:

% gnuplot

> splot "fort.4c" u 4:5:6 w l,"ref6/fort.4" u 4:5:6 w l, "fort.4" u 4:5:6 w l

Compare coarse, medium, and exact twisting moment m12:

> splot "fort.4c" u 4:5:14 w l,"ref6/fort.4" u 4:5:14 w l, "fort.4" u 4:5:14 w l
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2.2.3 Wing-like shell beam (case 8)

This case has joints specified between all the top and bottom nodes at the trailing edge.

Generate solution for case 8 on medium mesh, and write to output text files:

% hsmrun 8 0 40 30 50

Plot deformed geometry:

% gnuplot

> splot [-1.5:2.5][0:5][-0.2:1.6] "fort.4" u 4:5:6 w l

Recompute solution with loading increased 1.4×:

% hsmrun 8 0 40 30 50 1.4

This will exhibit buckling of the top surface near the wing root, as shown below.
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3 Geometry Topology

The components of all boldface vectors and tensors are defined in the global xyz cartesian basis,
sketched in Figure 1. One or more points of the structure must be fixed in these axes, which are
specified by suitable boundary conditions as described later.

The undeformed shell geometry for HSM is defined by triangular or quadrilateral elements, pointing
to nodes each with position r0, a surface-normal vector n̂0, and orthogonal surface-tangent vectors
ê01 , ê02 . The latter two form the local basis for shell stiffness tensor definition. Typically the
elements will be a discretization of some number of C1 continuous (e.g. CAD) surfaces, although
HSM itself deals only with the elements and nodes in a fully unstructured manner, and has no
concept of a surface.

A surface intersection point with a slope discontinuity must be represented in HSM by a joint pair
of two nodes, typically with the same r0 but different n̂0, ê01 , ê02 , as indicated in Figure 1. More
than two surfaces can meet at a corner or along an intersection line, in which case multiple joint
pairs must be defined at each such point. Joints will be later described in more detail.
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Figure 1: Geometry entities and global parameters.

The discretized geometry and its topology are defined by the data listed in the following table.

Entity index pointers to nodes associated data arrays

Node k = 1:nnode — vars(.k), pars(.k), deps(.k)
Element n = 1:nelem kelem(1:4,n)

Load-BC edge l = 1:nbcedge kbcedge(1:2,l) pare(.l)

Geometry-BC node l = 1:nbcnode kbcnode(l) lbcnode(l), parp(.l)
node joint j = 1:njoint kjoint(1:2,j)

Concentrated force and moment loads can also be applied to any single node, which avoids the
need to resolve highly concentrated loading distributions. Since HSM strongly conserves force
and moment, the global effect of such a load will be accurately represented. However, the strains
and stresses at a point load are theoretically singular, so the solution quality in the point load’s
immediate vicinity will likely be poor.
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4 Data Array Indexing

HSM stores most of its data in the floating-point arrays described below. Example declarations are
in the driving program HSMRUN.

Convenient mnemonic parameters for the first index of each real array above are defined in the
index.inc file, with in-line comments describing what each index parameter is. Some examples:

vars(ivry,k) y component of r (deformed position vector) of node k

pars(lvr0y,k) y component of r0 (undeformed position vector) of node k

deps(jvf11,k) f11 component of ¯̄f (stress tensor) at node k

pare(lef2z,l) z component of fxyz (specified load/length) at node 2 of edge l

parp(lpry,l) y component of rBC (specified position) of node l

parg(lgvelz) z component of U (velocity of the xyz origin relative to an inertial frame)

The index.inc file is included in all routines, and the mnemonic parameters are used everywhere
to make the code more readable.
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5 Input Data

The variables and arrays listed in this section must be set to define an HSM case.

5.1 Geometry sizes and pointers

nnode number of nodes
nelem number of elements
kelem(1:4,n) k indices of the three or four nodes of each element n

When an element is observed with its normal vector n̂0 pointing towards the observer, its nodes
run counterclockwise around the element, as indicated in Figure 1. A triangle element is indicated
by its 4th node index being zero, i.e. kelem(4,n) = 0.

5.2 Parameters at each node
array elements num. sym. description

pars(lvr0x:lvr0z,k) 3 r0 xyz coordinates of undeformed geometry
pars(lve01x:lve01z,k) 3 ê01 in-surface basis unit vector 1 of undeformed geometry
pars(lve02x:lve02z,k) 3 ê02 in-surface basis unit vector 2 of undeformed geometry
pars(lvn0x:lvn0z,k) 3 n̂0 normal basis unit vector of undeformed geometry

pars(lva11:lva66,k) 6 ¯̄A extension/shear stiffness matrix, in ¯̄e0 basis

pars(lvb11:lvb66,k) 6 ¯̄B extension/bending stiffness matrix, in ¯̄e0 basis

pars(lvd11:lvd66,k) 6 ¯̄D bending stiffness matrix, in ¯̄e0 basis

pars(lvs55:lvs44,k) 2 ¯̄S transverse-shear compliance matrix, in ¯̄e0 basis
pars(lvqn,k) 1 qn shell-following normal load/area
pars(lvqx:lvqz,k) 3 qxyz fixed-direction load/area
pars(lvmu,k) 1 µ mass/area, can be zero if g=0 and aaa=0
pars(lvtsh,k) 1 h shell thickness (for post-processing only)
pars(lvzrf,k) 1 ζref ref.-surface location within shell (for post-processing only)

If the surface geometry is defined analytically, e.g. as a B-spline or NURB surface r0(u,v), the unit
basis vectors are best computed analytically also. Specifically, we have

n̂0 = ± ∂ur0 × ∂vr0
|∂ur0 × ∂vr0|

and ê01 would be computed as some linear combination of ∂ur0 and ∂vr0, normalized to unit length.
Finally, we compute ê02 = n̂0 × ê01 . Subroutine CROSS is provided to evaluate the cross products.

Subroutine ORTMAT is provided to conveniently set the stiffness matrices ¯̄A, ¯̄B, ¯̄D, ¯̄S for an orthotropic
material with the minimum number of material properties and shell geometry parameters:

E1 modulus along ê01 direction
E2 modulus along ê02 direction
ν12 Poisson’s ratio, ν12 = −ε22/ε11, where ε22 and ε11 are the result of applied stress σ11
G12 shear modulus in 12 plane
G13 transverse shear modulus in 1n plane
G23 transverse shear modulus in 2n plane
h shell thickness
ζref reference-surface location within shell (−1 ≤ ζref ≤ +1)

An isotropic material has only the two stiffness properties E, ν. We then have E1 = E2 = E,
ν12 = ν, and G12 = G13 = G23 = G = 1

2E/(1+ν). In this case the orientation of ê01 , ê02 within
the surface tangent plane is arbitrary.
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5.3 Global parameters

Global parameters describe gravity (if any), the movement of the xyz origin relative to an inertial
(e.g. earth) frame, and also the orientation of the xyz frame relative to the earth XY Z frame (not
explicitly shown in Figure 1).

array elements num. sym. description

parg(lggeex:lggeez) 3 g gravity acceleration
parg(lgvelx:lgvelz) 3 U velocity of xyz origin
parg(lgrotx:lgrotz) 3 Ω rotation rate of frame

parg(lgvacx:lgvacz) 3 U̇ velocity rate of xyz origin

parg(lgracx:lgracz) 3 Ω̇ angular acceleration of frame

parg(lgposx:lgposz) 3 ~RE position of xyz origin in XYZ (earth) axes
parg(lgephi) 1 Φ roll angle of frame
parg(lgethe) 1 Θ elevation angle of frame
parg(lgepsi) 1 Ψ heading angle of frame
parg(lggabx:lggabz) 3 ~gE gravity in XYZ (earth) axes, typically (0, 0,−g)

For the simplest static case without gravity, all the global parameters above can be set to zero.

5.4 Boundary conditions

For a well-posed problem, all exposed edges of the shell require boundary conditions. These can
be either

• loading (Neumann) BCs, applied via weighted residual terms in FE weak formulation, or,
• geometric (Dirichlet) BCs which are applied in strong form, by replacement of the appropriate

equation residuals of the boundary nodes.

The two types of BCs are defined by separate arrays, described in the following two sections. HSM
also allows point loads, which are implemented together with the geometric BCs since their data
requirements are the same.

5.4.1 Edge Loading BCs

Boundary edges with no specified loads are by default free edges with zero loading. Boundary edges
which have a nonzero loading are identified with the following pointers.

nbcedge number of boundary element edges where loads are imposed
kbcedge(1:2,l) k indices of the two nodes of loaded boundary element edge l

The load BC data for each edge is specified by setting the pare array elements for the two nodes
of the edge. The node values are linearly interpolated along the edge, as indicated in Figure 2.

array elements num. sym. description

pare(lef1x:lef1z,l) 3 (fxyzBC)1 fixed-direction force/length at node 1
pare(lef2x:lef2z,l) 3 (fxyzBC)2 fixed-direction force/length at node 2
pare(lef1t:lef1n,l) 3 (ftBC , f`BC

, fdBC
)1 shell-following force/length at node 1

pare(lef2t:lef2n,l) 3 (ftBC , f`BC
, fdBC

)2 shell-following force/length at node 2
pare(lem1x:lem1z,l) 3 (mxyzBC)1 fixed-direction moment/length at node 1
pare(lem2x:lem2z,l) 3 (mxyzBC)2 fixed-direction moment/length at node 2
pare(lem1t:lem1n,l) 3 (mtBC ,m`BC

,mdBC
)1 shell-following moment/length at node 1

pare(lem2t:lem2n,l) 3 (mtBC ,m`BC
,mdBC

)2 shell-following moment/length at node 2

The 1,2 nodes of each edge must run in the same direction as the counterclockwise ordering of the
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Figure 2: Total and component force and moment loads applied to an edge.

element which contains that edge. The wrong opposite ordering will in effect negate the t, ` loads.

The overall edge loads are the sums of all the specified components,

fBC(ξ) = fxyzBC + ftBC t̂ + f`BC
l̂ + fdBC

d̂ (1)

mBC(ξ) = mxyzBC + mtBC t̂ + m`BC
l̂ + mdBC

d̂ (2)

An edge can have more than one edge BC array entry assigned to it. In this case the loads for the
multiple entries will end up being added together.

5.4.2 Geometric Constraints (and Point Loads)

In typical applications, geometric constraints are imposed on boundary nodes as kinematic bound-
ary conditions. However, HSM allows one or more geometric constraints to be applied to any node,
either on a boundary or on the interior. Concentrated point loads can likewise be applied to any
node. Regardless of the location or type, any such constraint will here be referred to as a “node
BC”, and is specified by the following pointers and parp data arrays.

nbcnode number of nodes where node BCs are imposed
kbcnode(l) k index of node l where node BCs are imposed
lbcnode(l) integer which specifies which types of BCs are imposed at node l

array elements num. sym. description

parp(lprx:lprz,l) 3 rBC node position

parp(lpn1x:lpn1z,l) 3 n(1)
BC 1st node position restraint direction

parp(lpn2x:lpn2z,l) 3 n(2)
BC 2nd node position restraint direction

parp(lpt1x:lpt1z,l) 3 t(1)
BC 1st node angle restraint direction

parp(lpt2x:lpt2z,l) 3 t(2)
BC 2nd node angle restraint direction

parp(lpfx:lpfz,l) 3 FBC node force load
parp(lpmx:lpmz,l) 3 MBC node moment load

Only some of this array data is used, as indicated by the lbcnode compound specifier. This is
computed by

lbcnode = lbcr + lbcd + lbcf + lbcm

where the individual lbcr and lbcd specifiers indicate the type of position BC and/or angle BC to
be imposed, respectively, and lbcf and lbcm indicate whether a point force and/or a point moment
is applied. A zero specifier value indicates its particular BC or load is absent and hence its array
data is not used. The nonzero choices are detailed next.

Position and angle constraints cannot be imposed on a node more than once. Specifically, any given
k with nonzero lbcr or lbcd cannot appear multiple times in the kbcnode(l) array, otherwise the
effect on the solution is unpredictable. However, force and moment loads on a node can be imposed
via multiple array entries, and these entries will be summed for a net resulting load.
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Position BCs. The following figures show the three possible position-BC types and the required
BC data. The BC type is chosen by setting its lbcr specifier value 1, 2, or 3.
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a static structural problem to be well posed, at least three non-redundant displacement restraints
must be specified for the overall structure, either at one node or distributed over multiple nodes.

Angle BCs. The following figure shows the three possible angle-BC types and the required BC
data. The BC type is chosen by setting its lbcd specifier value 10, 20, or 30.

d

BC

(2)
t

d

BCt
(1)

d

BCt
(1)

d
BCt
(1)

ψ = 0 (lbcd = 10) (6)

{
t(1)
BC · d̂
ψ

}
=

{
0
0

}
(lbcd = 20) (7)


t(1)
BC · d̂

t(2)
BC · d̂
ψ

 =


0
0
0

 (lbcd = 30) (8)

Either t(1)
BC alone or t(2)

BC additionally must be set as needed. In most applications these will be the
same as ê01 or ê02 , although this is not required. If they are different, then the structure will be
forced with prescribed angle displacements, which is an uncommon situation.

Boundary conditions (6)–(8) restrain 1, 2, or 3 rotational degrees of freedom, respectively. For a
static structural problem to be well posed, at least three non-redundant rotation restraints must
be specified for the overall structure. These can be imposed via some appropriate combination of
position BCs at distributed nodes, or angle BCs at one or more nodes.
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Point Force. If lbcf = 100 is set, the specified FBC force is applied to the node by adding it to
the force residual for the node.

BCF

RRRf ← RRRf + FBC (lbcf = 100) (9)

Point Moment. If lbcm = 1000 is set, the specified MBC moment is applied to the node by
adding it to the moment residual for the node.

BCM

RRRm ← RRRm + MBC (lbcm = 1000) (10)

5.5 Boundary condition precedence

In general, the geometric BCs “override” the loading BCs and also any joints. For example,
consider a boundary node which has some specified applied force load FBC, either a point load or
from distributed loads fBC on its adjacent edges, and which is also fixed at location rBC by the
constraint r−rBC = 0, as shown in Figure 3 on the left. In this case the load FBC will have no effect
on the structural solution, since it’s effectively pushing on the “immovable” point rBC.

If the loaded node is restrained in only one direction nBC as given by (3), then the load component
in that direction FBC · n̂BC will have no effect. Only the remaining load

Fimparted = FBC − (FBC · n̂BC) n̂BC

will be imparted to the shell, as shown in Figure 3 on the right.

BCBC

BC
r

BC
r BC

r
BC
r

BC BC
−

BC
. n( )

BC
n

BC
n

BC
n

F F

F F

Figure 3: Complete or partial elimination of applied load by position BC.

Angle BCs cancel one or more components of an applied moment load in a similar manner. Specif-
ically, if a moment MBC is imposed on the node with the one-angle BC (6), then this is equivalent
to an applied remaining moment

Mimparted = MBC −
(
MBC · d̂

)
d̂

which excludes the component along d̂. If MBC is applied together with the two-angle BC (7), then
this is equivalent to applying

Mimparted = MBC −
(
MBC · d̂

)
d̂ −

(
MBC · (t̂BC×d̂)

)
(t̂BC×d̂)

which excludes the components along d̂, and also the component orthogonal to both t̂BC and d̂.
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5.6 Joints

Joints are imposed by setting the following variables and pointers.

njoint number of joint pairs
kjoint(1:2,j) k indices of the two nodes of joint pair j

In general, a physical joint between N co-located nodes requires the declaration of N−1 joint pairs,
each of which conceptually has a joint direction from kjoint(1,j) to kjoint(2,j), as indicated
by the joint arrows in Figure 4.

For a physical joint with N = 2 the single joint pair’s direction is immaterial. For a physical joint
with N ≥ 3, all the joint pairs must point at the same joint common node, which is node kC in the
N = 4 example in Figure 4. The choice of the joint common node is arbitrary.

kA kB

j1 2

kAjkjoint(1, ) = 

kjkjoint(2, ) = B

kA kB

kC

ja jb

1

2

1

2

kD
jc1 2

kAj
k

kjoint(1,  ) = 

kjoint(2,  ) = 
a

ja C

kj
k

kjoint(1,  ) = 

kjoint(2,  ) = j C

kj
k

kjoint(1,  ) = 

kjoint(2,  ) = j C

b

b

c

c

B

D

joined nodes A,B joined nodes A,B,C,D

   joint
common
  node

Figure 4: For physical joints with more than two nodes, as on the right, the same
joint common node’s index (kC in this example) must be assigned to kjoint(2,j)

for all the joint pairs.

Joints are not restricted to surface edge nodes. For example, a “T joint” can be made between
the edge nodes of one surface and the interior nodes of another surface. A “lap joint” can be
made between interior nodes of one surface and the interior nodes of another face-to-face adjoining
surface, thus mimicing a surface bond. Such an isolated joint pair roughly mimics a spot weld or
rivet between the two surfaces.

16



6 Main HSM Interface Subroutines

This section gives summary descriptions of the main HSM subroutines which will interface with
the user application. The inputs and outputs of each subroutine’s call list are fully described in
the comment header of each subroutine, and most were already described above. Hence, the call
lists will not be described here to avoid duplication. Instead, only the routine operations will be
summarized.

6.1 Subroutine HSMSOL

This is the main top-level HSM analysis routine, which performs the following actions:

• initializes the primary variables if lvinit = F

• calls HSMEQN for each element to compute residuals and Jacobians

• accumulates residuals and Jacobians to element nodes

• imposes loading BCs by adding on boundary integrals for loaded edges l = 1:nbcedge

• calls HSMBB to compute b̂1, b̂2, b̂n projection vectors for each node

• projects residuals and Jacobians

• imposes geometric BCs by overwriting appropriate equations for BC nodes l = 1:nbcnode

• puts Jacobian arrays into sparse block matrix form

• solves Newton system

• performs Newton update of primary variables

• checks whether membrane sub-iterations are needed

• performs sub-iterations to convergence if needed

• checks for final convergence, and exits if below tolerance or iteration limit was reached

6.2 Subroutine HSMDEP

This is the main post-processing routine, which performs the following actions:

• computes the ê1, ê2, n̂ vectors at all nodes of the deformed geometry

• computes the tensors ¯̄ε, ¯̄κ, ¯̄f, ¯̄m at all nodes in the local 12n axes

• computes the vectors ~fn, ~γ at all nodes in the local 12n axes

6.3 Subroutine HSMOUT

This is the main output routine which writes the solution to text files. Data for each quad element
is in 5 lines, for nodes 1,2,3,4,1, thus forming a closed polygon in space. Data for each triangle
element is in 4 lines, for nodes 1,2,3,1. Each of the node lines has that node’s data in multiple
columns, as described below. Bold vectors are in xyz axes. Italic vectors and tensors are in local
12n axes.

• fort.1 : r0 r d̂ φ qn q

• fort.2 : r0 ± ζd̂ r± ζd̂ (top/bot surfaces)

• fort.3 : r0 r ¯̄ε ¯̄κ ~γ

• fort.4 : r0 r ¯̄f ¯̄m ~fn

• fort.7 : r0 r f̄1 f̄2 θf1 (principal forces and angle of ¯̄f )
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• fort.8 : r0 r m̄1 m̄2 θm1 (principal moments and angle of ¯̄m)

• fort.9 : r0 r−r0

• fort.11: ê1 vectors

• fort.12: ê2 vectors

• fort.13: n̂ vectors

• fort.14: d̂ vectors

7 HSM Utility Subroutines

This section gives summary descriptions of the major HSM utility subroutines which are called by
the user-level routines. Normally these do not need to be called by the user’s application.

7.1 Subroutine HSMEQN

Computes residual and primary-variable Jacobian area-integral contributions of one element to the
nodes of that element. Does not include the perimeter-integral contributions ∆R. Handles both
triangle and quad elements, indicated by neln=3 or neln=4, respectively. For the neln=3 case, the
par4 and var4 parameters are ignored, and the res var4 parameters are returned as zero.

• calls HSMABD to rotate the ¯̄A, ¯̄B ¯̄D, ¯̄S matrices at the nodes into the element coordinates ξ, η

• calls HSMGEO to compute basis vectors and other geometric quantities at each Gauss point

• interpolates node quantities to each Gauss point

• computes residual and Jacobian integrands at each Gauss point

• weight-sums the integrands to perform the Gaussian quadrature

7.2 Subroutine HSMFBC

Computes perimeter-integral residual contributions ∆R for one edge, using boundary condition
data for that edge.

• calls HSMGEO2 to compute basis vectors and other geometric quantities at each Gauss point

• interpolates node quantities to each Gauss point

• computes residual and Jacobian integrands at each Gauss point

• weight-sums the integrands to perform the Gaussian quadrature

7.3 Subroutine HSMABD

Rotates the components of the ¯̄A, ¯̄B, ¯̄D, ¯̄S tensors from the 12n axes at the element nodes, into the
common ξ, η axes of the element. The result is the Ã, B̃, D̃, S̃ tensor components at the nodes, which
can then be interpolated over the element. Handles both triangle and quad elements, indicated by
neln=3 or neln=4, respectively. For the neln=3 case, the par4 parameter is ignored.

• calls HSMGEO at the ξ, η location of each corner, to give the a basis vectors there

• applies the direction cosines ê · a at each node to perform the tensor rotations
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7.4 Subroutine HSMGEO

Computes all the necessary geometric manifold quantities and their Jacobians, listed below. The
quantities are for the specified element coordinate location (ξ, η) = (ξ1, ξ2). Handles both triangle
and quad elements, indicated by neln=3 or neln=4, respectively. For the neln=3 case, the r4, d4,
p4, parameters are ignored.

• d̂ material-normal vector

• a1,a2 covariant basis vectors

• a1,a2 contravariant basis vectors

• ğαβ metric tensor

• h̆αβ curvature tensor

• ğαβ inverse metric tensor

• ğ metric Jacobian

• ∂1r×∂2r bilinear area vector

7.5 Subroutine HSMGEO2

Computes the geometric manifold quantities and their Jacobians for an edge segment, listed below.
The quantities are for the specified line coordinate location ξ.

• d̂ material-normal vector

• a1 covariant basis vector

• ğ metric Jacobian

• h̆ curvature along edge

• t̂ edge-normal tangent unit vector

• l̂ edge-parallel tangent unit vector
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