
Engineering Sketch Pad (ESP)

Training Session 1.4

CSM Language (1)

John F. Dannenhoffer, III
jfdannen@syr.edu
Syracuse University

Bob Haimes Marshall Galbraith
haimes@mit.edu galbramc@mit.edu

Massachusetts Institute of Technology

Dannenhoffer ESP Training - Session 1.4 3 June 2019 1 / 32

Overview

Format of .csm file

Special characters

Numbers

Parameters

Types
Names
Dimensions
Lower and Upper Bounds

Expressions

Numeric
String

Reading Help File

CSM File Editor

Dannenhoffer ESP Training - Session 1.4 3 June 2019 2 / 32

Format of the .csm file (1)

The .csm file contains a series of statements.

If a line contains a hash (#), all characters starting at the
hash are ignored.

If a line contains a backslash (\), all characters starting at
the backslash are ignored and the next line is appended;
spaces at the beginning of the next line are treated normally.

All statements begin with a keyword (described below) and
must contain at least the indicated number of arguments.

The keywords may either be all lowercase or all
UPPERCASE.

Any CSM statement can be used in a .csm file except the
INTERFACE statement.

Dannenhoffer ESP Training - Session 1.4 3 June 2019 3 / 32

Format of the .csm file (2)

Blocks of statements must be properly nested. The Blocks
are bounded by

PATBEG/PATEND

IFTHEN/ELSEIF/ELSE/ENDIF

SOLBEG/SOLEND

CATBEG/CATEND

Extra arguments in a statement are discarded. If one wants
to add a comment, it is recommended to begin it with a hash
(#) in case optional arguments are added in future releases.

Any statements after an END statement are ignored.

hint: if debugging, consider THROWing an error instead to
avoid unclosed Blocks

All arguments must not contain any spaces or must be
enclosed in a pair of double quotes (for example, "a + b").

Dannenhoffer ESP Training - Session 1.4 3 June 2019 4 / 32

Format of the .csm file (3)

Parameters are evaluated in the order that they appear in the
file, using MATLAB-like syntax (see ’Expression rules’
below).

During the build process, OpenCSM maintains a
last-in-first-out (LIFO) “Stack” that can contain Bodys and
Sketches.

The .csm statements are executed in a stack-like way, taking
their inputs from the Stack and depositing their results onto
the Stack.

The default name for each Branch is Brch xxxxxx, where
xxxxxx is a unique sequence number.

Dannenhoffer ESP Training - Session 1.4 3 June 2019 5 / 32

Special characters (1)

introduces comment

" ignore spaces until following "

\ ignore this and following characters and

concatenate next line

<space> separates arguments in .csm file (except

between " and ")

0-9 digits used in numbers and in names

A-Z a-z letters used in names

_ : @ characters used in names (see rule for names)

. decimal separator (used in numbers),

introduces dot-suffixes (in names)

, separates function arguments and row/column

in subscripts

; multi-value item separator

Dannenhoffer ESP Training - Session 1.4 3 June 2019 6 / 32

Special characters (2)

() groups expressions and function arguments

[] specifies subscripts in form [row,column] or [index]

{ } < > characters used in strings

+ - * / ^ arithmetic operators

$ as first character, introduces a string that is

terminated by end-of-line or un-escaped plus,

comma, or open-bracket

@ as first character, introduces @-parameters

’ used to escape comma, plus, or open-bracket

within strings

! if first character of implicit string, ignore

$! and treat as an expression

| cannot be used (reserved for OpenCSM internals)

~ cannot be used (reserved for OpenCSM internals)

& cannot be used (reserved for OpenCSM internals)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 7 / 32

Numbers

Start with a digit or decimal (.)

Followed by zero or more digits and/or decimals (.)

There can be at most one decimal in a number

Optionally followed by an e, e+, e-, E, E+, or E-

If there is an e or E, it must be followed by one or more digits

If numbers are in a list, the elements are separated by a
semicolon (;)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 8 / 32

Types of Parameters (1)

Design Parameter

must contain one or more numbers
if multi-valued, must be first DIMENSIONed
values are declared in a DESPMTR statement
can contain lower- and upper bounds, specified in LBOUND

and UBOUND statements
are only usable in .csm file (unless the .udc file has
INTERFACE . ALL in its preamble)

Constant Parameter

values are declared in a CONPMTR statement
follows all rules for DESPMTRs
are usable anywhere

Dannenhoffer ESP Training - Session 1.4 3 June 2019 9 / 32

Types of Parameters (2)

Local Variables

can contain one or more numbers or a character string
if multi-valued, must first be DIMENSIONed
is created by a SET or PATBEG statement
can be an @-parameter (described below)
are only usable in .csm or .udc file in which it was defined
(unless the .udc file has INTERFACE . ALL in its preamble)

Output Parameters

declared in a OUTPMTR statement
refers to any local variable whose value is available outside
ESP (such as to CAPS)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 10 / 32

Valid Parameter Names

Start with a letter, colon (:), or at-sign (@)

Contains letters, digits, at-signs (@), underscores (),
and colons (:)

Contains fewer than 32 characters

Names that start with an at-sign cannot be set by a CONPMTR,
DESPMTR, SET, or PATBEG statement

When listed in ESP, are sub-grouped based upon the colons
(:)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 11 / 32

Dot-suffixes

If a name has a dot-suffix, a property of the name (and not
its value) is returned
x.nrow number of rows in x

x.ncol number of columns in x

x.size number of elements or characters in x

x.sum sum of elements in x

x.norm RMS norm of elements in x

x.min minimum value in x

x.max maximum value in x

Example:

DIMENSION myvar 2 3 1

DESPMTR myvar "1; 2; 3;\

4; 5; 6"

myvar.nrow returns 2
myvar.sum returns 21

Dannenhoffer ESP Training - Session 1.4 3 June 2019 12 / 32

Accessing Element of an Array

Basic format is: name[irow,icol] or name[ielem]

Name must follow rules above

irow, icol, and ielem must be valid expressions

irow, icol, and ielem start counting at 1

For 2D arrays, either name[irow,icol] or name[ielem] be
used

Values are stored across rows ([1,1], [1,2], ..., [2,1], ...)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 13 / 32

@-parameters (1)

Every time a Body gets created, or after a SELECT statement,
readable local variables are set

Dannenhoffer ESP Training - Session 1.4 3 June 2019 14 / 32

@-parameters (2)

body face edge node <- last SELECT

@seltype -1 2 1 0 selection type (0=node,1=edge,2=face)

@selbody x - - - current Body

@sellist -1 x x x list of Nodes/Edges/Faces

@nbody x x x x number of Bodys

@ibody x x x x current Body

@nface x x x x number of Faces in @ibody

@iface -1 x -1 -1 current Face in @ibody

@nedge x x x x number of Edges in @ibody

@iedge -1 -1 x -1 current Edge in @ibody

@nnode x x x x number of Nodes in @ibody

@inode -1 -1 -1 x current Node in @ibody

@igroup x x x x group of current Body

@itype x x x x 0=NodeBody, 1=WireBody,

2=SheetBody, 3=SolidBody

@nbors -1 x - x number of incident Edges

@nbors -1 - x - number of incident Faces

Dannenhoffer ESP Training - Session 1.4 3 June 2019 15 / 32

@-parameters (3)

@ibody1 -1 x x -1 first element of ’Body’ Attribute in @ibody

@ibody2 -1 x x -1 second element of ’Body’ Attribute in @ibody

@xmin x x * x x-min of bounding box or x at beg of edge

@ymin x x * x y-min of bounding box or y at beg of edge

@zmin x x * x z-min of bounding box or z at beg of edge

@xmax x x * x x-max of bounding box or x at end of edge

@ymax x x * x y-max of bounding box or y at end of edge

@zmax x x * x z-max of bounding box or z at end of edge

@length 0 0 x 0 length of edge

@area x x 0 0 area of face or surface area of body

@volume x 0 0 0 volume of body (if a solid)

@xcg x x x x location of center of gravity

@ycg x x x x

@zcg x x x x

Dannenhoffer ESP Training - Session 1.4 3 June 2019 16 / 32

@-parameters (4)

@Ixx x x x 0 centroidal moment of inertia

@Ixy x x x 0

@Ixz x x x 0

@Iyx x x x 0

@Iyy x x x 0

@Iyz x x x 0

@Izx x x x 0

@Izy x x x 0

@Izz x x x 0

@signal x x x x current signal code

@nwarn x x x x number of warnings

@edata only set up by EVALUATE statement

in above table:

x -> value is set

* -> special value is set (if edge)

0 -> value is set to 0

-1 -> value is set to -1

Dannenhoffer ESP Training - Session 1.4 3 June 2019 17 / 32

Expression Rules (Valid operators)

Valid operators (in order of precedence):
() parentheses, inner-most evaluated first
func(a,b) function arguments, then function itself
∧ exponentiation (evaluated left to right)
* / multiply and divide (evaluated left to right)
+ - add and subtract (evaluated left to right)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 18 / 32

String Variables

Contains the sequence of characters starting after a
dollar-sign($) and ending with a space, plus-sign (+), comma
(,), or closed-parenthesis ())

If escaped with an apostrophe (’), can contain a plus-sign
(’+), comma (’,) or closed-parenthesis (’))

for example:

$thisStringContainsAComma(’,’)

returns thisStringContainsAComma(,)

Can never contain a space

Are parsed left-to-right, as is any expression

for example:

SET one 1

SET mystr $thereIsA+one+$inThisString

returns (in mystr) thereIsA1inThisString

Dannenhoffer ESP Training - Session 1.4 3 June 2019 19 / 32

Functions (1)

pi(x) 3.14159...*x
min(x,y) minimum of x and y
max(x,y) maximum of x and y
sqrt(x) square root of x
abs(x) absolute value of x
int(x) integer part of x (3.5 → 3, −3.5 → −3)

produces derivative=0
nint(x) nearest integer to x

produces derivative=0
ceil(x) smallest integer not less than x

produces derivative=0
floor(x) largest integer not greater than x

produces derivative=0

Dannenhoffer ESP Training - Session 1.4 3 June 2019 20 / 32

Functions (2)

mod(a,b) modulus(a/b), with same sign as a and b≥0
sign(test) returns -1, 0, or +1

produces derivative=0
exp(x) exponential of x
log(x) natural logarithm of x
log10(x) common logarithm of x

Dannenhoffer ESP Training - Session 1.4 3 June 2019 21 / 32

Functions (3)

sin(x) sine of x (in radians)
sind(x) sine of x (in degrees)
asin(x) arc-sine of x (in radians)
asind(x) arc-sine of x (in degrees)
cos(x) cosine of x (in radians)
cosd(x) cosine of x (in degrees)
acos(x) arc-cosine of x (in radians)
acosd(x) arc-cosine of x (in degrees)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 22 / 32

Functions (4)

tan(x) tangent of x (in radians)
tand(x) tangent of x (in degrees)
atan(x) arc-tangent of x (in radians)
atand(x) arc-tangent of x (in degrees)
atan2(y,x) arc-tangent of y/x (in radians)
atan2d(y,x) arc-tangent of y/x (in degrees)

hypot(x,y) hypotenuse:
√

x2 + y2

hypot3(x,y,z) hypotenuse:
√

x2 + y2 + z2

Dannenhoffer ESP Training - Session 1.4 3 June 2019 23 / 32

Functions (5)

Xcent(xa,ya,dab,xb,yb) X-center of circular arc
produces derivative=0

Ycent(xa,ya,dab,xb,yb) Y -center of circular arc
produces derivative=0

Xmidl(xa,ya,dab,xb,yb) X-point at midpoint of circular arc
produces derivative=0

Ymidl(xa,ya,dab,xb,yb) Y -point at midpoint of circular arc
produces derivative=0

seglen(xa,ya,dab,xb,yb) length of segment
produces derivative=0

Dannenhoffer ESP Training - Session 1.4 3 June 2019 24 / 32

Functions (6)

incline(xa,ya,dab,xb,yb) inclination of chord (in degrees)
produces derivative=0

radius(xa,ya,dab,xb,yb) radius of curvature (or 0 for linseg)
produces derivative=0

sweep(xa,ya,dab,xb,yb) sweep angle of circular arc (in degrees
produces derivative=0

turnang(xa,ya,dab,...

xb,yb,dbc,xc,yc) turning angle at b (in degrees)
produces derivative=0

dip(xa,ya,xb,yb,rad) acute dip between arc and chord
produces derivative=0

smallang(x) ensures −180 ≤ x ≤ 180

Dannenhoffer ESP Training - Session 1.4 3 June 2019 25 / 32

Functions (7)

val2str(num,digits) convert num to a string
str2val(string) convert string to a number
findstr(str1,str2) finds location of str2 in str1

(bias-1) or 0 if not found
slice(str,ibeg,iend) substring of str from ibeg

to iend (bias-1)

Dannenhoffer ESP Training - Session 1.4 3 June 2019 26 / 32

Functions (8)

ifzero(test,ifTrue,ifFalse) if test = 0, return ifTrue,
else return ifFalse

ifpos(test,ifTrue,ifFalse) if test > 0, return ifTrue,
else return ifFalse

ifneg(test,ifTrue,ifFalse) if test < 0, return ifTrue,
else return ifFalse

ifnan(test,ifTrue,ifFalse) if test is NaN, return ifTrue,
else return ifFalse

Dannenhoffer ESP Training - Session 1.4 3 June 2019 27 / 32

Reading Help File (1)

STORE $name index=0 keep=0

use: stores Group on top of Stack

pops: any

pushes: -

notes: Sketch may not be open

Solver may not be open

$name is used directly (without evaluation)

previous Group in name/index is overwritten

if $name=. then Body is popped off stack

but not actually stored

if $name=.. then pop Bodys off stack back

to the Mark

if $name=... then the stack is cleared

if keep==1, the Group is not popped off stack

cannot be followed by ATTRIBUTE or CSYSTEM

signals that may be thrown/caught:

$insufficient_bodys_on_stack

Dannenhoffer ESP Training - Session 1.4 3 June 2019 28 / 32

Reading Help File (2)

If argument starts with dollar-sign ($), then the argument is
assumed to be string, and the user does not need to prepend
the argument with a dollar-sign ($)

if an expression is given that should be evaluated (to a string
value), prepend the argument with an exclamation point (!),
as in:

SET i 10

STORE !$ThisIsBody+i+$.

stores the Body in a location named ThisIsBody10.

For arguments that are listed with an equal-sign (=), the
value after the equal sign is the default value

Dannenhoffer ESP Training - Session 1.4 3 June 2019 29 / 32

CSM File Editor (1)

Started via the button File→Edit:

Dannenhoffer ESP Training - Session 1.4 3 June 2019 30 / 32

CSM File Editor (2)

Options (on top row) include:

Copy — copy highlighted text into paste-buffer
Cut — copy highlighted text into paste-buffer and remove it
from the file
Paste — copy paste-buffer into .csm file at the cursor
Search — search for text (input is on top line)
Next — search for next occurrence
Prev — search for previous occurrence
Replace — replace one text string with another
. . .

Dannenhoffer ESP Training - Session 1.4 3 June 2019 31 / 32

CSM File Editor (3)

Options on top row include:

. . .
Comment — if first statement in highlighted region is not a
comment, block comment the whole region. Otherwise, block
un-comment the whole region
Indent — indent the highlighted region
Hint — provide a hint (on the top line) for the statement at
the cursor
Undo — un-do the previous edit
Cancel — leave the editor (and lose your changes)
Save — save the file to disk. If there is only one file in the
session, the configuration is also automatically re-built

Dannenhoffer ESP Training - Session 1.4 3 June 2019 32 / 32

