
Engineering Sketch Pad (ESP)

Training Session 2.3

CSM Language (2)

John F. Dannenhoffer, III
jfdannen@syr.edu
Syracuse University

Bob Haimes Marshall Galbraith
haimes@mit.edu galbramc@mit.edu

Massachusetts Institute of Technology

Dannenhoffer ESP Training - Session 2.3 4 June 2019 1 / 29

Overview

Manipulating the Stack

GROUP
STORE, RESTORE

Looping

PATBEG, PATBREAK, PATEND

Logic

IFTHEN, ELSEIF, ELSE, ENDIF

Signal Handling

THROW, CATBEG, CATEND

User-defined Components (UDCs)

Include-style
Function-style

Dannenhoffer ESP Training - Session 2.3 4 June 2019 2 / 29

Manipulating the Stack (1)

During the build process, OpenCSM maintains a
last-in-first-out (LIFO) “Stack” that can contain Bodys and
Sketches.

The .csm statements are executed in a stack-like way, taking
their inputs from the Stack and depositing their results onto
the Stack.

Bodys can be grouped with the GROUP statement

all the Bodys back to the Mark (or the beginning of the
Stack) are put into a single Group
some operations, such as the transformations, ATTRIBUTE,
STORE, and DUMP operate on all Bodys in the Group
simultaneously

Dannenhoffer ESP Training - Session 2.3 4 June 2019 3 / 29

Manipulating the Stack (2)

The Group on the top of the Stack can be “popped” off the
stack with a STORE command

if the name is alpha-numeric, the Group is stored in a named
storage location
if the name is a dot (.), the Group is not stored (just popped
off the Stack)
if the name is two dots (..), all the Groups back to the Mark
are popped off the Stack (and not stored)
if the name is three dots (...), everything is popped off the
Stack

Dannenhoffer ESP Training - Session 2.3 4 June 2019 4 / 29

Manipulating the Stack (3)

Groups can be read from a named storage location and
“pushed” onto the Stack with the RESTORE command

The RESTORE command is considered a primitive, so its
Attributes are put on all the Bodys and all their Faces

Dannenhoffer ESP Training - Session 2.3 4 June 2019 5 / 29

Patterns

Patterns are like “for” or “do” loops

the Branches between the PATBEG and PATEND are executed a
known number of times
at the beginning of each “instance”, the pattern number is
incremented (from 1 to the number of copies)
one can break out of the pattern early with a PATBREAK

statement

Example pattern (indentation optional):
PATBEG i 7

SET j i-1

BOX j 0 0 1 1 1

ROTATEX j*10 0 0

PATEND

Dannenhoffer ESP Training - Session 2.3 4 June 2019 6 / 29

If/then (1)

If/then constructs are used to make a choice within a .csm
script

start with IFTHEN statement
has zero or more ELSEIF statements
has zero or one ELSE statement
has exactly one ENDIF statement

The IFTHEN and ELSEIF statements have arguments

val1 — an expression
op1 — can be lt, le, eq, ge, gt, or ne
val2 — an expression
op2 — can be or, xor, or and (defaults to and)
val3 — an expression (defaults to 0)
op3 — can be lt, le, eq, ge, gt, or ne (defaults to eq)
val4 — an expression (defaults to 0)

Dannenhoffer ESP Training - Session 2.3 4 June 2019 7 / 29

If/then (2)

Example (indentation optional):
IFTHEN a eq 4 or b ne 2

BOX 0 0 0 1 1 1

ELSEIF c eq sqrt(9)

BOX 2 2 2 2 2 2

ELSE

BOX 3 3 3 3 3 3

ENDIF

Dannenhoffer ESP Training - Session 2.3 4 June 2019 8 / 29

Throw/catch (1)

Throw/catch constructs are used to generate and react to
signals (errors)

Signals can be generated by

executing a THROW command
a run-time error encountered elsewhere (see “help” for more
info)

When a signal is generated, all Branches are skipped until a
matching CATBEG statement is encountered

the signal is cancelled
processing continues at the statement following the CATBEG

If a CATBEG statement is encountered when there is no
pending signal (or the pending signal does not match the
CATBEG)

all Branches up to, and including the matching CATEND

statement, are skipped

Dannenhoffer ESP Training - Session 2.3 4 June 2019 9 / 29

Throw/catch (2)

1: BOX 0 0 0 1 1 1

2: THROW -99

3: SPHERE 0 0 0 1

4: CATBEG -98

5: SPHERE 0 0 0 2

6: CATEND

7: SPHERE 0 0 0 3

8: CATBEG -99

9: BOX 1 0 0 1 1 1

10: CATEND

11: CATBEG -99

12: SPHERE 0 0 0 4

13: CATEND

14: END

BOX in line 1 is generated

SPHERE in line 3 is skipped (since
there is an active signal)

CATBEG/CATEND in lines 4–6 are
skipped (since they do not match
-99)

SPHERE in line 7 is skipped

BOX in line 9 is generated

CATBEG/CATEND in lines 11–13 are
skipped (since the signal was
cancelled when it was caught in
line 8)

Dannenhoffer ESP Training - Session 2.3 4 June 2019 10 / 29

Special Note on Programming Blocks

Programming Blocks are delineated by

PATBEG and PATEND

IFTHEN, ELSEIF, ELSE, and ENDIF

SOLBEG and SOLEND

CATBEG and CATEND

Any programming Block can be nested fully within any other
programming Block (up to 10 levels deep)

Dannenhoffer ESP Training - Session 2.3 4 June 2019 11 / 29

User-defined Components (UDCs)

A UDC is a series of statements that are contained in a .udc

file

The statements in the UDC can be treated in two ways:
Include-style

statements within the UDC are simply processed as if they
were included in the enclosing .csm or .udc file
the .udc file must start with an INTERFACE . ALL statement
Variables and Parameters in the .udc file have the same scope
as its caller (that is, the UDC shares variables with its caller)

Function-style

Variables and Parameters in the .udc file have local scope
(that is, the UDC’s variable are private)
Variables in the UDC get values via
INTERFACE . IN statements
The UDC can output some of its variables via
INTERFACE . OUT statements

Dannenhoffer ESP Training - Session 2.3 4 June 2019 12 / 29

UDCs Shipped with ESP

biconvex — generate a biconvex airfoil

boxudc — similar to the box UDP

diamond — generate a double-diamond airfoil

flapz — cut a (deflected) flap in a Body

gen rot — general rotation with two fixed points

popupz — pop up a part of the configuration

spoilerz — pop up a spoiler

duct — generate a duct

fuselage — generate a fuselage

strut — generate a strut (between a duct and wing)

wing — generate a wing

Dannenhoffer ESP Training - Session 2.3 4 June 2019 13 / 29

Calling a UDC

UDCs are called with a UDPRIM statement

$primtype must start with a slash (/), dollar-slash ($/), or
dollar-dollar-slash ($$/)

if /, then the UDC file is in the current working directory
if $/, then the UDC file is in the same directory as the .csm
file
if $$/, then the UDC file is in ESP ROOT/udc

The UDPRIM statement can be preceded by one or more
UDPARG statements

name-value pairs are processed in order (with possible
over-writing)

Dannenhoffer ESP Training - Session 2.3 4 June 2019 14 / 29

Writing a UDC

Define the interface

input variables (with default values)
output variables (with default values)
dimensioned variables (which all default to 0)

Add assertions to ensure valid inputs

Make sure all “output” variables are assigned values

Dannenhoffer ESP Training - Session 2.3 4 June 2019 15 / 29

Example UDC — dumbbell.udc

dumbbell

INTERFACE Lbar in 0 # length of bar

INTERFACE Dbar in 0 # diameter of bar

INTERFACE Dball in 0 # diameter of balls

INTERFACE vol out 0 # volume

ASSERT ifpos(Lbar,1,0) 1

ASSERT ifpos(Dbar,1,0) 1

ASSERT ifpos(Dball,1,0) 1

SET Lhalf "Lbar / 2"

CYLINDER -Lhalf 0 0 +Lhalf 0 0 Dbar

SPHERE -Lhalf 0 0 Dball

UNION

SPHERE +Lhalf 0 0 Dball

UNION

SET vol @volume

END

Dannenhoffer ESP Training - Session 2.3 4 June 2019 16 / 29

Example UDC — jack.csm

jack

UDPARG $/dumbbell Lbar 5.0

UDPARG $/dumbbell Dball 1.0

UDPRIM $/dumbbell Dbar 0.2

SET foo @@vol

STORE dumbbell 0 1

RESTORE dumbbell

ROTATEY 90 0 0

UNION

RESTORE dumbbell

ROTATEZ 90 0 0

UNION

show that vol was a local variable in .udc

ASSERT ifnan(vol,1,0) 1

END

Dannenhoffer ESP Training - Session 2.3 4 June 2019 17 / 29

Example UDC — Jack

Dannenhoffer ESP Training - Session 2.3 4 June 2019 18 / 29

Example UDC — cutter.udc

cutter

INTERFACE xx in 0

INTERFACE yy in 0

INTERFACE zbeg in 0

INTERFACE zend in 0

ASSERT ifpos(xx.size-2,1,0) 1

ASSERT ifzero(xx.size-yy.size,1,0) 1

SKBEG xx[1] yy[1] zbeg

PATBEG i xx.size-1

LINSEG xx[i+1] yy[i+1] zbeg

PATEND

LINSEG xx[1] yy[1] zbeg

SKEND 1

EXTRUDE 0 0 zend-zbeg

END

Dannenhoffer ESP Training - Session 2.3 4 June 2019 19 / 29

Example UDC — scribeCyl.csm

scribeCyl

DIMENSION xpoints 1 3

DIMENSION ypoints 1 3

SET xpoints "-1.; 1.; .0;"

SET ypoints "-.5; -.5; +.5;"

CYLINDER -3 0 0 +3 0 0 2

ROTATEX 90 0 0

UDPARG $/cutter xx xpoints

UDPARG $/cutter yy ypoints

UDPARG $/cutter zbeg 0

UDPRIM $/cutter zend 3

SUBTRACT

END

Dannenhoffer ESP Training - Session 2.3 4 June 2019 20 / 29

Example UDC — Scribed Cylinder

Dannenhoffer ESP Training - Session 2.3 4 June 2019 21 / 29

Hands-on Exercises

Rectangular plate with holes

Round plate with holes

Reflected cone

Files in $ESP ROOT/training/session2.3 will get you
started

Dannenhoffer ESP Training - Session 2.3 4 June 2019 22 / 29

Rectangular Plate with Holes (1)

Dannenhoffer ESP Training - Session 2.3 4 June 2019 23 / 29

Rectangular Plate with Holes (2)

nx number of holes in X-direction 3.00
ny number of holes in Y -direction 2.00
rad radius of each hole 0.30

distance between hole centers 1.00

Dannenhoffer ESP Training - Session 2.3 4 June 2019 24 / 29

Rectanguler Plate with Holes (3)

Can you make a single hole in the center of the plate?

Can you change your solution to have the holes spaced so
that they fill the plate?

What if you make the radius of the hole too big?

Dannenhoffer ESP Training - Session 2.3 4 June 2019 25 / 29

Round Plate with Holes (1)

Dannenhoffer ESP Training - Session 2.3 4 June 2019 26 / 29

Round Plate with Holes (2)

Rplate radius or plate 4.50
thick thickness of plate 0.20
space distance between hole centers 2.00
Rhole radius of holes 0.80

number of holes selected
automatically

Dannenhoffer ESP Training - Session 2.3 4 June 2019 27 / 29

Reflected Cone (1)

Dannenhoffer ESP Training - Session 2.3 4 June 2019 28 / 29

Reflected Cone (2)

Write mirrorDup.udc to

store a copy of the Body on the top of the stack
mirror the Body across a plane whose normal vector and
distance from the origin are given
union the original and mirrored Bodys

Apply mirrorDup.udc to a cone

cone base at (5, 0, 0)
cone vertex at (0, 0, 0)
cone diameter is 4
reflection across a plane at x = 1

Dannenhoffer ESP Training - Session 2.3 4 June 2019 29 / 29

