Marshall Galbraith Bob Haimes

galbramc@mit.edu haimes@mit.edu
Massachusetts Institute of Technology

John F. Dannenhoffer, II1
jfdannen@syr.edu

Syracuse University

e Loosely coupled analysis

@ capsBound object and the capsBound attribute
@ capsVertexSet objects
@ capsDataSet objects

@ Loosely coupled one-way modal aeroelastic analysis

@ Loosely coupled two-way iterative aeroelastic analysis

e Couple two independent analysis tools

o Aeroelastic analysis

o CFD to compute pressures
e FEM to compute displacements

e Typically disparate tools

o Mesh resolution
o Data representation (cell vs. node center)

o CAPS data transfer reconciles differences

o Examples:

e Omne-way coupling: Astros Modal — Fun3D
o Two-way coupling: Astros Static <> SU2

 Gabraith CAPS Training - Session 5.3 T R

@ capsBound is a logical grouping of BRep Objects

o Represent the same entity, e.g. “outer surface of the wing”
e Bound is used by CAPS framework to facilitate data transfer
e Defined by the capsBound attribute

e Same capsBound attribute applied to “coincident” bodies
defines connection

ESP /wing3.csm Structures capsBound

ATTRIBUTE capsBound $upperWing ATTRIBUTE capsBound $lowerWing ATTRIBUTE capsBound $leftTip

7 June 2019 4/18

@ capsBound is a logical grouping of BRep Objects

o Represent the same entity, e.g. “outer surface of the wing”

e Bound is used by CAPS framework to facilitate data transfer
e Defined by the capsBound attribute

e Same capsBound attribute applied to “coincident” bodies
defines connection

ESP /wing3.csm CFD Inviscid capsBound

esp

ATTRIBUTE capsBound $upperWing ATTRIBUTE capsBound $lowerWing

ATTRIBUTE capsBound $leftTip

7 June 2019 5/18

o capsVertexSet is a discrete capsBound

Aerodynamic

Structures

capsBound

capsVertexSet

7 June 2019

6/18

o capsVertexSet is a discrete capsBound

o If capsBound Faces have same underlying surface, then the
native UVs are used to match the points between
capsVertexSets

o If not the triangulations are reparameterized with a single
UV representation

o If barycentric coordinates are found for each vertex in a
capsVertexSet to the other(s). This allows for straight
interpolation using the solver’s spatial discretization scheme
(as provided in the ATM)

~ Galbraith CAPS Training - Session 5.3 7 June 2019

7/18

capsDataSet

e Discrete data associated with a capsVertexSet
e Pressure
o Temperature
e Displacements
o Flexible data structure
o Node centered data
o Cell centered data
e Higher-order nodal basis functions

~ Galbraith CAPS Training - Session 5.3 7 June 2019 8/18

e Data transferred between different capsVertexSet

e Pressure from aero to structures capsVertexSet
e Displacements from structures to aero capsVertexSet
o Transfer via interpolation:

e Interpolation, does not insure integrated values match
between capsVertexSets — important for a convergent inner
loop

o Conservative transfer:

o Conservative data transfers ensure integrated quantities
match by slightly adjusting (weighting) the interpolation.

~ Galbraith CAPS Training - Session 5.3 7 June 2019 9/18

Loosely coupled analysis

capsBound object and the capsBound attribute
capsVertexSet objects
capsDataSet objects

@ Loosely coupled one-way modal aeroelastic analysis

Loosely coupled two-way iterative aeroelastic analysis

e Compute EigenVectors with Astros J

e Transfer EigenVectors to Fun3D for aeroelastic calculation

sessionb.3/aeroelastic. Modal_Fun3D_Astros.py

o Create capsBound data transfers

e Load aflr4dATM e Generate meshes

e Load aflr3AIM o Fill capsVertexSet

e Load fun3dAIM e Execute ASTROS

e Load egadsTessAIM e Transfer EigenVectors from
o Load astrosAIM ASTROS to Fun3D

e Execute Fun3D

 Gabraith CAPS Training - Session 5.3 R

variableName: Variable names

o
e aimSrc: AIM names to transfer data from (source)

e aimDest: AIM names receiving data (destination)

o transferMethod: Interpolate or Conserve

e capsBound: Name of the capsBound attribute on the bodies
°

Builds dictionary myProblem.dataBound [bound]

sessionb.3/acroelastic.Modal_Fun3D_Astros.py

Create an array of EigenVector names

numEigenVector = 3

eigenVector = []

for i in range(numEigenVector):
eigenVector.append("EigenVector_" + str(i+l))

Create the capsBounds for data transfer
transfers = ["upperWing", "lowerWing", "leftTip", "riteTip"]
for bound in transfers:
myProblem.createDataTransfer(variableName = eigenVector,
aimSrc = [astros.aimName]*numEigenVector,

aimDest [fun3d.aimName] *numEigenVector,
transferMethod ["Conserve"]*numEigenVector,
capsBound = bound)

 Gabraith CAPS Training - Session 5.3 TR

@ Generate meshes with pre/post Analsys

e Populate vertex sets

sessionb.3/aeroelastic. Modal_Fun3D_Astros.py

Run AIM pre/post-analysis to generate the meshes

for aim in [aflr4.aimName, aflr3.aimName, tess.aimName]:
myProblem.analysis[aim] .preAnalysis()
myProblem.analysis[aim] .postAnalysis()

#

Populate vertex sets in the bounds after the mesh generation is copleted
for bound in transfers:
myProblem.dataBound [bound] .fillVertexSets()

 Gabraith CAPS Training - Session 5.3 TRy

o Execute Astros

o Transfer each EigenVector for each capsBound

sessionb.3/aeroelastic. Modal_Fun3D_Astros.py

#Execute the dataTransfer
print ("\nExecuting dataTransfer ")
for bound in transfers:
for eigenName in eigenVector:
myProblem.dataBound [bound] . executeTransfer (eigenName)

e Execute Fun3D J |

 Gabraith CAPS Training - Session 5.3 R

Loosely coupled analysis

capsBound object and the capsBound attribute
capsVertexSet objects
capsDataSet objects

Loosely coupled one-way modal aeroelastic analysis

@ Loosely coupled two-way iterative aeroelastic analysis

<aps

e Compute pressures with SU2
o Compute displacements with ASTROS
e Displace CFD mesh, and compute pressures with SU2

sessionb.3/aeroelastic_Tterative_SU2_Astros.py

e Create capsBound data transfers

@ Generate meshes

o Load aflr4AIM o Fill capsVertexSet

e Load afir3AIM o [terate

o Load su2AIM o Transfer displacements from
e Load egadsTessAIM ASTROS to 5U2

e Load astrosAIM ° Bxecute 5U2

e Transfer pressure from SU2 to
ASTROS

o Execute ASTROS
~ Galbraith = CAPS Training - Session 5.3 7 June 2019 16/18

o Interleave AIM names in aimSrc and aimDest

o Initial value applied to Displacement to start iterations

sessionb.3/aeroelastic_Iterative_SU2_Astros.py

Create the data transfer connections
transfers = ["upperWing", "lowerWing", "leftTop", "riteTip"]
for bound in transfers:
myProblem.createDataTransfer (variableName
aimSrc

["Pressure", "Displacement"],
[su2.aimName, astros.aimName],

aimDest = [astros.aimName, su2.aimName],
transferMethod = ["Conserve', "Interpolate"] N
initValueDest = [Nome, (0,0,0)1,
capsBound = bound)
e Generating mesh and capsVertexSet J

 Gabraith CAPS Training - Session 5.3 R

@ Start iterations

sessionb.3/aeroelastic_Iterative_SU2_Astros.py

Aeroelastic iteration loop
for iter in range(numTransferIteration):

#Execute the dataTransfer of displacements to su2
#initValueDest is used on the first iteration
print ("\n\nExecuting dataTransfer \"Displacement\"...... ")
for bound in transfers:

myProblem.dataBound [bound] .executeTransfer ("Displacement")

o Execute SU2

#Execute the dataTransfer of Pressure to astros
print ("\n\nExecuting dataTransfer \"Pressure\"...... ")
for bound in transfers:

myProblem.dataBound [bound] .executeTransfer ("Pressure")

o Execute ASTROS

7 June 2019

18/18

	Loosely coupled analysis
	capsBound object and the capsBound attribute
	capsVertexSet objects
	capsDataSet objects

	Loosely coupled one-way modal aeroelastic analysis
	Loosely coupled two-way iterative aeroelastic analysis

