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1 Method Overview

The earliest numerical solutions of shell problems with general geometry treated the shell elements
as degenerate 3D solids, such as the pioneering work of Ahmad, Irons, and Zienkewicz [1]. These
circumvented the complexity of global curvilinear coordinates [2] by formulating the problem in
3D cartesian space with the node position vectors r as primary unknowns, and with the transverse
material fiber direction represented by a material quasi-normal vector (or director) d̂ which is
another primary unknown. However, the early formulations suffered from shear locking, where the
transverse shear strains resulting from the r and d̂ fields could not be correctly represented in the
thin-shell limit. Large solid-body rotations were also not captured exactly.
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Figure 1: Shell geometry defined by deformed and undeformed position vectors
r, r0 relative to body frame. Anisotropic shell properties are defined along local
ê01

, ê02
, n̂0 basis vectors. Shell velocity u and rotation rate ω relative to body

frame, and body-frame velocity U(t) and rotation rate Ω(t) relative to some inertial
frame are used in dynamic problems. All vectors are defined via components along
global xyz axes.

More recent shell mode developments, such as those of of Dvorkin and Bathe[3], sidestep the
shear locking problem by representing the transverse shear stress field indirectly via a special
interpolation scheme from the edge midpoints (not nodes) of a quadrilateral element. The further
development of Simo et al [4],[5] further refined this model with a geometrically-exact treatment
valid for large shell curvatures. Talamini [6] developed a Discontinuous-Galerkin version applicable
to quad or triangular elements. Ibrahimbegovć[7] formulated a similar with an added drilling
degrees of freedom.

The present Hypergeometric Shell Model (HSM) combines the existing shell methods with a higher-
order treatment of the local shell curvatures, and also includes local drilling rotation angles for a
higher-order treatment of the membrane strain field. The stiffness properties are defined in the local
orthonormal basis formed by the undeformed geometry’s normal vector n̂0 and in-surface vectors
ê01

, ê02
. The latter can have any orientation, thus simplifying the specification of anisotropic

materials independently of the discretization. The corresponding n̂, ê1, ê2 of the deformed geometry
are also computed, and serve as the basis for the vector and tensor outputs of the solution.
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2 Geometry

The reference surface (e.g. inner, interior, or outer surface) of the deformed shell geometry is defined
by the body-frame position vector r(ξ,η), while the specified undeformed geometry is defined by
r0(ξ,η). The third material coordinate ζ is defined normal to the undeformed reference surface, but
will tilt off-normal in the presence of transverse shear strains.

As in most other shell methods, a primary unknown in HSM is the quasi-normal vector (or director)
d̂(ξ,η) which lies along the material coordinate ζ, and gives the position r′ of a general point off the
reference surface.

r′(ξ,η,ζ) = r + ζ d̂ (1)

The position, velocity, and acceleration of the reference-surface material point r relative to the
inertial earth frame are

R = RB + r (2)

V = U + u + Ω×r (3)

aaa = U̇ + u̇ + Ω̇×r + Ω×ṙ + Ω×V (4)

= U̇ + Ω×U + u̇ + Ω̇×r + Ω×(Ω×r) + 2Ω×u (5)

where u = ṙ is the velocity of point r in the xyz body frame. The absolute position, velocity, and
acceleration of the general point r′ off the reference surface are in turn given by

R′ = R + ζ d̂ (6)

V′ = V + ζVζ (7)

aaa′ = aaa + ζ aaaζ (8)

Vζ ≡ (Ω+ω)×d̂ (9)

aaaζ ≡
(
Ω̇+ω̇

)
×d̂ + Ω×

(
Ω×d̂

)
+ ω×

(
ω×d̂

)
+ 2Ω×

(
ω×d̂

)
(10)

where ω = d̂×ḋ + d̂ ψ̇ is the rotation rate vector of the reference-surface-point r relative to the
body frame, and Vζ and aaaζ are the transverse velocity and acceleration gradients.

3 Stress Resultant Integrals

3.1 Resultant Definitions

The integral linear and angular momentum equations for a shell will involve the following mass, in-
ertia, stress, and stress-moment resultant integrals over the shell thickness, which are then functions
of the surface coordinates ξ, η.

µ(ξ,η) ≡
∫ ζtop

ζbot

ρ dζ , ς(ξ,η) ≡
∫ ζtop

ζbot

ρ ζ dζ , ι(ξ,η) ≡
∫ ζtop

ζbot

ρ ζ2 dζ (11)

¯̄f (ξ,η) ≡
∫ ζtop

ζbot

¯̄σ dζ , ¯̄m(ξ,η) ≡
∫ ζtop

ζbot

¯̄σ ζ dζ (12)

Note that d̂× ¯̄m is the actual conventional force-moment vector (per unit length).
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Figure 2: View through thickness of shell showing material-point position r′,
reference-surface position r, and material quasi-normal d̂, Edge boundary condi-
tions are defined using edge unit normal vector t̂.

A more exact treatment, such as that of Simo et al [4], defines the resultants implicitly by

µJ =

∫ ζtop

ζbot

ρ J ′ dζ , ¯̄f · aα J =

∫ ζtop

ζbot

¯̄σ · a′αJ ′ dζ , ¯̄m · aα J =

∫ ζtop

ζbot

¯̄σ · a′αJ ′ ζ dζ (13)

where the aα (α = 1, 2) are the contravariant basis vectors normal to the ξζ and ηζ surfaces,
J = a1×a2 · d̂ is the coordinate Jacobian, and ( )′ denotes a quantity off the ζ = 0 reference
surface. The considerable complications of this more exact treatment will be avoided here by using
the simpler definitions (12), which are seen to assume J ′ = J and a′ = a.

At a shell element edge with unit edge-normal vector t̂ as shown in Figure 3, ¯̄f · t̂ is the overall
edge traction force/length vector, and d̂ × ¯̄m · t̂ is the edge bending moment/length vector. Also
appearing will be the net top–bottom surface traction stress and stress-moment,

q(ξ,η) ≡ ¯̄σtop · n̂top + ¯̄σbot · n̂bot (14)

τ (ξ,η) ≡ ζtop ¯̄σtop · n̂top + ζbot ¯̄σbot · n̂bot (15)

although in the thin-shell limit the moment (per area) τ will be assumed negligible.

3.2 Thin-Shell Approximations

In the thin-shell approximation the shell thickness h is assumed to be much smaller than a typical
shell dimension `, so that the shell is idealized as a surface with a vanishing thickness, as sketched
in Figure 3.

ζtop− ζbot ≡ h � ` (16)

One consequence is that the torques of linear and angular accelerations acting on the mass-moment
and transverse moment of inertia can be assumed to be negligible.

ς (g − aaa) ' 0 , ι ω̇ ' 0 (17)

Furthermore, the transverse normal-stress resultant and all the transverse stress-moment resultants
will have a negligible effect on the overall shell momentum balance, and can be dropped.

fnn ' 0 , m1n,m2n,mnn ' 0 (18)
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We will also assume that the shell thickness variations are small, |∇̃h| � 1, so that the top and
bottom surface normal vectors are nearly anti-parallel, i.e. n̂ = n̂top = −n̂bot. The loading (14)
can then be defined using only the reference-surface normal vector n̂, and the moment loading (15)
is assumed negligible.

q(ξ,η) ' (¯̄σtop − ¯̄σbot) · n̂ (19)

τ (ξ,η) ' 0 (20)
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Figure 3: Shell element volume used to formulate integral momentum equations for
the shell’s idealized zero-thickness representation on the right. Tractions on volume
surfaces become net force loading q on the shell area and force loading ¯̄f · t̂ and
moment loading d̂ × ¯̄m · t̂ on the shell edges. In-surface constitutive relations are
defined along the in-surface basis vectors ê1, ê2. Discretization will be performed
using local element coordinates ξ, η.

3.3 Stress Tensor Decomposition

The shell stiffness properties will be specified in the chosen local orthonormal ¯̄e0 basis. The stress
integral resultant tensor is therefore decomposed as

¯̄f = ¯̄fS + ¯̄fT (21)

where ¯̄fS is the in-surface stress part and ¯̄fT is the transverse shear-stress part. We then have

¯̄fS = f11 ê1 ê1 + f12 (ê1 ê2 + ê2 ê1) + f22 ê2 ê2 (22)
¯̄fT = f1n (ê1 n̂ + n̂ ê1) + f2n (ê2 n̂ + n̂ ê2) (23)

where each vector dyad denotes the usual outer product, i.e. ê1 ê2 = ê1 êT2 = ê1⊗ ê2. The remaining
fnn n̂ n̂ transverse normal-stress part is omitted, since this is assumed negligible within the thin-
shell approximations.
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The stress-moment integral resultant tensor is assumed to have the form

¯̄m = ¯̄mS = m11 ê1 ê1 + m12 (ê1 ê2 + ê2 ê1) + m22 ê2 ê2 (24)

from which m1n,m2n,mnn are omitted since these are negligible within the thin-shell approxima-
tion. The subscript on ¯̄mS is therefore superfluous.

4 Shell Momentum Equations

4.1 Local Momentum Conservation

The starting point for the discrete formulation is the 3D momentum equation for a material with
Cauchy stress tensor ¯̄σ, density ρ, acceleration aaa′, and gravity g.

∇ · ¯̄σ + ρ (g−aaa′) = 0 (25)

Forming r′×{eq.(25)}, using the identity

r′ ×∇ · ¯̄σ = ∇ · (r′ × ¯̄σ) + (¯̄σ · ∇)× r′ (26)

and the fact that ¯̄σ = ¯̄σT and ∇r′ = ¯̄I which make the last term in (26) zero, gives the divergence
form of the angular momentum equation.

∇ ·
(
r′× ¯̄σ

)
+ ρ r′×(g−aaa′) = 0 (27)

4.2 Weighted-Residual Shell Momentum Equations

The integral shell momentum equations are obtained by multiplying equations (25) and (27) by
the weighting function W(ξ,η) which is nonzero only over a finite element such as the one shown in
Figure 3. We then combine W with the divergence term, set r′ = r + ζd̂ and a′ = a + ζaζ , and
integrate over the element volume. ∫∫∫ {

∇ · (¯̄σW ) − ¯̄σ · ∇W + ρ (g−aaa′)W
}

dV = 0 (28)∫∫∫ {
∇ ·
[
(r+ζd̂)× ¯̄σW

]
− (r+ζd̂)× ¯̄σ · ∇W + ρ (r+ζd̂)× (g−aaa′)W

}
dV = 0 (29)

The first pure divergence volume integrals are next replaced by area integrals over the perimeter
surface with surface-tangent vector t̂ and area elements dζ d`, and over the top/bottom surfaces
with normals ±n̂ and area elements dA. For the remaining volume integrals the volume element is
written as dV = dζ dA.

We next introduce the tangential gradient which excludes any normal component along n̂,

∇̃Wi ≡ ∇Wi − (n̂ · ∇Wi) n̂ (30)

as shown in Figure 4. We can then decompose the second stress terms in (28) and (29) as

¯̄σ · ∇W = ¯̄σ · ∇̃W + (n̂ · ∇Wi) ¯̄σ · n̂ (31)

and we note that the normal components will be very small for thin shells.
The integrations

∫
dζ across the shell thickness are now carried out, and the q and τ definitions (19)

are used for the top and bottom surface terms. The fact that W (ξ,η) is defined to not vary in ζ
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enables it to be put outside the
∫

dζ thickness integrals, so that the µ, ς, ¯̄f , ¯̄m definitions (12)
and (12) can also be invoked. With the choice for W to be the specific Wi associated with some
node i, equations (28) and (29) then become the linear and angular momentum residual vectors for
that node.

RRRfi ≡
∮

¯̄f · t̂ Wi d` +

∫∫
− ¯̄f · ∇̃Wi dA

+

∫∫ [
q + µ (g−aaa) − ςaaaζ

]
Wi dA = 0

(32)

RRRmi ≡
∮ [

d̂× ¯̄m + r×¯̄f
]
· t̂ Wi d` +

∫∫
−
(
d̂× ¯̄m + r×¯̄f

)
· ∇Wi dA

+

∫∫ [
d̂×

(
τ + ς (g−aaa) − ι aaaζ

)
+ r×

(
q + µ (g−aaa) − ς aaaζ

)]
Wi dA = 0

(33)

For thin shells the higher-moment τ , ς, ι terms above are very small and can be neglected, although
retaining them causes no complications. Note also that in the absence of rotation, i.e. Ω = ω = 0,
we have aaaζ = 0, in which case some of these terms vanish exactly.

5 Surface Coordinates

Quantities in the element surface coordinate basis will use traditional tensor index notation, with
ξ, η denoted as ξ1, ξ2, or compactly as ξα with α ∈ {1, 2}. Coordinate derivatives will also be
compactly denoted by ∂α( ) ≡ ∂( )/∂ξα. Also following convention, vector and tensor covariant and
contravariant components associated with these coordinates will be denoted by subscript and su-
perscript indices, respectively. Vectors and tensors in boldface will indicate coordinate-independent
(invariant) quantities, although in the numerical implementation they are defined via their global
cartesian xyz components.

5.1 Basis Vectors

The covariant basis vectors are the ξ and η derivatives of the position vector r(ξ,η).

aα(ξ,η) ≡ ∂αr (34)

These are then used to define the following surface metric, curvature, and director-lean tensors.

ğαβ ≡ aα · aβ (35)

h̆αβ ≡ aα · ∂βd̂ (36)

˘̀
α ≡ aα · d̂ (37)
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The metric determinant and its inverse ğαβ are defined by

ğ ≡ det(ğαβ) := ğ11 ğ22 − (ğ12)2 = |a1× a2 |2 (38)

ğαβ ≡
[
ğαβ

]−1
=

1

ğ

[
ğ22 −ğ12

−ğ12 ğ11

]
(39)

which then give the contravariant basis vectors and the area element.

aα = ğαβ aβ (40)

dA =
√
ğ dξ1 dξ2 (41)

We also apply all the above definitions (34)–(40) to the undeformed geometry r0(ξα), to give the

corresponding a0α , ğ0αβ
, h̆0αβ

, ˘̀
0α , ğ0, ğαβ0 , and aα0 . The undeformed area element is dA0 =

√
ğ0 dξ1 dξ2.

5.2 Tangential Gradient

The tangential gradient of any scalar quantity on the surface is computed using its coordinate
derivatives and the contravariant basis vectors.

∇̃( ) = a1 ∂1( ) + a2 ∂2( ) (42)

Gradients of in-surface vectors or tensors will not appear in the numerical solution method, which
avoids the need to construct basis-vector gradients and associated Christoffel symbols.

6 Strains

6.1 Strain Tensor Decomposition

The strain tensor is decomposed as

¯̄ε = ¯̄εS + ¯̄εT (43)

where the in-surface part ¯̄εS contains only in-surface components, while the transverse part ¯̄εT
contains all the normal components.

6.2 In-Surface Strain Tensor

The deformed and undeformed metric tensors give the Green strain tensor components of the
reference surface in the element basis.

ε̆αβ ≡ 1
2

(
ğαβ − ğ0αβ

)
(44)

For a point r′ at location ζ from the reference surface r(ξα), along the material quasi-normal vector
d̂(ξα), we have

r′(ξα, ζ) = r + ζ d̂ (45)

∂αr′ = aα + ζ ∂αd̂ (46)
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and the corresponding in-surface (at fixed ζ) metric off the reference surface is now

ğ′αβ ≡ ∂α r′ · ∂β r′

= aα · aβ + 2ζ aα · ∂βd̂ + ζ2 ∂αd̂ · ∂βd̂
' aα · aβ + 2ζ aα · ∂βd̂ ( ζ|∂αd̂| � |aα| ) (47)

= ğαβ + 2ζ h̆αβ (48)

where the approximate linearized form (47) or (48) is valid in the usual situation where the offset
distance is much smaller than the shell’s radii of curvature, as measured by h̆αβ. The strain tensor
off the reference surface is then

ε̆′αβ ≡ 1
2

(
g′αβ − g′0αβ

)
= ε̆αβ + ζ κ̆αβ (49)

κ̆αβ ≡ h̆αβ − h̆0αβ
(50)

which is seen to have a membrane contribution ε̆αβ due to tangential stretching and shearing of
the reference surface, and a bending contribution κ̆αβ due to curvature changes of the reference
surface.

6.3 Transverse Strains

The transverse strain tensor is constructed using the deformed and undeformed director-lean com-
ponents.

γ̆α ≡ ˘̀
α − ˘̀

0α (51)

The invariant transverse shear strain vector is then

γ = γ̆α aα (52)

:= γ̆1 a1 + γ̆2 a2 (53)

and we can also define the complete invariant transverse shear strain tensor.

¯̄εT = 1
2 γ̆α (aα n̂ + n̂ aα) (54)

:= 1
2 γ̆1

(
a1 n̂ + n̂ a1

)
+ 1

2 γ̆2

(
a2 n̂ + n̂ a2

)
(55)

7 Constitutive Relations

7.1 Stress-Strain Relations

The stress and strain tensors are related by assuming a Hookean material and introducing the
stiffness tensors. The in-surface and transverse tensors are also assumed to be decoupled. When
expressed in the local axes along ê01

, ê02
, n̂0, the assumed constitutive laws are

σ11

σ22

σ12

 =

c11 c12 c16

· c22 c26

· · c66



ε′11

ε′22

ε′12

 (56)

{
σ1n

σ2n

}
=

[
c55 0

0 c44

]{
γ′1
γ′2

}
(57)
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in which the remaining normal stress σnn is assumed to be negligible, and the prime on ε′ and γ′

indicates strain at location ζ off the reference surface. The indicated matrix symmetry is required
for angular momentum conservation of an infinitesimal material volume.

The stiffness matrices are actually 4th-order tensors, but are written above in traditional Voigt
notation which contracts pairs of indices as 11→ 1, 22→ 2, 12→ 6, 1n→ 5, 2n→ 4. The
uncontracted forms will be more convenient when the tensors are converted to the element basis.

Following standard shell-theory approximations we assume that the transverse material lines remain
straight, so that we can invoke (49) and write the in-surface strains as linear functions of ζ,

ε′11(ζ)

ε′22(ζ)

ε′12(ζ)

 =


ε11

ε22

ε12

 + ζ


κ11

κ22

κ12

 (58)

where κ are components of the curvature-change tensor. The transverse shear strains γ′1, γ
′
2 will

have some more complicated ζ dependence, since they must fall to zero at the top and bottom shell
surface. Following shell theory we will replace them by the averages γ1, γ2 independent of ζ,{

γ′1(ζ)

γ′2(ζ)

}
= K

{
γ1

γ2

}
(59)

where K is the shear strain energy reduction factor. The commonly-chosen value K = 5/6 cor-
responds to parabolic γ′1(ζ) and γ′2(ζ) across the shell thickness, which is the correct result for a
uniform isotropic shell.

7.2 Shell Stiffnesses

We now substitute the strain components in (58) into the stress/strain relations (56),(57), and then
insert that into the stress and stress-moment resultant definitions (12). This produces the following
linear system which gives each in-surface stress resultant in terms of all the strain resultants.

f11

f22

f12

m11

m22

m12


=



A11 A12 A16 B11 B12 B16

· A22 A26 · B22 B26

· · A66 · · B66

B11 B12 B16 D11 D12 D16

· B22 B26 · D22 D26

· · B66 · · D66





ε11

ε22

ε12

κ11

κ22

κ12


(60)

{
f1n

f2n

}
=

[
S55 0

0 S44

]{
γ1

γ2

}
(61)

The stiffness submatrices above are defined by the following weighted integrals over the shell thick-
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ness, which capture the overall lumped properties of the shell cross section.

¯̄A =

A11 A12 A16

· A22 A26

· · A66

 ≡ ∫ c11 c12 c16

· c22 c26

· · c66

dζ (62)

¯̄B =

B11 B12 B16

· B22 B26

· · B66

 ≡ ∫ c11 c12 c16

· c22 c26

· · c66

 ζ dζ (63)

¯̄D =

D11 D12 D16

· D22 D26

· · D66

 ≡ ∫ c11 c12 c16

· c22 c26

· · c66

 ζ2 dζ (64)

¯̄S =

[
S55 0

0 S44

]
≡ 1

K

∫ [
c55 0

0 c44

]
dζ (65)

In shell theory it is common to choose the reference surface to lie in the middle of the shell thickness,
so that for a homogeneous shell material the ¯̄B matrix elements in (63) are all zero, and the f and
m components in the stiffness matrix equation (60) then decouple. Here no such assumption is
made, to allow complete freedom in the choice of the reference surface location and of the shell
composition.

8 Finite-Element Solution

As in the theory derivations, here the xyz vectors and tensors in the global cartesian basis will be
written in boldface, the 12n vectors and tensors in the ¯̄e basis will be denoted in italic, and the
covariant ξη vector and tensor components in the contravariant aα basis will be in italic with a
breve and with index subscripts, e.g.

¯̄ε ≡

εxx εxy εxz
· εyy εyz
· · εzz

 , ¯̄ε ≡

ε11 ε12 ε1n

· ε22 ε2n

· · εnn

 , ε̆αβ ≡
[
ε̆11 ε̆12

· ε̆22

]

Contravariant components in the covariant aα basis will have superscripts, e.g. f̆αβ.

8.1 Global Data

The global data is listed below. For stationary problems, the only global parameter is the gravity
acceleration vector g. For non-stationary problems, additional parameters would be the frame
velocity U(t) at the xyz origin and frame rotation rate Ω(t), both sketched in Figure 1, and their
corresponding rates U̇(t) and Ω̇(t), all relative to some inertial frame of reference (e.g. earth). These
can be either prescribed, as in a forced-motion case, or evolved in time via additional kinematic
constraints and global linear and angular momentum conservation constraints, as in a free-body
case.
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symbol num. axes description

g 3 xyz gravity acceleration

U(t) 3 xyz frame velocity

Ω(t) 3 xyz frame rotation rate

U̇(t) 3 xyz frame velocity time rate of change

Ω̇(t) 3 xyz frame rotational acceleration

Note that the absolute linear acceleration of the xyz body frame’s origin is

aaaB(t) = U̇ + Ω×U (66)

where the first term is the longitudinal component and the second term is the transverse (cen-
tripetal) component. A static problem is one where aaaB is constant in time, making the solution in
the xyz frame steady. For a purely translating case, which has Ω= Ω̇=0, we can ignore U. And
in this case if U̇ is also constant in time, it can be lumped into a modified effective gravity vector.

g ← g − U̇

8.2 Nodal Data

Each element corner node j has the parameter and variable data listed below. Bilinear interpolation
to the element interior then makes these quantities functions of the (ξ, η) element coordinates as
described above.

8.2.1 Parameters

These input quantities describe the undeformed shell geometry, structural properties, mass, and
loading. They are all defined at each node j, and used either at the nodes to compute secondary
variables, or interpolated to the element interior to construct the equation residuals.

symbol num. axes description

r0j
3 xyz position vector of undeformed geometry

¯̄e0j
9 xyz ê01

, ê02
, n̂0 unit vectors of undeformed geometry

¯̄Aj 6 12n lumped shell stiffness matrix (extension and shear stiffness)
¯̄Bj 6 12n lumped shell stiffness matrix (extension/bending coupling)
¯̄Dj 6 12n lumped shell stiffness matrix (bending stiffness)
¯̄Sj 2 12n lumped shell stiffness matrix (transverse shear stiffness)

qnj 1 12n shell-following applied normal force/area

qxyzj 3 xyz fixed-direction applied force/area

µj 1 — lumped shell mass (mass/area density)

In practice, the undeformed geometry is defined by the parametric surface r0(u,v), where u, v are the
global (e.g. B-spline) surface coordinates. This also then uniquely defines the n̂(u,v) distribution.

n̂0 =
∂ur0 × ∂vr0

|∂ur0 × ∂vr0|
(67)

For isotropic shell materials, the ê01
, ê02

vectors are completely arbitrary, and can be conveniently
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computed by evaluating

ê01
=

(1−t) ∂ur0 + t ∂vr0

| (1−t) ∂ur0 + t ∂vr0 |
(68)

ê02
= n̂0 × ê01

(69)

at each node, in which the constant t selects the azimuthal orientation of the ê01
, ê02

vectors within
the surface; choosing t=0 aligns ê01

with ∂ur0, and choosing t=1 aligns ê01
with ∂vr0. If the shell

material is e.g. orthotropic with known properties along specific axes, then it is most convenient to
orient ê01

, ê02
along these axes, since this will then simplify the stiffness matrix specification.

An example of a shell-following normal load is the bottom/top pressure difference across the shell.

qn = pbot − ptop (70)

A shell-following tangential load vector, such as skin friction, could also be specified.

8.2.2 Unknowns (primary variables)

These are the primary variables which are to be determined at each node j.

symbol num. axes description

rj 3 xyz position vector of deformed geometry

d̂j 3 xyz unit material quasi-normal vector of deformed geometry

ψj 1 — drilling rotation angle

It should be noted that each d̂j vector, since it has unit magnitude, actually represents two rather
than three unknowns, which will be accounted for later in the Newton solution method formulation.
The resulting numerical problem will then have a total of six unknowns per node.

8.3 Element Interpolation

8.3.1 Bilinear interpolation

Per standard practice, these nodal quantities are interpolated over the element via four bilinear
functions Nj(ξ,η), using the normalized parameters −1≤ξ≤+1, −1≤η≤+1 spanning the cell.

N

N

N

N

−1

+1

−1

+11

2

3

4

ξ

η

N1(ξ,η) ≡ 1
4(1−ξ)(1−η)

N2(ξ,η) ≡ 1
4(1+ξ)(1−η)

N3(ξ,η) ≡ 1
4(1+ξ)(1+η)

N4(ξ,η) ≡ 1
4(1−ξ)(1+η)

(71)

A triangular element can also be used, and will have the following three linear interpolation func-

15



tions, defined over 0≤ξ≤1, 0≤η≤1.

N
1

ξ

η

0
0

1

1
N

2

N
3

N1(ξ,η) ≡ 1− ξ − η

N2(ξ,η) ≡ ξ

N3(ξ,η) ≡ η

(72)

The bilinear surface spanning the element is defined by

r(ξ,η) =
∑

j rj Nj (73)

where the sum runs over j = 1, 2, 3, 4 or j = 1, 2, 3, depending on the type of element. Its directional
derivatives are similarly constructed from the derivatives of the interpolation functions.

∂αr(ξ,η) =
∑

j rj ∂αNj (74)

The director field is likewise interpolated from the nodes, with an additional normalization to
preserve unit length.

d(ξ,η) =
∑

j d̂j Nj (75)

d̂(ξ,η) =
d

|d|
(76)

The derivatives then also follow.

∂αd(ξ,η) =
∑

j d̂j ∂αNj (77)

∂αd̂(ξ,η) =
1

|d|

[
∂αd − d̂

(
d̂ · ∂αd

)]
(78)

8.3.2 Biquadratic (HSM) interpolation

The higher-order geometry treatment of HSM is formulated using quadratic edge interpolation
functions. For a quad element these are

N

N

N

N

−1

+1

−1

+1

ξ

η
1

2

3

4 N̆1(ξ,η) ≡ 1
8(1−ξ2)(1−η)

N̆2(ξ,η) ≡ 1
8(1−η2)(1+ξ)

N̆3(ξ,η) ≡ 1
8(1−ξ2)(1+η)

N̆4(ξ,η) ≡ 1
8(1−η2)(1−ξ)

(79)

and for a triangle element they are

N
1

N
3

N
2

ξ

η

0
0

1

1

N̆1(ξ,η) ≡ 1
2(1−ξ−η) ξ

N̆2(ξ,η) ≡
√

2
2 ξ η

N̆3(ξ,η) ≡ 1
2 η (1−ξ−η)

(80)
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where the numerical coefficients are chosen to make the edge directional derivatives in parameter
space be equal to ±1

2 at the edge endpoints.

The higher-order geometry r starts with the bilinear surface r, and adds a transverse quadratic
“bubble” modification ∆rN which has edge amplitudes Bj , and an in-surface quadratic “drilling”
modification ∆rS which has node amplitudes ψj .

r(ξ,η) = r + ∆rN + ∆rS (81)

aα = ∂αr + ∂α∆rN + ∂α∆rS (82)

∆rN (ξ,η) ≡
∑
edges

d̂(ξ,η) Bj N̆j(ξ,η) (83)

∆rS(ξ,η) ≡
∑

nodes

ψj d̂j× (r(ξ,η)−rj)Nj(ξ,η) (84)

∂α∆rN =
∑
edges

Bj

(
∂αd̂ N̆j + d̂ ∂αN̆j

)
(85)

∂α∆rS =
∑

nodes

ψj

(
d̂j× ∂αrNj + d̂j× (r−rj) ∂αNj

)
(86)

The contributions of these higher-order terms are diagrammed in Figures 5 and 6. Either (or both)
can be omitted to revert the method to the standard bilinear formulation.

rj

jd
(ξ,η)d

(ξ,η)r
−

(ξ,η)r

bilinear
surface

rα
−

biquadratic
surface

rααa

(ξ,η)rN∆

Figure 5: Transverse higher-order correction to bilinear geometry.

rj

ψj

jd

r (ξ,η)

r (ξ,η)−

rjr
− −

(ξ,η)r∆ S

Figure 6: Displacement field of drilling angle ψj in the elements sharing node j.

The coefficient Bj for each edge j . . . j + 1 is set explicitly such that the r(ξ,η) surface is made

orthogonal on average to the d̂j vectors at the endpoints of that edge. For each edge we therefore
impose the requirement

d̂j · ∂σr
∣∣∣
j
− d̂j+1 · ∂σr

∣∣∣
j+1

= 0 (87)
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where the σ directional derivative is defined in ξ–η parameter space along that edge, and evaluated
at the endpoints as indicated. Inserting the quadratic surface form (81) into (87) and noting that

d̂ · ∂σd̂ = 0 , d̂j ·
(
d̂j×[ ]

)
= 0 , N̆j

∣∣∣
j

= 0 , N̆j

∣∣∣
j+1

= 0

and
∂σN̆j

∣∣∣
j

= 1
2 , ∂σN̆j

∣∣∣
j+1

= −1
2

then gives each edge coefficient explicitly.

Bj =

(
d̂j+1 − d̂j

)
· ∂σr

∂σN̆j

∣∣∣
j
− ∂σN̆j

∣∣∣
j+1

=
(
d̂j+1 − d̂j

)
· rj+1 − rj√

(ξj+1−ξj)2 + (ηj+1−ηj)2
(88)

The two higher-order surface terms in (81) have several notable and important properties:

• The higher-order formulation has the same number of primary variables per node as the un-
derlying bilinear formulation. The result is a considerable improvement in absolute accuracy
for a given resolution and computational cost compared to standard bilinear methods.

• A uniform transverse shear strain field, which will tilt all the director vectors by the same
angle, will cancel in the d̂j+1− d̂j difference in equation (88). Hence, the resulting Bj
coefficients will be unaffected and so the quadratic surface geometry does not depend on such
a uniform transverse shear field.

• If all the nodal rotations are equal and all the directors are parallel, i.e. ψj = ψ = const. and

d̂j = d̂ = const., the overall term vanishes.∑
jψj d̂j × (r−rj)Nj = ψ d̂×

∑
j(r−rj)Nj = ψ d̂× (r−r) = 0 (89)

A uniform-drill field on a flat element therefore gives zero membrane strains exactly.

• Both higher-order terms in (81) along an edge are defined using quantities only on that edge.
Hence, this higher-order r(ξ,η) surface representation is conformal.

8.3.3 Membrane and bending strain interpolation

Numerical experiments reveal that using the full aα expression (82) in the strain and curvature-
change definition (44) and (50) is workable but not satisfactory for distorted elements. Although the
aα direction is smooth and nearly continuous across element boundaries, its magnitude fluctuates
about the average within each element due to the d̂ and ∂αd̂ terms in (86). This then produces
added curvature-induced strains with spurious fluctuations over the element. These fluctuations
are non-polynomial (d̂ is rational), and therefore cannot be exactly eliminated by the Gaussian
integration over the element. The approach used here is to compute all strains using the in-surface
basis vectors aα which simply omit the transverse term.

aα ≡ ∂αr + ∂α∆rS (90)

ε̆αβ = 1
2

(
aα · aβ − a0α · a0β

)
(91)

κ̆αβ = aα · ∂βd̂ − a0α · ∂βn̂0 (92)

The omitted ∂α∆rN terms then only control the direction of the stress resultants, but not their
magnitude.
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8.3.4 Director lean interpolations

The HSM higher-order geometry representation allows the director lean (and corresponding trans-
verse shear strain) components to be evaluated directly from definition (37) using the isoparamet-
rically interpolated d̂ and aα, with no shear-locking problems.

Alternatively, the director lean can also be evaluated using the MITC interpolation[3], from the
edge midpoints. Here, for each edge midpoint we compute

˘̀
αj+1/2

= d̂ · ∂αr
∣∣∣
j+1/2

(93)

and these are then interpolated using the following standard MITC scheme to give the ˘̀
α(ξ,η) field

for a quad element.

˘̀
1(η) = 1

2(1−η) ˘̀
11 1/2

− 1
2(1+η) ˘̀

13 1/2
(94)

˘̀
2(ξ) = 1

2(1−ξ) ˘̀
24 1/2

− 1
2(1+ξ) ˘̀

22 1/2
(95)

The same expressions are used for interpolating ˘̀
0α .

The similar MITC3 scheme is used for triangular elements[8].

8.3.5 Rotated nodal data

The stiffnesses of isotropic materials can be uniquely defined by the scalars E, ν (or equivalent
Lamé constants), which allows stiffness properties to be constructed locally within the element.
However, the shell stiffness properties for composite materials are inherently tensor quantities which
must be defined in some basis, which here is chosen to be defined by the ê01

, ê02
, n̂0 basis vectors

tangent and normal to the surface. For a curved geometry these must in general differ between the
nodes of an element, so the tensor stiffness data must be interpolated in some common basis. To
exactly represent uniform loading and uniform strain and stress fields (and thus pass patch tests),
this interpolation is typically performed in a local surface-aligned cartesian basis defined by the ĉ
vectors computed at the element centroid[9, 3] as follows.

ĉ1ref
=

∂ξr0

|∂ξr0|

∣∣∣∣
ξc,ηc

, ĉnref
=

∂ξr0×∂ηr0

|∂ξr0×∂ηr0|

∣∣∣∣
ξc,ηc

, ĉ2ref
= ĉnref

× ĉ1ref
(96)

For an element whose undeformed shape is curved, or more precisely whose nodal n̂0 are not all
parallel, using this basis as-is at the nodes will produce spurious cosine-error “mixing” between
the tangential and normal components of the tensor node data, as suggested by the top diagram
Figure 7 for the 2D case. In HSM this is avoided by using a rotated basis ĉj at each node, as
indicated in the bottom diagram.

The rotated vectors are obtained by the expressions

δ = ĉnref
· n̂0j

(97)

α = ĉnref
× n̂0j

(98)

ĉ1j
=

δ ĉ1ref
+ α×ĉ1ref√
δ2 + |α|2

(99)

ĉ2j
=

δ ĉ2ref
+ α×ĉ2ref√
δ2 + |α|2

(100)

ĉnj = n̂0j
(101)
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αj

e j0

n j0

without  rotation

with  rotation

element

centroid

Figure 7: Rotation of 2D element cartesian ĉ basis vectors into each node avoids
spurious mixing between tangential and normal components of node tensor data.

which correspond to rotation about α through the angle θ = arctan(|α|/δ), applied to each node
of the element as diagrammed in Figure 8. The components of the nodal stiffness tensors in the

e

j2c

jc1

cnj

j10

e
j20

n j0

2c

c

1c
ref

ref

refn

element

centroid
θ

Figure 8: Cartesian ĉref basis vectors at element centroid of the undeformed geom-
etry are rotated to each node j by the angle from ĉnref

to n̂0j
. Nodal vector and

tensor data is projected onto the rotated basis for interpolation over element.

rotated element cartesian basis are

Aĉ
abcd = Aijk` (ê0i · ĉa) (ê0j · ĉb) (ê0k · ĉc) (ê0` · ĉd) (102)

Sĉ
anbn = Sinjn (ê0i · ĉa) (ê0j · ĉb) (103)

where here i, j, k, `, a, b, c, d ∈ {1, 2}. These projected values are then interpolated to the interior
as usual.

Aĉ
abcd(ξ,η) =

∑
j (Aĉ

abcd)j Nj , etc. (104)

Finally, the interpolated stiffnesses are put into the local contravariant basis.

Ăαβγδ = Aĉ
abcd (ĉa · aα0 ) (ĉb · aβ0 ) (ĉc · aγ0) (ĉd · aδ0) (105)

S̆αnβn = Sĉ
anbn (ĉa · aα0 ) (ĉb · aβ0 ) (106)
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Note that all these projections involve only the undeformed reference configuration and do not
depend on the solution, so they could be performed only once for each element and stored.

8.3.6 Interpolated data

The nodal data listed below is interpolated to finite-element Gauss points ξk, ηk in the element
interior via the Nj(ξk,ηk) interpolation function weights. The coordinate derivatives of some data
are also computed at the Gauss points.

symbol num. var. dep. par. dep. axes description

r0 3 r0j
, n̂0j

xyz undeformed-geometry position

∂αr0 6 r0j
, n̂0j

xyz undeformed-geometry position derivatives

n̂0 3 n̂0j
xyz undeformed-geometry normal vector

∂αn̂0 6 n̂0j
xyz undeformed-geometry normal vector derivatives

r 3 rj , d̂j , ψj xyz deformed-geometry position

∂αr 6 rj , d̂j , ψj xyz deformed-geometry position derivatives

d̂ 3 d̂j xyz deformed-geometry material quasi-normal vector

∂αd̂ 6 d̂j xyz deformed-geometry material quasi-normal vector derivatives
qxyz 3 qxyzj xyz fixed-direction applied loads

qn 1 qnj 12n shell-following normal applied load

µ 1 µj – mass/area density

Ăαβγδ 6 ¯̄Aj , r0j
, ¯̄e0j

ξη in-surface extension stiffness matrix

B̆αβγδ 6 ¯̄Bj , r0j
, ¯̄e0j

ξη extension/bending coupling stiffness matrix

D̆αβγδ 6 ¯̄Dj , r0j
, ¯̄e0j

ξη bending stiffness matrix

S̆αnβn 3 ¯̄Sj , r0j
, ¯̄e0j

ξη transverse shear compliance matrix

The interpolated geometry data is also used to compute the basis vectors and the corresponding
metric and curvature tensors listed below, and computed using the expressions given in Section 6.
The inverse metric tensor and contravariant basis vectors then also follow.

21



symbol num. var. dep. par. dep. axes description

a0α 6 r0j
, n̂0j

xyz undeformed-geometry covariant basis vectors

ğ0αβ
3 r0j

, n̂0j
ξη undeformed-geometry metric tensor

h̆0αβ
3 r0j

, n̂0j
ξη undeformed-geometry curvature tensor

˘̀
0α 3 r0j

, n̂0j
ξη undeformed-geometry director-lean vector

ğ0 1 r0j
, n̂0j

– undeformed-geometry metric determinant

ğαβ0 3 r0j
, n̂0j

ξη undeformed-geometry inverse metric tensor

aα0 6 r0j
, n̂0j

xyz undeformed-geometry contravariant basis vectors

aα 6 rj , d̂j , ψj xyz deformed-geometry covariant basis vectors

ğαβ 3 rj , d̂j , ψj ξη deformed-geometry metric tensor

h̆αβ 3 rj , d̂j , ψj ξη deformed-geometry curvature tensor
˘̀
α 3 rj , d̂j ξη deformed-geometry director lean vector

ğ 1 rj , d̂j , ψj – deformed-geometry metric determinant

ğαβ 3 rj , d̂j , ψj ξη deformed-geometry inverse metric tensor

aα 6 rj , d̂j , ψj xyz deformed-geometry contravariant basis vectors

The curvature tensors h̆0αβ
and h̆αβ are symmetric analytically, but not necessarily numerically.

Hence, their two off-diagonal element definitions are averaged, i.e.

h̆21 = h̆12 := 1
2

(
a1 · ∂2d̂ + a2 · ∂1d̂

)
(107)

which ensures numerical symmetry.

8.3.7 Strains and stresses

The metric and curvature tensors are in turn used to compute the strain and curvature-change
tensors at the Gauss points.

symbol num. var. dep. par. dep. axes description

ε̆αβ 3 rj , d̂j , ψj r0j
, n̂0j

ξη in-surface strain covariant components

κ̆αβ 3 rj , d̂j , ψj r0j
, n̂0j

ξη curvature-change covariant components

γ̆α 2 rj , d̂j , ψj r0j
, n̂0j

ξη transverse shear strain covariant components

ε̆αβ(ξ,η) = 1
2

(
ğαβ − ğ0αβ

)
(108)

κ̆αβ(ξ,η) = h̆αβ − h̆0αβ
(109)

γ̆α(ξ,η) = ˘̀
α − ˘̀

0α (110)

The stress and stress-moment resultants at the Gauss points are computed directly from the strain
and curvature-change tensors and the interpolated stiffness matrices.

symbol num. var. dep. par. dep. axes description

f̆αβ 3 rj , d̂j , ψj r0j
, n̂0j

, ¯̄e0j
, ¯̄Aj ,

¯̄Bj ξη in-surface stress contravariant components

m̆αβ 3 rj , d̂j , ψj r0j
, n̂0j

, ¯̄e0j
, ¯̄Bj ,

¯̄Dj ξη stress-moment contravariant components

f̆αn 2 rj , d̂j , ψj r0j
, n̂0j

, ¯̄e0j
, ¯̄Sj ξη transverse stress contravariant components
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f̆11
(ξ,η) = Ă11αβ ε̆αβ + B̆11αβ κ̆αβ (111)

f̆22
(ξ,η) = Ă22αβ ε̆αβ + B̆22αβ κ̆αβ (112)

f̆12
(ξ,η) = Ă12αβ ε̆αβ + B̆12αβ κ̆αβ (113)

m̆11
(ξ,η) = B̆11αβ ε̆αβ + D̆11αβ κ̆αβ (114)

m̆22
(ξ,η) = B̆22αβ ε̆αβ + D̆22αβ κ̆αβ (115)

m̆12
(ξ,η) = B̆12αβ ε̆αβ + D̆12αβ κ̆αβ (116)

Summation over α = 1, 2 and β = 1, 2 is performed as usual. For example,

f̆12
(ξ,η) = Ă1211 ε̆11 + B̆1211 κ̆11

+ Ă1221 ε̆21 + B̆1221 κ̆21

+ Ă1212 ε̆12 + B̆1212 κ̆12

+ Ă1222 ε̆22 + B̆1222 κ̆22 (117)

The transverse shear stress components are computed as follows.

f̆αn = S̆αβ γ̆β (118)

f̆1n := S̆11 γ̆1 + S̆12 γ̆2 (119)

f̆2n := S̆21 γ̆1 + S̆22 γ̆2 (120)

8.3.8 Other derived data

The interpolated quantities at the Gauss points are further used to compute the secondary quantities
listed below.

symbol num. var. dep. par. dep. axes description

n̂ 3 rj , d̂j xyz normal vector

q 3 rj , d̂j qxyzj , qnj xyz total applied load

aaa 3 rj , d̂j , ψj U̇, Ω̇,U,Ω xyz acceleration

The total applied load q is the sum of the fixed-direction and shell-following normal loads.

q = qxyz + qn n̂ (121)

For static problems (steady in the xyz frame), the local acceleration aaa is computed as

aaa = U̇ + Ω×U + Ω̇×r + Ω×(Ω×r) (122)

where the sum of the first two terms (equal to aaaB as given by (66)) is the frame linear acceleration
relative to an inertial frame, the third term is the relative tangential acceleration, and the last term
is the relative centripetal acceleration. Additional accelerations will appear in dynamic problems,
which will be considered in a later section.

23



8.4 Equation Residuals

8.4.1 Residual weights and integration

HSM uses a Galerkin-type finite-element formulation, where the residual weighting function Wi(ξ,η)

associated with node i is chosen to be the “tent” function formed from the union of the Ni(ξ,η)

interpolants, shown in Figure 9. On each element we then have

Wi (ξ,η) = Ni (ξ,η) (123)

∇̃Wi (ξ,η) = ∇̃Ni (ξ,η) (124)

where the weight function gradient ∇̃Wi is defined via its element-basis components like ∇̃Ni.

iW iW

t

t

iW

l

l

ir

Figure 9: Residual weighting functions Wi(ξ,η), variable and residual projection vec-
tors b̂1i

, b̂2i
(ξ,η), and element basis vectors a1,a2(ξ,η) associated with interior, edge,

and corner nodes. The edge-normal and edge-parallel tangent vectors t̂, l̂ and edge
length coordinate ` are also shown.

Per standard procedure, all area integrals will be recast in terms of the element coordinates ξ, η
and their Jacobian J0, and then numerically evaluated using 4-point Gaussian quadrature,∫∫

F dA0 =

∫∫
F J0 dξ dη '

4∑
k=1

F (ξk,ηk) J0(ξk,ηk) wk (125)

J0 =
∣∣a01
×a02

∣∣ (126)

where the index k runs over the Gauss points (ξk, ηk) and wk are the corresponding Gauss weights.
The integration is performed over the undeformed geometry, primarily because this simplifies lin-
earization of the resulting residual expressions for Newton solution.

For the edge line integrals appearing in (32) and (33), 2-point Gaussian integration is used.∫
F d`0 =

∫
F J0 dξ '

2∑
k=1

F (ξk) J0 wk (127)

Here, −1 ≤ ξ ≤ +1 is the parameter along the edge, and the Jacobian is a constant J0 = ∆`0/2
where ∆`0 is the edge length of the undeformed element.
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8.4.2 Momentum residuals

The area-integral and edge-integral parts of the momentum equation (32) for node i are evaluated
in the xyz axes

RRRfi ≡
∑

elements

∫∫ {
− ¯̄f · ∇̃Wi + qWi + µ (g−aaa)Wi

}
dA0 (128)

∆RRRfi ≡
∑
edges

∮ {
¯̄f · t̂

}
Wi d`0 (129)

in which the dot products are evaluated using the interpolated element-basis components as follows.

¯̄f · ∇̃Wi =
[
f̆11a1 a1 + f̆12a1 a2 + f̆21a2 a1 + f̆22a2 a2 + f̆1n (a1 n̂ + n̂ a1) + f̆2n (a2 n̂ + n̂ a2)

]
·
[
a1 ∂1Wi + a2 ∂2Wi

]
=
(
f̆11 ∂1Wi + f̆12 ∂2Wi

)
a1 +

(
f̆21 ∂1Wi + f̆22 ∂2Wi

)
a2 +

(
f̆1n ∂1Wi + f̆2n ∂2Wi

)
n̂(130)

The dot product in (129) will be evaluated using boundary condition data, and does not need to
be explicitly expanded here.

8.4.3 Angular momentum residuals

The area-integral and edge-integral parts of the angular momentum equation (33) for node i are
evaluated in the xyz axes

RRRmi ≡
∫∫ {

−d̂× ¯̄m · ∇̃Wi + r×
[
−¯̄f · ∇̃Wi + qWi + µ (g−aaa)Wi

]}
dA = 0 (131)

∆RRRmi ≡
∑
edges

∮ {
d̂× ¯̄m · t̂ + r× ¯̄f · t̂

}
Wi d` (132)

The vectors in the r× [ ] terms above are the force residual integrands in (128) and (129), and can
be re-used here in the code implementation. The remaining term in (131) is evaluated using the
interpolated element-basis components as follows.

d̂× ¯̄m · ∇̃Wi = d̂×
[
m̆11a1 a1 + m̆12a1 a2 + m̆21a2 a1 + m̆22a2 a2

]
·
[
a1 ∂1Wi + a2 ∂2Wi

]
=
(
m̆11 ∂1Wi + m̆12 ∂2Wi

)
d̂× a1 +

(
m̆21 ∂1Wi + m̆22 ∂2Wi

)
d̂× a2 (133)

8.5 Edge Loading Boundary Conditions

For a well-posed shell elasticity problem, two types of boundary conditions are required on all edges
of the shell surface. One BC type is either on the edge force load or on the edge position, and the
other BC type is either on the edge moment load or the edge-normal direction. The imposed force
and moment boundary loads are Neumann-type natural BCs which are enforced weakly via the
∆R weighted-residual contributions, and will be described in this section. The imposed position
and angle are Dirichlet-type BCs which in HSM are enforced strongly by replacing the overall edge
node residuals with the appropriate Dirichlet constraints, and will be described in a later section.
Later we will also consider internal matching conditions between two or more shells which join at
an edge.
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8.5.1 Edge interpolation

The edge loading data is interpolated from nodes to Gauss points ξ along the edge using the linear
interpolation functions

N1(ξ) ≡ 1
2(1−ξ)

N2(ξ) ≡ 1
2(1+ξ)

N̆ ≡ 1
4(1−ξ2)

(134)

which are the same as N1 and N2 in (71), with (ξ, η) = (ξ,−1). We then have

r(ξ) =
∑2

j=1 rj Nj (135)

d(ξ) =
∑2

j=1 d̂j Nj (136)

d̂(ξ) =
d

|d|
(137)

To exactly match the higher-order element-interior geometry, the edge geometry here also includes
the curvature and drilling rotation angle terms.

r(ξ) = r(ξ) + d̂(ξ)B N̆ (ξ) +
∑2

j=1ψj d̂j × (r(ξ)− rj)Nj(ξ) (138)

a1(ξ) = ∂ξr

= ∂ξr + B
(
∂ξd̂ N̆ + d̂ ∂ξN̆

)
+
∑2

j=1ψj d̂j × [∂ξrNj + (r−rj) ∂ξNj ] (139)

The edge curvature coefficient is defined the same way as for element-interior interpolation.

B =
(
d̂2 − d̂1

)
· r2 − r1

ξ2 − ξ1
(140)

8.5.2 Loading boundary condition axes

Imposed-load boundary conditions are specified either along the global xyz axes, or alternatively
along the edge axes t`d which are defined by the edge basis vectors t̂, l̂, d̂.

The local material quasi-normal vector d̂ is obtained via spherical interpolation from the edge nodes,
as described above. The edge-parallel vector l̂ is defined to lie along the interpolated surface, and
the edge-normal vector t̂ tangent to the surface is their cross product.

l̂(ξ) = a1 / |a1 | (141)

t̂(ξ) = l̂× d̂ (142)

The table below lists all the solution variable quantities interpolated along the edge which are
needed to construct the boundary conditions. The l̂0, t̂0 vectors are needed only for edge-joining
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conditions.

symbol num. var. dep. par. dep. axes description

r0 3 r0j
, n̂0j

xyz undeformed-geometry position

∂αr0 6 r0j
, n̂0j

xyz undeformed-geometry position derivatives

n̂0 3 n̂0j
xyz undeformed-geometry normal vector

l̂0 3 r0j
, n̂0j

xyz undeformed-geometry edge-parallel unit vector

t̂0 3 r0j
, n̂0j

xyz undeformed-geometry edge-normal unit vector

r 3 rj , d̂j , ψj xyz deformed-geometry position

∂αr 6 rj , d̂j , ψj xyz deformed-geometry position derivatives

d̂ 3 d̂j xyz deformed-geometry material quasi-normal vector

l̂ 3 rj , d̂j , ψj xyz deformed-geometry edge-parallel unit vector

t̂ 3 rj , d̂j , ψj xyz deformed-geometry edge-normal unit vector

8.5.3 Edge loading boundary condition data

All the boundary condition data which can be imposed on the shell edges is listed in the table
below. For generality we specify and superimpose two separate loads: fixed-direction loads in the
xyz axes, and shell-following loads in the t`d axes, in the same manner as the overall surface load
q was obtained from qxyz and qn. All these quantities are interpolated along the edge to the Gauss
points.

symbol num. axes description

fxyzBCj
3 xyz imposed fixed-direction edge boundary force/length

ftBCj
1 t`d imposed shell-following edge boundary t-force/length

f`BCj
1 t`d imposed shell-following edge boundary `-force/length

fdBCj
1 t`d imposed shell-following edge boundary d-force/length

mxyzBCj
3 xyz imposed fixed-direction edge boundary moment/length

mtBCj
1 t`d imposed shell-following edge boundary bending moment/length

m`BCj
1 t`d imposed shell-following edge boundary torsion moment/length

mdBCj
1 t`d imposed shell-following edge boundary drilling moment/length

The specified edge force/length and moment/length over each boundary edge segment are con-
structed as

(¯̄f · t̂)BC ≡ fBC(ξ) = fxyzBC + ftBC t̂ + f`BC
l̂ + fdBC

d̂ (143)

(d̂× ¯̄m · t̂)BC ≡ mBC(ξ) = mxyzBC + mtBC t̂ + m`BC
l̂ + mdBC

d̂ (144)

which are then used in the edge-integral residual contributions (129) and (132).

∆RRRfi ≡
∑
edges

∫
fBC Wi d`0 (145)

∆RRRmi ≡
∑
edges

∫
(mBC + r× fBC) Wi d`0 (146)
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8.6 Variable and Residual Projection Vectors

8.6.1 Projection vector definitions

To minimize the number of unknowns, and to enable the imposition of strong (Dirichlet) boundary
conditions, we define local projection basis vectors b̂1i

, b̂2i
, b̂ni at each discrete node i. It is

desirable that these vectors are orthogonal, which will then minimize the coupling between the
projected equations, but this is not required.

For all nodes, we define

b̂ni = d̂i (147)

and then define the remaining two vectors depending on where node i lies.

Interior and Neumann BC nodes. For interior nodes, and edge nodes which have only loading
boundary conditions, b̂1i

and b̂2i
are arbitrary as long as they span the shell reference surface. A

simple and numerically stable procedure is to choose b̂1i
to be the unit vector which is along the

smallest component of d̂i = dxi x̂ + dyi ŷ + dzi ẑ, and orthogonalize it against d̂i. Specifically, we
compute

if |dxi | ≤ min(|dyi |, |dzi |) : b1 = x̂ − d̂i (d̂i · x̂) =
{

1−d2
xi
, −dyidxi , −dzidxi

}T
(148)

if |dyi | ≤ min(|dxi |, |dzi |) : b1 = ŷ − d̂i (d̂i · ŷ) =
{
−dxidyi , 1−d2

yi
, −dzidyi

}T
(149)

if |dzi | ≤ min(|dxi |, |dyi |) : b1 = ẑ − d̂i (d̂i · ẑ) =
{
−dxidzi , −dyidzi , 1−d2

zi

}T
(150)

which is then normalized to get b̂1i
.

b̂1i
= b1/|b1| (151)

We then set b̂2i
perpendicular to both d̂i and b̂1i

.

b̂2i
= d̂i × b̂1i

(152)

Boundary nodes with one constraint plane. Some boundary nodes have Dirichlet boundary
conditions which have one constraint plane on which the node position ri is constrained to lie, or on
which the material quasi-normal vector d̂i is constrained to lie, or both. An example is a node on
a symmetry plane, or a pinned or clamped point which is free to translate within a plane tangent
to the surface. For such nodes we define b̂1i

to be normal vector of that plane,

b̂1i
=

nBCi

|nBCi
|

(153)

and then define

b̂2i
= d̂i × b̂1i

(154)
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Boundary nodes with two constraint planes. Some boundary nodes have Dirichlet boundary
conditions which have two constraint planes, so that the node ri location and d̂i vector must lie
on the line formed by their intersection. An example is the corner node at the intersection of two
symmetry planes. In this case, b̂1i

and b̂2i
are specified to be the two normal vectors of the two

planes.

b̂1i
=

n
(1)
BCi

|n(1)
BCi
|

(155)

b̂2i
=

n
(2)
BCi

|n(2)
BCi
|

(156)

8.6.2 Variable projection

The projection vectors are used to define perturbations of the primary vector variables,

δri = b̂1i
δr1i

+ b̂2i
δr2i

+ b̂ni δrni (157)

δd̂i = b̂1i
δd1i

+ b̂2i
δd2i

+ b̂ni δdni (158)

which can represent either the linearized variables in a perturbation analysis, or the variable changes
in a Newton iteration solution procedure.

Since d̂i is defined to be a unit vector, one of the required equation residuals for node i is

Ri(d̂i) ≡ d̂i · d̂i − 1 = 0 (159)

which has the following linearized form in the Newton iteration system.

δRi = −Ri (160)

2 d̂i · δd̂i = 1 − d̂i · d̂i (161)

Substituting for δd̂i using the projection (158), and assuming |d̂i| = 1, gives

δdni = 0 (162)

so that the δdni variables are known to be zero a priori. These can therefore be omitted from
the Newton system, thus reducing the number of Newton change variables from 7 to 6, i.e. from
(δr, δd̂, δψ)i to (δr1, δr2, δrn, δd1, δd2, δψ)i.

Like the Newton variables, the vector residuals will also be projected onto the perturbation basis
vectors. The main purpose here is to minimize the coupling between the equation components and
maximize the diagonal dominance of the overall Jacobian matrix, which will in general improve an
iterative solution method of the Newton linear system. So for example, the b̂1 component of the
force equilibrium equation at a node will predominantly govern δr1 at that node, and the other
related variables δr2, δrn, δψ, etc. will have a much weaker influence.

A necessary precaution during solution iteration is that each d̂i must maintain its unit magnitude,
to make residual (159) always zero and thus allow δdni to be dropped in the next iteration. This

is ensured by rescaling each d̂i to unit magnitude after its Newton update, as follows.

di = d̂i + b̂1i
δd1i

+ b̂2i
δd2i

(163)

d̂i =
di
|di|

(164)

The magnitude change due to this rescaling is O
{
δ2
}

, so that it does not degrade the quadratic
convergence of the Newton iteration sequence.
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8.6.3 Residual projection

The vector residuals, including any loading BC contributions, are also projected onto the b̂1i
, b̂2i

, b̂ni
vectors of the corresponding node.

Rf1
i

Rf2
i

Rfni

 ≡

− b̂1i
−

− b̂2i
−

− b̂ni −

 ·


|

RRRfi +∆RRRfi
|

 (165)


Rm1
i

Rm2
i

Rmni

 ≡

− b̂2i
−

− b̂1i
−

− b̂ni −

 ·


|

RRRmi +∆RRRmi
|

 (166)

Note that in (166), projection onto b̂2 defines Rm1 , and projection onto b̂1 defines Rm2 , which
makes Rm1 and Rm2 the primary constraints on δd1 and δd2, respectively. This makes the resulting
Jacobian matrix diagonally dominant, and enables the substitution of the most appropriate residual
rows with strong boundary conditions, as described next.

8.7 Geometry Boundary Conditions

Position or angle boundary conditions are of the Dirichlet type, and are imposed by replacing the
appropriate natural residuals with the Dirichlet constraint residuals.

8.7.1 Dirichlet boundary condition data

All the boundary condition data which can be imposed on any shell node is listed in the table
below. The node position is specified by rBC which is arbitrary, although in most cases it will be
the same as r0 of the undeformed geometry. The position can be fixed in either all three directions,
or optionally forced to lie in only two planes, or only one planes. The latter partial-restraint cases
are specified by the restraint-plane nBC normal vectors. The director orientation is specified via
the tBC vectors, which define either one or two planes in which the director is forced to lie.

For imposing symmetry-plane boundary conditions, the symmetry plane is specified by one point
rSP on the plane, and a vector nSP normal to the plane. Another point and normal vector is specified
at a double-symmetry plane.

symbol num. axes description

rBCj 3 xyz imposed edge boundary position (also used as rSP)

n(1)
BCj

3 xyz r-restraint plane 1 normal vector (also used as nSP)

n(2)
BCj

3 xyz r-restraint plane 2 normal vector

t(1)
BCj

3 xyz d̂-restraint plane 1 normal vector

t(2)
BCj

3 xyz d̂-restraint plane 2 normal vector

8.7.2 Target equations for Dirichlet boundary conditions

After the residual and variable projections onto b̂1, b̂2, b̂n are applied, each variable is predom-
inantly governed by a Poisson type equation. To impose a Dirichlet BC on any variable in a
well-posed manner, the Dirichlet BC residual must replace the corresponding Poisson residual for
that variable, as listed in the table below.
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Rf1 ∼ ∇̃2r1 → Rr1 ∼ r1

Rf2 ∼ ∇̃2r2 → Rr2 ∼ r2

Rfn ∼ ∇̃2rn → Rrn∼ rn

Rm1 ∼ ∇̃2d1 → Rd1∼ d1

Rm2 ∼ ∇̃2d2 → Rd2∼ d2

Rmn ∼ ∇̃2ψ → Rψ ∼ ψ

Specifically, Rr1 must replace Rf1 , Rr2 must replace Rf2 , etc.

Node displacement. The specified position of node i is imposed by replacing the two in-surface
force equilibrium residuals and the single compatibility residual with the following three position-
constraint residuals Rri .

Rf1
i

Rf2
i

Rfni

 ←

Rr1i
Rr2i
Rrni

 ≡

− b̂1i
−

− b̂2i
−

− b̂ni −

 ·


|

ri−rBCi

|

 (167)

Either one or two or three of these residuals can be imposed, as dictated by the number of restrained
degrees of freedom in the physical boundary condition.

Node director direction. The shell surface orientation at any node can be imposed by requiring
the shell material quasi-normal vector to lie within the specified sliding plane defined by either the
b̂1 or b̂2 vector. The corresponding residuals replace the in-surface moment equilibrium equations.

{
Rm1
i

Rm2
i

}
←

{
Rd1
i

Rd2
i

}
≡

[
− b̂1i

−
− b̂2i

]
·


|

d̂i

|

 (168)

Either one or two of these residuals can be imposed, as dictated by the physical boundary condition.
A clamped edge or a single symmetry plane edge would have only the Rm1

i replaced with Rd1
i . A

double symmetry plane edge would have both residuals replaced, thus completely specifying the d̂i
vector at that node.

Drilling constraint. For a well-posed problem, a Dirichlet BC on the drilling angle must be
specified for at least one point, typically wherever either r and/or d̂ are also specified. This
constraint replaces the normal moment equation.

Rmni ← Rψi ≡ ψi (169)

8.8 Node Joining Conditions

The present HSM allows a shell to be built up of multiple pieces which are joined at nodes. Assuming
the joint is rigid, we must enforce matching conditions on the primary variables at adjacent nodes
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( ) and ( )′ on the two shell pieces. For this we first define joint basis vectors and the joint angle ϑJ ,

α = d̂i × d̂i′ (170)

β = d̂i + d̂i′ (171)

γ = d̂i − d̂i′ (172)

l̂J =

{
b̂1i

, |α| < 10−6

α/|α| , |α| ≥ 10−6 (173)

n̂J =

{
β/|β| , |β| > |γ|
γ/|γ| , |γ| ≥ |β| (174)

t̂J = l̂J × n̂J (175)

ϑJ = atan2
(
α · l̂J , d̂i · d̂i′

)
(176)

where l̂J is normal to the plane containing both d̂i and d̂i′ , n̂J bisects the smaller angle between
the lines containing d̂i and d̂i′ , and t̂J bisects the larger angle, as sketched in Figure 10.
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l J
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J
0

t J

Figure 10: Vectors and angles involved in joint matching equations.

8.8.1 Force and position matching

The force matching condition is the requirement that the internal loads of the two patches on the
edge sum to zero, so that an infinitesimal strip of material along the edge is force-free. This is
imposed by adding the cartesian force residuals of the two adjacent nodes, and then projecting as
usual onto the vectors of node i.

Rf1
i

Rf2
i

Rfni

 ←

R

∑
f1

i

R
∑
f2

i

R
∑
fn

i

 ≡

− b̂1i
−

− b̂2i
−

− b̂ni −

 ·


|

RRRfi +RRRfi′
|

 (177)

The summed force residuals replace those for node i as indicated. The force residuals for node i′

are then cleared and replaced with position continuity residuals on the node coordinates. These
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have the same form as the specified-position constraints (167).
Rf1

i′

Rf2

i′

Rfni′

 ←

R∆r1
i′

R∆r2
i′

R∆rn
i′

 ≡

− b̂1i′ −
− b̂2i′ −
− b̂ni′ −

 ·


|

ri−ri′

|

 (178)

8.8.2 Moment and angle matching

The moment matching condition at the edge is that the internal bending moments are equal.
Rm1
i

Rm2
i

Rmni

 ←

R

∑
m1

i

R
∑
m2

i

R
∑
mn

i

 ≡

− b̂1i
−

− b̂2i
−

− b̂ni −

 ·


|

RRRmi +RRRmi′
|

 (179)

The summed moment residuals replace those of node i as indicated. The moment residuals for
node i′ are then cleared and replaced with constraints which force d̂i and d̂i′ to move as a rigid
body. Consider an arbitrary material line element si attached at one end to node ri. The change
in this element due to the changes δd1i

, δd2i
, δψi will be

δsi =
(
b̂1i

δd1i
+ b̂2i

δd2i
+ d̂i δψi

)
× si (180)

and likewise for node i′. The requirement that nodes i and i′ rotate as a rigid body then given
by δsi − δsi′ = 0, which we project onto the t̂J and n̂J joint vectors. In lieu of projecting onto
the remaining l̂J vector, we instead require ϑJ to be equal to its undeformed-geometry value ϑ0J

(see Figure 10), so that this angle match will be exact at convergence regardless of geometric
nonlinearities introduced by large initial updates.[

− t̂J −
− n̂J −

]
·


|

δsi − δsi′
|

 =

{
0
0

}
(181)

Rϑ ≡ ϑJ − ϑ0J (182)

The linearized Newton-system equations are then t̂J · b̂1i
t̂J · b̂2i

t̂J · d̂i
n̂J · b̂1i

n̂J · b̂2i
n̂J · d̂i

∂Rϑ/∂d̂i · b̂1i
∂Rϑ/∂d̂i · b̂2i

∂Rϑ/∂d̂i · d̂i



δd1

δd2

δψ


i

−

 t̂J · b̂1i
t̂J · b̂2i

t̂J · d̂i
n̂J · b̂1i

n̂J · b̂2i
n̂J · d̂i

∂Rϑ/∂d̂i · b̂1i
∂Rϑ/∂d̂i · b̂2i

∂Rϑ/∂d̂i · d̂i



δd1

δd2

δψ


i′

=


0
0
−Rϑ

 (183)

9 Newton Solution

All the discrete residuals are driven to zero by Newton iteration. For the static problem the linear
Newton system for each iteration is[

∂ ~Ri
∂~vj

]{
δ~vj

}
= −

{
~Ri

}
(184)

~Ri ≡ (Rf1 ,Rf2 ,Rfn ,Rm1 ,Rm2 ,Rmn)i

δ~vi ≡ (δr1, δr2, δrn, δd1, δd2, δψ)i
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where ~Ri are the projected residuals and δ~vi are the projected variable changes at node i. The
projected Jacobian matrix [∂ ~Ri/∂~vj ] is computed exactly from the current solution at each iteration.
It is sparse and well conditioned due to the Poisson-type form of all the equations, and hence is
well suited for iterative solution, especially for large problems.

Nonlinear solution. To converge a nonlinear problem, we take the undeformed geometry r0i
, n̂0i

and ψi=0 to be the initial solution guess. To perform one Newton iteration, the linear system (184)
is constructed and solved, and the solution is then used to update the primary variables again using
the projection vectors, possibly with an underrelaxation factor ω.

ri ← ri + ω
(
b̂f1 δr1 + b̂f2 δr2 + b̂fn δrn

)
i

(185)

di ← d̂i + ω
(
b̂m1 δd1 + b̂m2 δd2

)
i
, d̂i = di/|di| (186)

ψi ← ψi + ω δψi (187)

Provided there are no structural instabilities (e.g. buckling) present, ω=1 can be set and quadratic
convergence is achieved. The explicit di renormalization in (186) produces only a quadratic change
in its magnitude, so it does not adversely affect the terminal quadratic convergence.

For strong geometrically nonlinear problems with large deformations, ω < 1 is typically needed
initially, set either via line search, or heuristically such that the position changes do not exceed
some specified fraction of the body dimensions, and that the director changes do not exceed some
specified angle limit.

Membrane sub-iteration. For cases with thin shells and large deformations, an excessively
small underrelaxation factor may be needed to stabilize the highly nonlinear iterations. A typical
source of difficulty is the appearance of very large nonphysical false membrane strains after a
substantial deflection update, which for example can produce “transient buckling” divergence in
the next iteration. A very effective fix is to temporarily freeze the director and drill variables d̂i, ψi,
and iterate only on the position variables ri, as diagrammed in Figure 11.

ri

riδ

iδd

id
riδ

Initial configuration Full Newton update Membrane−only update

    false
 transient
stretching

equilibriated
 stretching

iδd = 0

Figure 11: Non-physical membrane stretching after a large deflection Newton update
is corrected with membrane-only sub-iteration, where ri is updated to obtain linear-
momentum (force) equilibrium, while d̂i and ψi are held fixed.

Specifically, we solve only the force equation and position BC equation rows in system (184) with the
δd1, δd2, δψ columns ignored, which is equivalent to forcing (δd1, δd2, δψ) = (0, 0, 0). We then solve
only for δr1, δr2, δrn and update ri until the force residuals are driven below a modest convergence
threshold. This brings the membrane stresses to physical levels, and prevents spurious nonlinear
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membrane/bending interactions for the subsequent full iteration. Since the linear system for the
membrane sub-iterations is only half the size of the full system, their added computation cost is
relatively minor, but the improvement in nonlinear convergence behavior is very noticable.

10 Unsteady Extension

10.1 Unsteady Variables and Equations

For dynamic problems where the shell deforms in time, the nodal primary variable vector is extended
to include the node velocity vector, uj , and all variables are now functions of time.

symbol num. axes description

rj(t) 3 xyz position vector of deformed geometry

d̂j(t) 3 xyz unit material quasi-normal vector of deformed geometry

ψj(t) 1 — drilling rotation angle

uj(t) 3 xyz velocity vector of deformed geometry

The three new added residuals are
Ru1
i

Ru2
i

Runi

 ≡

− b̂1i
−

− b̂2i
−

− b̂ni −

 · { ṙi − ui

}
(188)

which are in effect time-evolution ODEs for ri(t).

The local acceleration (122) is now extended to

aaa = U̇ + Ω̇×r + Ω×(Ω×r) + Ω×U + u̇ + 2 Ω×u (189)

where the new last two terms are the local frame-relative linear and Coriolis accelerations. When
this is put in the force-equilibrium residuals (165), those in effect become time-evolution ODEs for
the nodal ui(t) primary variables, coupled via mass matrices.

The material quasi-normal vectors d̂i(t) do not have time-evolution ODEs, which is a consequence
of the neglect of the mass-moment integrals

∫
µ ζ dζ ' 0,

∫
µ ζ2 dζ ' 0, which are thin-shell

approximations. In effect, rotation of the normal vectors has no associated mass-moment of inertia,
so the vectors can rotate with a zero time constant, and thus can follow the unsteady structure in
a quasi-static manner.

If the mass-moment integrals were considered to be significant, then we would also need to include
the frame-relative node rotation rate ωj in the state vector, and this would be related to the
normal-vector rate as in (189). The moment equilibrium equation would then also have an angular
acceleration ω̇ term. These extensions will not be considered here.

The frame velocity vector U(t) and the frame rotation vector Ω(t) are two additional global pri-
mary variables. Their time-evolution ODEs are obtained by applying global linear and angular
momentum conservation to the entire structure,

RRRU ≡
∮

¯̄f · t̂ d`0 +

∫∫
q dA0 +

∫∫
µ (g−aaa) dA0 (190)

RRRΩ ≡
∮

r×
(
¯̄f · t̂

)
d`0 +

∫∫
r× q dA0 +

∫∫
µ r× (g−aaa) dA0 (191)

where the line integrals in each first term are evaluated over exposed shell edges, regardless of what
boundary conditions are imposed at those edges.
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10.2 Time-Marching

For time-marching analysis, the time derivatives are expressed in terms of the current and previous
time levels using some chosen time-differencing scheme. For example, for implicit 3-point backwards
differencing over time index n, with constant time steps ∆t = tn− tn−1 = tn−1− tn−2, we have

ṙn =
1

2∆t

(
3 rn − 4 rn−1 + rn−2

)
(192)

U̇n =
1

2∆t

(
3Un − 4Un−1 + Un−2

)
(193)

and likewise for Ω̇
n
. The n−1 and n−2 solutions have been previously computed and are known.

The equations are solved by Newton iteration for the current time level n solution, and the process
is then repeated for the next n+1 level, thus generating a time-history sequence of solutions.

10.3 Perturbation Analysis

For terse notation, we first define the following overall residual, variable, and forcing vectors.

~R =
{
Rfi ,R

m
i ,Rθi ,RRRU ,RRRΩ

}T
(194)

~x(t) =
{

ri, d̂i, ψi,ui,U,Ω
}T

(195)

~̇x(t) =
{

ṙi, u̇i, U̇, Ω̇
}T

(196)

~f (t) =
{

qi, fBCi
,mBCi

, rBCi
,nBCi

}T
(197)

All the residuals can then be compactly written as

~R
(
~x, ~̇x, ~f

)
= ~0 (198)

and we assume that these have been solved and we have a valid solution state ~x. We now consider
perturbations δ~x(t), δ~̇x(t), δ ~f (t), which are related by the linearized form of (198),

δ ~R =

[
∂ ~R
∂~x

]
δ~x +

[
∂ ~R
∂~̇x

]
δ~̇x +

[
∂ ~R
∂ ~f

]
δ ~f = ~0 (199)

where the steady, unsteady, and forcing Jacobian matrices are evaluated at the known solution.
Setting the overall residual perturbation to zero in (199) imposes the requirement that the perturbed
state ~x+ δ~x is still a physical state to first order.

10.3.1 Bode analysis

Here we impose a harmonic forcing

δ ~f = f̂ exp(ι̇ωt) (200)

at some specified frequency ω. Typically the elements of f̂ are all zeros, except for the single
forcing element of interest which is set to unity. Alternatively, elements of f̂ such as qi, can have
some specified spatial distribution which is modulated harmonically in time. Whatever spatial
distribution f̂ has, the linearized solution response will be time-harmonic at the same frequency.

δ~x = x̂ exp(ι̇ωt) (201)

δ~̇x = ι̇ω x̂ exp(ι̇ωt) (202)
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Substituting the above perturbations into the linearized equation system (199) and rearranging
gives the response vector x̂ explicitly.

x̂ = −

[
∂ ~R
∂~x

+ ι̇ω
∂ ~R
∂~̇x

]−1 [
∂ ~R
∂ ~f

]
f̂ (203)

Solving this complex system for a range of ω values gives the Bode response x̂(ω) for that particular
unit forcing element of f̂ , or spatial distribution of elements in f̂ .

If the structural model is strongly coupled to an aerodynamic model, the state vector ~x would
include the flowfield variables (e.g. grid-node velocity potentials, panel strengths, etc.), and the
forcing vector ~f would include atmospheric perturbation (i.e. gust) velocities. In this case, the
Bode analysis of the overall system would include the complete structural response to a harmonic
gust field of specified frequency and spatial distribution.

10.3.2 Eigenmode analysis

Here we assume no forcing

δ ~f = ~0 (204)

and the solution is assumed to take the form

δ~x = x̂ exp(λt) (205)

δ~̇x = λ x̂ exp(λt) (206)

where both x̂ and λ are unknown. Substituting the above perturbations into the linearized equation
system (199) and rearranging gives [

∂ ~R
∂~x

]
x̂ = λ

[
−∂

~R
∂~̇x

]
x̂ (207)

which is a generalized eigenvalue problem for eigenmode pairs λ, x̂. Typical solvers for large, sparse,
eigenvalue problems will return a chosen number of eigenmode pairs whose eigenvalues are closest
to a specified location in the complex λ plane.

Instability of a mode is indicated if its real eigenvalue part is positive, Re(λ) > 0, and the shape of
the corresponding eigenvector x̂ indicates the nature of this instability, such as buckling, wrinkling,
etc. If the structural model is strongly coupled to an unsteady aerodynamic model, the eigen-
mode could be a conventional flight-dynamic instability such as spiral divergence, or an aeroelastic
instability such as body-freedom flutter, or conventional twist-bending flutter.

11 Post-Processing Calculations

Post-processing calculations assume that a solution ri, d̂i, ψi has been obtained. We then seek
corresponding various dependent quantities at the nodes, for the purpose of graphical display or
other interrogation of the solution.
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11.1 Deformed-Geometry Nodal Basis Vectors

The nodal normal basis vectors n̂i of the deformed geometry is computed via their defining residuals.

Rni ≡
∫∫ [

n̂i −
∂1r× ∂2r

|∂1r× ∂2r|
− n̂0i

+
∂1r0 × ∂2r0

|∂1r0 × ∂2r0|

]
Wi dA0 (208)

This is linear in the one unknown vector n̂i, and is independent of the unknowns at all other nodes,
thus allowing a direct solution.

Ai =

∫∫
Wi dA0 (209)

n̂i =
1

Ai

∫∫ [
− ∂1r× ∂2r

|∂1r× ∂2r|
− n̂0i

+
∂1r0 × ∂2r0

|∂1r0 × ∂2r0|

]
Wi dA0 (210)

The nodal basis vectors ê1, ê2 of the deformed geometry can be computed from the solution by first
defining the element material-line vectors along the ξ coordinate lines,

s0 ≡ ∂1r0 (211)

s̃ ≡ ∂1r ' a1 (212)

which are analogous to the shear-tilted material normal d̂. We also define a “shear-corrected”
in-surface vector by removing from s̃ the in-surface tilting due to the strain tensor ¯̄ε,

s '
[

¯̄I− ¯̄ε
]
· s̃ = s̃ − a1

(
ε̆11 a1 · a1 + ε̆12 a2 · a1

)
− a2

(
ε̆12 a1 · a1 + ε̆22 a2 · a1

)
= s̃ − a1 ε̆11 − a2 ε̆12 (213)

where the convenient approximation is valid for the usual small-strain case ε� 1.
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Figure 12: Top view of a small shell element for undeformed and deformed geome-
tries, with material vectors s0 and s̃. Requiring θ = θ0 makes the ê basis vectors
after deformation to be fixed to the same material as ê0.

We now define the angles between these material vectors and the node basis vectors ê01
and ê1.

θ0 = atan2
(
s0×ê01i

· n̂0i
, s0 · ê01i

)
(214)

θ = atan2
(

s× ê1i
· n̂i , s · ê1i

)
(215)

The three residuals defining ê1i
are then

Re1i ≡
∫∫

(θ−θ0)
Wi

J2
0

dA0 (216)

Re2i ≡ ê1i
· n̂i (217)

Re3i ≡ ê1i
· ê1i

− 1 (218)
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where the 1/J2
0 weighting factor makes elements which are smaller, and hence on average closer to

node i, have a greater influence on the direction of ê1i
.

We can reduce the size of the numerical problem by projecting the unknown Newton changes onto
ê1i

, n̂i, and ê2i
= n̂i × ê1i

,

δê1i
= ê1i

δe1 + ê2i
δe2 + n̂i δen (219)

and ensuring that Re2i = Re3i = 0 at the start of each Newton iteration. The linearizations of

residuals (217) and (218) then explicitly give δe1 = δen = 0, so that only residual (216) needs to
be solved for the remaining δe2 variable. The Newton update is performed by

e∗ = ê1i
+ ê2i

δe2 (220)

êii =
e∗

|e∗|
(221)

ê2i
= n̂i × ê1i

(222)

which ensures that Re2i = Re3i = 0 as required. When the Newton iteration converges, the other
surface basis vector ê2i

is also a by-product.

11.2 Nodal Strain and Stress Resultants

The HSM solution method computes the strain and stress components ε̆αβ, κ̆αβ, f̆αβ, m̆αβ, only at
the element Gauss points. To enable contour plots of the corresponding physical strain and stress
quantities, it is necessary to compute the components of ¯̄ε, ¯̄κ, ¯̄f , ¯̄m at the nodes and in the local
orthonormal ¯̄e0 basis. Suppressing the ( )0 subscripts for clarity, we equate the node-basis and
element-basis forms of the in-surface strain resultant tensor,∑

j
¯̄εj Nj = ε̆αβ aαaβ∑

j

[
ε11j

ê1j
ê1j

+ ε12j

(
ê1j

ê2j
+ ê2j

ê1j

)
+ ε22j

ê2j
ê2j

]
Nj

= ε̆11 a1a1 + ε̆12

(
a1a2 + a2a1

)
+ ε̆22 a2a2 (223)

where the node-basis form has been interpolated to the element interior. To construct the discrete
residuals, we form the dot products of the above equation’s residual with the basis vectors of a
node i, and integrate the resulting expressions with the Wi weighting function of that node, e.g.

Rε12
i ≡

∫∫
ê1i
·
{∑

j
¯̄εj Nj − ε̆αβ aαaβ

}
· ê2i

Wi dA0

Picking the (ê1i
, ê1i

), (ê2i
, ê2i

), (ê1i
, ê2i

) vector pairs in the definition above defines the residuals
for the three strain components ε11, ε22, ε12 of node i.

Rε11
i ≡

∫∫ ∑
j ê1i
· ¯̄εj · ê1i

Nj Wi dA0 −
∫∫

ε̆αβ(ê1i
· aα)(ê1i

· aβ) Wi dA0 (224)

Rε22
i ≡

∫∫ ∑
j ê2i
· ¯̄εj · ê2i

Nj Wi dA0 −
∫∫

ε̆αβ(ê2i
· aα)(ê2i

· aβ) Wi dA0 (225)

Rε12
i ≡

∫∫ ∑
j ê1i
· ¯̄εj · ê2i

Nj Wi dA0 −
∫∫

ε̆αβ(ê1i
· aα)(ê2i

· aβ) Wi dA0 (226)
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Each integral consists of four terms. For example, in (226) we have

ê1i
· ¯̄εj · ê2i

:= ε11j
(ê1i
· ê1j

)(ê2i
· ê1j

)

+ ε12j
(ê1i
· ê1j

)(ê2i
· ê2j

)

+ ε21j
(ê1i
· ê2j

)(ê2i
· ê1j

)

+ ε22j
(ê1i
· ê2j

)(ê2i
· ê2j

) (227)

and summing over α, β in the second integral likewise produces four terms.

ε̆αβ(ê1i
· aα)(ê2i

· aβ) := ε̆11 (ê1i
· a1)(ê2i

· a1)

+ ε̆12 (ê1i
· a1)(ê2i

· a2)

+ ε̆21 (ê1i
· a2)(ê2i

· a1)

+ ε̆22 (ê1i
· a2)(ê2i

· a2) (228)

The same procedure is used to obtain the residuals which determine the curvature-change compo-
nents κ11, κ12, κ22 of node i.

Rκ11
i ≡

∫∫ ∑
j ê1i
· ¯̄κj · ê1i

Nj Wi dA0 −
∫∫

κ̆αβ(ê1i
· aα)(ê1i

· aβ) Wi dA0 (229)

Rκ22
i ≡

∫∫ ∑
j ê2i
· ¯̄κj · ê2i

Nj Wi dA0 −
∫∫

κ̆αβ(ê2i
· aα)(ê2i

· aβ) Wi dA0 (230)

Rκ12
i ≡

∫∫ ∑
j ê1i
· ¯̄κj · ê2i

Nj Wi dA0 −
∫∫

κ̆αβ(ê1i
· aα)(ê2i

· aβ) Wi dA0 (231)

To obtain the nodal stress and stress-moment resultants, we follow the procedure above, except
that the covariant element basis vectors are now used. For example the residual for f11i

is

Rf11
i ≡

∫∫ ∑
j ê1i
· ¯̄f j · ê1i

Nj Wi dA0 −
∫∫

f̆αβ(ê1i
· aα)(ê1i

· aβ) Wi dA0 (232)

which has the same form as (224) except that aα,aβ have been replaced by aα,aβ.

All the residual equations above are linear in the nodal variables, and can be written as[
Aij

]{
~εj ~κj ~fj ~mj

}
=

{
~Rεi ~Rκi ~Rfi ~Rmi

}
(233)

where the unknown symmetric tensors are arranged in vector form, e.g. ~εj = (ε11, ε22, ε12)j , and
their residuals are arranged the same way and evaluated with the nodal unknowns ignored. The
common mass matrix Aij depends only on the undeformed geometry r0i

and the chosen ¯̄e0i
basis

vectors. Hence, Aij needs to be LU-factored only once a-priori, and can then be used to rapidly
determine all the nodal tensor quantities for any solution for that geometry.

The same procedure is also used to obtain the residuals for the two transverse shear strain and
stress components γ1, γ2, f1n, f2n of node i.

Rγ1
i ≡

∫∫ ∑
j ê1i
· γj Nj Wi dA0 −

∫∫
γ̆α(ê1i

· aα) Wi dA0 (234)

Rγ2
i ≡

∫∫ ∑
j ê2i
· γj Nj Wi dA0 −

∫∫
γ̆α(ê2i

· aα) Wi dA0 (235)

Rf1n
i ≡

∫∫ ∑
j ê1i
· fnj Nj Wi dA0 −

∫∫
f̆αn(ê1i

· aα) Wi dA0 (236)

Rf2n
i ≡

∫∫ ∑
j ê2i
· fnj Nj Wi dA0 −

∫∫
f̆αn(ê2i

· aα) Wi dA0 (237)
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Expanding the dot product in the first integral and summing over α in the second integral gives

ê1i
· fnj := f1nj

(ê1i
· ê1j

)

+ f2nj
(ê1i
· ê2j

) (238)

f̆αn(ê1i
· aα) := f̆1n (ê1i

· a1)

+ f̆2n (ê1i
· a2) (239)

which compared to (227) and (228) has only the single dot products since here we are working with
vectors rather than tensors. The residual equations can be put into the form of the linear system[

Bij

]{
~γj ~fnj

}
=

{
~Rγi ~Rfni

}
(240)

where as in the tensor system (233), the common mass matrix Bij depends only on the undeformed
geometry and its ¯̄e0i

vectors.

11.3 Maximum Strain and Stress

The extremal in-surface strain within the shell will occur on its surface, where the strain tensor is
given by (58) 

ε′11

ε′22

ε′12

 =


ε11

ε22

ε12

 + ζ


κ11

κ22

κ12

 (241)

where we set ζ = ζtop and then ζ = ζbot to examine both the top and bottom surfaces. To gauge
failure of a composite shell material, these strains would typically be compared with that material’s
maximum allowable normal and shear strains in the 12 axes.

For an isotropic shell material with modulus E and Poisson’s ratio ν it is useful to instead examine
the corresponding stresses via the isotropic stiffness tensor,

σ11

σ22

σ12

 =
E

1−ν2

 1 ν 0
ν 1 0
0 0 1−ν


ε′11

ε′22

ε′12

 (242)

The surface principal stress values are then given by

σ̄1 = 1
2(σ11+σ22) +

√
1
4(σ11−σ22)2 + σ2

12 (243)

σ̄2 = 1
2(σ11+σ22) −

√
1
4(σ11−σ22)2 + σ2

12 (244)

and these then give the vonMises stress.

σe =
√
σ̄2

1 + σ̄2
2 − σ̄1σ̄2 (245)

The ratio σe/σy, where σy is the material’s yield stress, is a useful yield-margin indicator. Again,
both the top and bottom surfaces of the shell would need to be examined separately.
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12 Stiffness Matrix Specification

12.1 General and shell constitutive relations

For a Hookean material, the stress tensor components are related to the strain tensor components
via the stiffness tensor cijkl defined in the local 12n axes, so that each of the four indices can take
on the three values i, j, k, l ∈ [1, 2, n]. Voigt-type notation is used to contract the index pairs as

( )11 → ( )1 , ( )22 → ( )2 , ( )nn → ( )3 , ( )2n → ( )4 , ( )1n → ( )5 , ( )12 → ( )6

so for example c1122 → c12 and c2n2n → c44. The general Hookean constitutive relations are then

σ11

σ22

σnn

σ2n

σ1n

σ12


=



c11 c12 c13 c14 c15 c16

· c22 c23 c24 c25 c26

· · c33 c34 c35 c36

· · · c44 c45 c46

· · · · c55 c56

· · · · · c66





ε11

ε22

εnn

ε2n

ε1n

ε12


(246)

which with the indicated symmetry has 21 independent stiffness constants. The symmetry fol-
lows from the conservation of angular momentum, specifically the requirement of a bounded
torque/inertia ratio for an arbitrarily small volume.

The general relation (246) is considerably simplified using the shell assumptions that σnn and εnn
are negligible, and that the in-surface stress tensor components σ11, σ22, σ12 are decoupled from the
transverse components σ1n, σ2n. Relation (246) thus reduces to

σ11

σ22

σ12

 =

c11 c12 c16

· c22 c26

· · c66


ε11

ε22

ε12

 (247)

{
σ1n

σ2n

}
=

[
c55 0
0 c44

]{
γ1

γ2

}
(248)

σnn = 0 (249)

which now has only 8 stiffness constants. This is the same as (56) and (57) aside from the distinction
between ε′ and ε which is not relevant here.

12.2 Isotropic material properties

An isotropic Hookean shell material is characterized only by the modulus E and Poisson’s ratio ν,
which give all the stiffness matrix components as follows.c11 c12 c16

c22 c26

c66

 =
E

1−ν2

 1 ν 0
1 0

1−ν

 (250)

[
c55

c44

]
=

E

2(1+ν)

[
1

1

]
(251)
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12.3 Orthotropic material properties

An orthotropic shell material has in-surface moduli E1, E2, G12 and Poisson’s ratio ν12, and trans-
verse shear moduli G13, G23. The material stiffness and compliance matrix elements are then given
as follows. c11 c12 c16

c22 c26

c66

 =
1

1−ν2

 E1 E2 ν12 0
E2 0

2G12(1−ν2)

 , ν2 ≡ ν2
12E2/E1 (252)

[
c55

c44

]
=

[
G13

G23

]
(253)

12.4 Resultant stiffness matrix calculation

The reference-surface location ζref within the shell thickness h = ζtop−ζbot is conveniently specified
by the fractional ζ̄ref ≡ ζref/2h parameter, so that ζ̄ref = −1, 0,+1 indicates bottom, middle, and
top locations, respectively, or anything else in between.

ζref = 1
2(1−ζ̄ref) ζbot + 1

2(1+ζ̄ref) ζtop (254)

For an isotropic or orthotropic shell material, the integrals in (62)–(65) can be evaluated to explicitly
give the following shell stiffness matrices.

¯̄A = h ¯̄c (255)

¯̄B = −h2 ζ̄ref

2
¯̄c (256)

¯̄D = h3 1 + 3ζ̄2
ref

12
¯̄c (257)

¯̄S = Kh ¯̄s (258)

The stiffness matrices of composite-laminate shells can be computed using laminate theory, whose
inputs are the thickness, angle, and orthotropic material constants E1, E2, G12, ν12 of each of the
individual composite plies in the stack. A balanced composite laminate will behave as a uniform
orthotropic (or isotropic in special cases) material with some net effective Ē1, Ē2, Ḡ12, ν̄12 param-
eters. Unbalanced laminates have nonzero A16 and A26 constants, which produce extension/shear
coupling. Asymmetric laminates will have nonzero B16 and B26 constants, which produce exten-
sion/twist coupling. Laminates which are either unbalanced or asymmetric will have nonzero D16

and D26 constants, which produce bending/twist coupling.

12.5 Lumped-structure shells

One advantage of a shell model is that it can approximate the behavior of a relatively complex
structure with stringers, doublers, etc. by a monolithic shell with equivalent stiffnesses. This
monolithic shell requires much fewer parameters to describe, and is therefore better suited for early
design and optimization, or if the structure is driven by and coupled with an aerodynamic solver.

To perform the lumping, the mass, stress, and stiffness definition integrals (12) and (62)–(65) over
the thickness are then extended to include averaging over parts of the surface. For example, for a
shell structure with stiffeners running in the spanwise direction, a suitable lumped stiffness is

¯̄A(t) =

A11 A12 A16

· A22 A26

· · A66

 ≡ 1

∆t

∫ t+∆t/2

t−∆t/2

∫ ζtop

ζbot

c11 c12 c16

· c22 c26

· · c66

(ζ,t′) dζ dt′ (259)
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where a natural transverse-averaging interval ∆t would be the stringer spacing distance, as shown in
Figure 13. The averaging interval could even be the entire transverse width, giving a transversely-
uniform equivalent lumped shell.

Lumped Shell ModelActual Structure

µ A11 A22 A12 11B ...
n

t

t∆

( )t

Figure 13: Complex shell structure can be lumped into a simpler equivalent mono-
lithic shell, defined by transverse averaging integration over some interval ∆t.
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