Awave Analysis Interface Module (AIM) Manual

Ed Alyanak and Ryan Durscher
AFRL/RQVC

June 12, 2017

CONTENTS 1

Contents
1 Introduction 1
1.1 Awave AIMOVeErview o e e e e e 1
1.2 Awave Modifications L e e e e e 2
1.3 Examples e e e e 2
2 AIM Attributes 2
3 Geometry Representation and Analysis Intent 2
4 AIM Inputs 2
5 AIM Outputs 3
6 Awave Examples 3
6.1 Prerequisites L e 3
6.1.1 Scriptfiles 3
6.2 Creating Geometry using ESP L 3
6.3 Performing analysis using pyCAPS 5
Bibliography 7

1 Introduction

1.1 Awave AIM Overview

Awave provides an estimation for wave drag at supersonic Mach numbers at various angles of attack. Taken from
the Awave manual [1] :

"Awave is a streamlined, modified version of the Harris far-field wave drag program described in the reference. It
has all of the capabilities and accuracy of the original program plus the ability to include the approximate effects
of angle of attack. It is an order of magnitude faster, and improvements to the integration schemes have reduced
numerical integration errors by an order of magnitude. A formatted input echo has been added so that those not
intimately familiar with the code can tell what has been input.

Reference: Harris, Roy V., Jr. An Analysis and Correlation of Aircraft Wave Drag. NASA TMX-947. March 1964. "

An outline of the AIM's inputs, outputs and attributes are provided in AIM Inputs and AIM Outputs and AIM Attributes,
respectively.

The accepted and expected geometric representation and analysis intentions are detailed in Geometry Represen-
tation and Analysis Intent.

Upon running preAnalysis the AIM generates a single file, "awavelnput.ixt" which contains the input information and
control sequence for Awave to execute. An example execution for Awave looks like (Linux and OSX executable
being used - see Awave Modifications):

awave awavelnput.txt

AVL Analysis Interface Module (AIM) Manual

2 CONTENTS

1.2 Awave Modifications

The AIM assumes that a modified version of Awave is being used. The modified version allows for longer input
and output file name lengths, as well as other I/O modifications. This modified version of Awave, awavemod.f, is
not currently supplied with the AIM due to licensing issues, please contact the CAPS creators for additional details.
Once this source code is obtained, it is automatically built with the AIM. During the compilation the source code is
compiled into an executable with the name awave (Linux and OSX) or awave.exe (Windows)

1.3 Examples

An example problem using the Awave AIM may be found at Awave Examples .

2 AIM Attributes

The following list of attributes drives the Awave geometric definition. Aircraft components are defined as cross
sections in the low fidelity geometry definition. To be able to logically group the cross sections into wings, tails,
fuselage, etc they must be given a grouping attribute. This attribute defines a logical group along with identifying a
set of cross sections as a lifting surface or a body of revolution. The format is as follows.

» capsType This string attribute labels the FaceBody as to which type the section is assigned. This information
is also used to logically group sections together to create wings, tails, stores, etc. Because Awave is relatively
rigid capsType attributes must be on of the following items:

Lifting Surfaces: Wing, Tail, HTail, VTail, Cannard, Fin
Body of Revolution: Fuselage, Fuse, Store

» capsGroup This string attribute is used to group like components together. This is a user defined unique
string that can be used to tie sections to one another. Examples are tail1, tail2, etc.

capslntent This attribute is a CAPS requirement to indicate the analysis fidelity the geometry representation
supports. Options are: ALL, LINEARAERO

» capsReferenceArea [Optional: Default 1.0] This attribute may exist on any Body. lts value will be used as
the SREF entry in the Awave input.

3 Geometry Representation and Analysis Intent

The geometric representation for the Awave AIM requires that the bodies be either a face body(ies) (FACEBODY)
or non-manifold sheet body(ies) (SHEETBODY). The attribute capsintent should be set to LINEARAERO or ALL.

4 AIM Inputs

The following list outlines the Awave inputs along with their default value available through the AIM interface. All
inputs to the Awave AIM are variable length arrays. All inputs must be the same length .

» Mach = double
OR

* Mach = [double, ... , double]
Mach number.

+ Alpha = double
OR

+ Alpha = [double, ... , double]
Angle of attack [degree].

AVL Analysis Interface Module (AIM) Manual

5 AIM Outputs 3

5 AIM Outputs

The main output for Awave is CDwave. This reports wave drag coefficient with respect to the AIM Inputs given. In
addition an echo of the Mach number and angle of attack inputs is provided. This allows the user to ensure that the
CDwave value matches the expected Mach, AoA input pair. If a given pair does not execute then it will not appear
in the results. Thus it is always good practice to do a sanity check using the echo of input values.

+ CDwave = Wave Drag Coefficient.
* MachOut = Mach number.

» Alpha = Angle of attack (degree).

6 Awave Examples

This is a walkthrough for using Awave AIM to analyze a wing, tail, fuselage configuration.

6.1 Prerequisites
It is presumed that ESP and CAPS have been already installed, as well as Awave. Furthermore, a user should
have knowledge on the generation of parametric geometry in Engineering Sketch Pad (ESP) before attempting to

integrate with any AIM. Specifically this example makes use of Design Parameters, Set Parameters, User Defined
Primitive (UDP) and attributes in ESP.

6.1.1 Script files
Two scripts are used for this illustration:

1. awaveWingTailFuselage.csm: Creates geometry, as described in the following section.

2. awave_PyTest.py: pyCAPS script for performing analysis, as described in Performing analysis using pyCAPS.

6.2 Creating Geometry using ESP

First step is to define the analysis intention that the geometry is intended support.

attribute capsIntent LINEARAERO

Next we will define the design parameters to define the wing cross section and planform.

despmtr thick 0.12 frac of local chord

despmtr camber 0.04 frac of loacl chord

despmtr tlen 5.00 length from wing LE to Tail LE
despmtr toff 0.5 tail offset

despmtr area 10.0

despmtr aspect 6.00

despmtr taper 0.60

despmtr sweep 20.0 deg (of c/4

despmtr washout -5.00 deg (down at tip)

despmtr dihedral 4.00 deg

The design parameters will then be used to set parameters for use internally to create geometry.

set span sgrt (aspectxarea)

set croot 2xarea/span/ (l+taper)

set ctip crootxtaper

set dxtip (croot-ctip) /4+span/2+tand (sweep)
set dztip span/2+tand (dihedral)

AVL Analysis Interface Module (AIM) Manual

CONTENTS

Next the Wing, Vertical and Horizontal tails are created using the naca User Defined Primitive (UDP). The inputs
used for this example to the UDP are Thickness and Camber. The naca sections generated are in the X-Y plane
and are rotated to the X-Z plane. They are then translated to the appropriate position based on the design and set
parameters defined above. Finally reference area can be given to the Awave AIM by using the capsReferenceArea
attribute. If this attribute exists on any body that value is used otherwise the default is 1.0.

In addition each section has a capType attribute. This is used to define the type of surface being create into a lifting
surface or a body. The other attribute found on the first wing section is capsGroup. This is used to logically group
cross section of a give capsType type together. More information on this can be found in the AIM Attributes section.

right ti
udprim
attribute
attribute
attribute
scale
rotatex
rotatey
translate

root
udprim
attribute
attribute
rotatex
scale

left tip
udprim
attribute
attribute
scale
rotatex
rotatey
translate

Vertical Ta

tip
udprim
attribute
attribute
scale
translate

base
udprim
attribute
attribute
scale
translate

Horizontal

tip left
udprim
attribute
attribute
scale
rotatex
translate

tip left
udprim
attribute
attribute
scale
rotatex
translate

tip righ
udprim
attribute
attribute
scale
rotatex
translate

P
naca Thickness thick Camber
capsReferenceArea area

capsType SWing

capsGroup SWing

ctip

90 0 0

washout 0 ctip/4

dxtip —-span/2 dztip

naca Thickness thick Camber
capsType SWing

capsGroup SWing

90 0 0

croot

naca Thickness thick Camber
capsType $Wing

capsGroup SWing

ctip

90 0 0

washout 0 ctip/4

dxtip span/2 dztip

il definition

naca Thickness thick

capsType $VTail

capsGroup SVertTail

0.75xctip

tlen+0.75% (croot-ctip) 0.0 ctip+toff

naca Thickness thick
capsType $VTail
capsGroup $VertTail
0.75*croot

tlen 0.0 toff

Tail definition

naca Thickness thick
capsType $HTail

capsGroup $Stab

0.75+ctip

90 0 0

tlen+0.75% (croot-ctip) -ctip toff

naca Thickness thick
capsType $HTail

capsGroup $Stab

0.75*ctip

90 0 0
tlen+0.75% (croot-ctip) 0.0 toff

t

naca Thickness thick
capsType $HTail

capsGroup SStab

0.75xctip

90 0 0

tlen+0.75x (croot-ctip) ctip toff

camber

camber

camber

AVL Analysis Interface Module (AIM) Manual

6.3 Performing analysis using pyCAPS 5

Fuselage definition. Notice the use of the ellipse UDP. In this case only tranlation is required to move the cross
section into the desired location.

skbeg -0.4xtlen 0.0 0.0

skend

attribute capsType $Fuse
attribute capsGroup S$Fuselage

udprim ellipse ry 0.5xcroot rz 0.2xcroot
attribute capsType $Fuse

attribute capsGroup S$Fuselage

translate 0.0 0.0 0.0

udprim ellipse ry 0.4xcroot rz 0.lxcroot
attribute capsType S$Fuse
translate croot 0.0 0.0

udprim ellipse ry 0.lxcroot rz 0.lxcroot
attribute capsType $Fuse

attribute capsGroup S$Fuselage

translate tlen 0.0 toff

udprim ellipse ry 0.0lxcroot rz 0.0lxcroot
attribute capsType $Fuse

attribute capsGroup S$Fuselage

translate tlen+0.75%croot 0.0 toff

Store definition. This addition is to demonstrate the addition of a wing tip store in the Awave representation.

udprim ellipse ry O.l%ctip rz 0.l*ctip
attribute capsType $Store

attribute capsGroup $RightWingTank
translate dxtip -span/2 dztip

udprim ellipse ry O.l%ctip rz 0.l*ctip
attribute capsType $Store

attribute capsGroup $RightWingTank
translate dxtip+ctip -span/2 dztip
udprim ellipse ry O.l%ctip rz 0.l*ctip
attribute capsType $Store

attribute capsGroup $LeftWingTank
translate dxtip span/2 dztip
udprim ellipse ry O.l%ctip rz 0.l*ctip
attribute capsType $Store

attribute capsGroup $LeftWingTank
translate dxtip+ctip span/2 dztip

6.3 Performing analysis using pyCAPS

An example pyCAPS script that uses the above *.csm file to run Awave is as follows.

First the pyCAPS and os module needs to be imported.
Import capsProblem from pyCAPS
from pyCAPS import capsProblem

Import os module
import os

Once the modules have been loaded the problem needs to be initiated.

myProblem = capsProblem()

Next local variables used throughout the script are defined.

workDir = "AwaveAnalysisTest"

Next the x.csm file is loaded and design parameter is changed - area in the geometry. Any despmtr from the
awaveWingTailFuselage.csm file are available inside the pyCAPS script. They are: thick, camber, area, aspect,
taper, sweep, washout, dihedral

AVL Analysis Interface Module (AIM) Manual

6 CONTENTS

myGeometry = myProblem.loadCAPS ("./csmData/awaveWingTailFuselage.csm")
myGeometry.setGeometryVal ("area", 10.0

The Awave AlIM is then loaded with the capsintent set to LINEARAERQO (this is consistent with the intention specified
above in the *.csm file.

myAnalysis = myProblem.loadAIM(aim = "awaveAIM",
analysisDir = workDir,
capsIntent = "LINEARAERO")

After the AIM is loaded the Mach number and angle of attack (Alpha) are set as aimInputsAwave. The Awave AIM
supports variable length inputs. For example 1, 10 or more Mach and AoA pairs can be entered. The example
below shows two inputs. The length of the Mach and Alpha inputs must be the same.

myAnalysis.setAnalysisVal ("Mach" , [

1.2,
myAnalysis.setAnalysisval ("Alpha", [0.0,

Once all the inputs have been set, preAnalysis needs to be executed. During this operation all the necessary files

to run Awave are generated and placed in the analysis working directory (analysisDir)

myAnalysis.preAnalysis ()

At this point the required files necessary run Awave should have been created and placed in the specified analysis
working directory. Next Awave needs to executed such as through an OS system call (see Awave AIM Overview for
additional details) like,

("\n\nRunning Awave...... ")
currentDirectory = os.getcwd() # Get our current working directory

os.chdir (myAnalysis.analysisDir) # Move into test directory
os.system("awave awavelnput.txt > Info.out"); # Run Awave via system call

os.chdir (currentDirectory) # Move back to top directory

A call to postAnalysis is then made to check to see if Awave executed successfully and the expected files were
generated.

myAnalysis.postAnalysis ()

Similar to the AIM inputs, after the execution of Awave and postAnalysis any of the AIM's output variables (AIM
Outputs) are readily available; for example,

CdWave = myAnalysis.getAnalysisOutVal ("CDwave");

Printing the above variable results in,

CdWave = [0.484423786, 0.0935611948]

AVL Analysis Interface Module (AIM) Manual

REFERENCES

References

[1] L. A. McCullers. AWAVE: User’s Guide for the Revised Wave Drag Analysis Program, Apr. 1992. 1

AVL Analysis Interface Module (AIM) Manual

	1 Introduction
	1.1 Awave AIM Overview
	1.2 Awave Modifications
	1.3 Examples

	2 AIM Attributes
	3 Geometry Representation and Analysis Intent
	4 AIM Inputs
	5 AIM Outputs
	6 Awave Examples
	6.1 Prerequisites
	6.1.1 Script files

	6.2 Creating Geometry using ESP
	6.3 Performing analysis using pyCAPS

	Bibliography

