wv: A General
Web-based 3D Viewer

Bob Haimes ()

Aerospace Computational Design Laboratory
Department of Aeronautics & Astronautics
Massachusetts Institute of Technology

August 2016

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Objective

The objective of this work is to
generate a visual tool targeted for
the 3D needs found within the
MDAO process. A WebBrowser-
based approach is considered, in
that it provides the broadest possible
platform for deployment.

Outline

« System Architecture
— Browser / WebGL / WebSockets
— Server or Data Generator(s)

- Data Model
— VBO based
— Primitives
— Graphic Objects
* Functionality at the Viewer
— 10 Handling
— Rendering / GUI Loop

* Binary Data Packets
« GUI Call-backs

 Procedural-based Server-side API

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture

Goal: Effective 3D component that
can support the viewing of:

Geometry
Meshing

Scientific Visualization Tools (including
transient data)

Multi-dimensional Design Space Examination
Other 3D needs

Contains no GUI but the hooks (in the form of
JavaScript call-backs) to graft a customized
Ul specifically designed for the task at hand.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture -- Viewer

Efficient Browser Implementation

Must support WebGL (& JavaScript)
Use of WebSockets (part of HTMLYS)

— Asynchronicity
— Segregation of data-streams (via protocols)
— Data handling consistent with WebGL

Extensive use of Vertex Buffer Objects (VBOSs)

|O from the server

— Packed messages -- few network packets that are
unpacked into typed JavaScript Arrays at the Browser

Binary -- known common types, allows avoiding the costs
of serialization / deserialization (WebSocket binary)

— Techniques to provide data to the GUI (WebSocket text)
|O to the server

— Nothing from the Viewer by default
— Only data from the customized GUI (WebSocket text)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

System Architecture -- Server

Data Generation and Handling

Web server (or acts as one -- libwebsockets)

Visualization state must be maintained (note:
Viewer is stateless except for viewMatrix
& current plotting attributes)

VBO components generated and sent

1O to the Viewer
— Aggregated VBOs with metadata

— What is sent is based on changes from the GUI or
from transient data

— Data for the GUI portion of the Viewer

O from the Viewer
— Only data from the customized GUI

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- VYBO Components

« Vertices
— Coordinates (3 by float -- Float32Array)
— length
* Indices (optional)
— The index into the Vertex Array (unsigned short -- Uint16Array)
— length (can be different from Vertex length)

« Colors (optional)

— RGBs associated with the Vertices(3 by unsigned byte --
Uint8Array)

— Must be same length as Vertices

« Normals (optional, used for Triangles or Decorated
Lines)
— The normal pointing vector for lighting (3 by float --
Float32Array) or Decorated Triangles and normals (no stripes)
— Must be same length as Vertices (Triangles)

Note: the unsigned short of Indices limits the size of the
VBO used, so larger data needs to be striped.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- VBO Types

* Points
— Vertices [Colors & Indices]

* Lines (2 vertices per -- disjoint segments)
— Vertices [Colors & Indices]
— Optional Normals for Decorations (i.e. 3D Arrows)

* Triangles (3 vertices per -- also disjoint)
— Vertices [Normals, Colors & Indices]

Notes:

1. Constant element coloring of Lines/ Triangles requires
non-indexed VBOs and the duplication of color
information (per vertex)

2. Facetted lighting requires similar treatment with Normals

3. Any non-planar set of Triangles requires Normals VBO
component

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Primitives

 Locations (GPType 0 -- 0D)

— Collections of one or more Foints
— Foreground Color

— Size (in pixels)

— Coloring & Transparency Flags

 Disjoint Lines (GPType 1 -- 1D)
Optional collected Indexed FPoints into the Lines Vertex Array
Collections of one or more Lines
Line Color

Foreground Color for Decorations
Back-facing Color for Decorations

Line Width (in pixels)

Point Color

Point size (in pixels)

Coloring & Transparency Flags

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Primitives

* Disjoint Triangles (GPType 2 -- 2D)
— Optional collected Indexed Foints into the Triangles Vertex Array
Optional collected Indexed Lines into the Triangles Vertex Array
Collections of one or more Triangles
Foreground Color
Back-facing Color
Planar Normal (if planar)
Line Color
Line Width (in pixels)
Point Color
Point size (in pixels)
Coloring, Transparency, Orientation & FPoini/Line Flags

Note: Simple two-sided (ambient & diffuse) lighting is applied
by default (modification to wv_render.js is required for
other lighting models)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Data Model -- Graphic Objects

. Graphlc Object
ID -- Unique character string assigned by the server
GPType
Number of Striped Primitives in the Collection
GPType specific metadata
Graphic Primitive data

* VBO Internal Reference
ID string
Stripe # 24bits
One of Point, Line, Triangle Data (3) byte
One of Vertices, Indices, Colors, Normals (4) byte

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer

10 Handling

Initialize (connect to server)
Handshake to ensure compatibility

Arrays generated by “unpacking” received
VBOs (with metadata) via binary protocol

Handle any GUI related data (text protocol) via
the call-back ServerMessage

Continue until End-of-Frame marker

Inform Rendering Loop that there is new data
and accept no new data until released

Asynchronously performed by WebSocket
event handling

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer

Rendering / GUI Loop

— Initialize (generate canvas on WebGL context)
— Execute GUI setup call-back InitUl
1. Setup scene

— Blank canvas and depth buffer
— Adjust viewMatrix (UpdateView call-back)

. Render any Graphics Objects
. Add custom renderings by call-back UpdateCanvas
. Execute GUI call-back UpdateUIl

. Do we have an End-of-Frame marker?
— If no -- has anything changed in the GUI?
= No -- Wait then goto 4
* Yes--goto 1
. Handshake with IO Handling, update the Graphics
Objects & release the 10 hold

. goto 1

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Functionality at the Viewer

Rendering Model
WebGL requires fragment & vertex shaders

Lighting & texture mapping done in the shaders

The supplied shaders support:
Two-sided lighting
Ambient & Diffuse lighting model
Back-face coloring
Constant and/or linearly interpolated color-space mapping
Simple transparency
Picking
Bumping of lines forward (in screen Z)
Any other requirements will involve modifying

the shaders (which can be found in wv-render.js)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Ci
?s"::lb‘ HU&((&

Binary Data Packets [i e

Of TECY\T\

* |Individual data collections should be aggregated
to reduce network latencies -- large packets

All data is tightly packed and VBO “ready”

Data collections begin with an Opcode (1 byte):
— 0 -- end of packet (but not End-of-Frame)
— 1 -- new Graphic Object

— 2 -- delete Graphic Object
— 3 -- new Data for Graphic Object
— 4 -- update Data in Graphic Object
— 7 -- End-of-Frame Marker (must be last in total packet)
— 8 -- Initialize Packet
 All data is aligned on 4-byte boundaries
— Colors are unsigned byte
— Indices are unsigned short
_— ThelDis a string

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

« Each collection starts with:
— Opcode (MSB)
— Stripe # or Number of Stripes (3 bytes -- LSB)
— Complete for Opcode 0 & 7

* Next 32 bits (all but Opcode 0O, 7 & 8):
— GPType (1 byte -- MSB)
— vflag -- bits can be summed (1 btye):
Vertices 1

Indices 2

Colors 4
Normals 8

Point Indices 16
Line Indices 32

— ID character Length (integer factor of 4) (2 bytes -- LSB)
* |D Character string (number of bytes above)

f ﬂ_ Opcode 2 (delete) requires no more data

e AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

* Opcode 1 (new Graphic Object)

— Plottlng Attributes (bit flag -- int):

- Render On
2 - Transparent
4 - Color Interpolation
8 - Show orientation
16 - Plot Points
32 - Plot Lines

Point size (float)
Point color (3*float)
[Done for Point Objects |

Line width (float)

Line color (3*float)

Foreground constant color (3*float)
Background color (3*float)

[Done for Line Objects |

Constant Normal (3*float)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

* Opcode 3 (new data) & 4 (update data)

— Number of data elements for the Graphic
Primitive stripe (int):
Total number of primitive words is found by
multiplying by 3 for Vertices (xyz), Colors (rgb) &
Normals

« Applying “sizeof?” to the above provides the

total byte length (plus any required padding)
— The VBO data (type based on bit in vflag)

— Repeated for each bit in vflag in LSB order
(Opcode 3), i.e. vertices always first

Notes:
Opcode 4 can only have a single bit in vflag set

Data types shorter than 32 bits must be padded
at the end so that the next read can be 4-byte
aligned

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

* Opcode 8 (Initialize) -- 56 bytes long

Opcode field (4*bytes)
Field of View (float)
zNear (float)

zFar (float)

Eye location (3*float)
Focus position (3*float)
Up direction (3*float)
End-of-Frame (4*bytes)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Binary Data Packets

* Opcode 9 (Color Key Definition)

Opcode field (4*bytes), Stripe # is the number of
characters in title — nLen (integer factor of 4)

of Colors — nCol (int)
The title (nLen*bytes)
Scale for bottom (float)
Scale for top (float)

rgb Colors (3*nCol*float)

« Examples of 10O routines:

— Reading in wv-socket.js
— Writing in wsServer/wv.c

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

GUI Call-back Signatures

« function InitUI()

— Invoked once to initialize the Ul variables and state

« function UpdateUI()

— Called in the rendering loop so that the state of the Ul
can be adjusted

— Note: if the state is modified directly in an event handler
the rendering for that frame may be corrupted

« function UpdateView()

— Allows for the adjustment of the viewMatrix before the
scene is rendered again

- function UpdateCanvas(g/)

— Allows for the customization of what is rendered by
additional WebGL calls

QCD — glis the WebGL context

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

GUI Call-back Signatures

« function Reshape(g/)
— Checks if the canvas has been resized or moved
— If so, reestablishes the WebGL viewport in g/

 function ServerMessage(text)

— Called when an ASCII text message has been received
from the server (Ul text protocol)

— Note: this is invoked from a WebSocket event handler

Usage examples can be found in SimpleULl.js

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Other Useful Functions

« wvServerDown()

— a required call-back function that is invoked when the
server has closed down

— this can be because the server has aborted or the
server was taken down gracefully

« wv.socketUt.send(text)
— wv (wv globals), socketUt (Ul text interface)
— Send the string text to the server using WebSockets
— Communicates GUI information to the server

— Can be used from within any call-back (except
wvServerDown)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Registering GUI Call-backs

« wv.setCallback(cbName, cbFn)

— This sets the specified call-back to the function
cbFn (which has a signature as described in the
previous slides)

cbName can be one of the following strings:
“InitUI”, “UpdateCanvas’, “UpdateUl”,
“‘UpdateView’, “ServerMessage”, or “Reshape”’.
Any other string is an error.

There are useful defaults for both “UpdateView”
and “Reshape” (see wv-cbManage.js). All other
call-backs should be specified for a fully functional
UL.

Example usage can be found in wv.js

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

wyv Status

 Viewer

— Tested against:
» Google Chrome
* Mozilla FireFox (& SeaMonkey)
» Apple Safari (at Rev 6.0 or higher)
— Greater than 18 MegaTriangles per second for large
VBOs on a MacBook Pro i7 2.8MHz 15" Mid-2010
(Chrome about 20% slower than SeaMonkey)

« Server-like Implementation
— Python options:

* pywebsockets
* wsdpy
« gevent-websocket

— Use of libwebsockets open source project

(

« C API to specify data and allow for GUI IO
» Used to generate the Procedural-based Server-side API

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

createContext

wvContext *context =
wv_createContext (int bias, float fov, float zNear,

float zFar, float *eye, float *center,
float *up)

call iv_createContext(I*4 bias, R*4 fov, R*4 zNear,

R*4 zFar, R*4 eye, R*4 center,
R*4 up, I*8 context)

Initializes a WebViewer Context.

bias
fov
zNear
zFar
eye
center
up
context

the offset used for indexing (usually either O or 1)

the field of view for the perspective (angles)

the Z value for the clipping plane closest to the observer
the Z value for the clipping plane farthest from the observer
the position of the observer (X,Y,Z2)

the focus for the viewing matrix

a normalized vector referring to positive Y

the returned WebViewer context

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

« startServer

status = wv_startServer (int port, char *dev, char *path,

char *key, int opts, wvContext *context)
status = iv_startServer (I*4 port, C** dev, C** path,

C** key, I*4 opts, I*8 context)

Starts a server thread on the WebViewer Context. The calling
thread of execution continues. Use statusServer to
determine the state of the connections.

port the socket port to use for communication

dev the network interface device name (can be NULL)

path the path to locate certificate (if secure transmissions are used)
key the file path for the private key (if secure transmissions are used)
opts 0, or 1 (Defeat the client mask)

context the WebViewer context (from createContext)

status the server instance/return status (negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

 statusServer

status = wv_statusServer (int server)
status = iv_statusServer (I*4 server)

Checks the state of the server connections.

server the server instance (from startServer)
status the state (negative is an error):

0 - all clients have disconnected

1 - active

« cleanupServers

wv_cleanupServers ()
call iv_cleanupServers ()

Cleans up all memory associated with this API. Should be used as
the last function in this suite.

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

 setData

status = wv_setData(int dtype, int len, void *data,
int VBOcomp, wvData *item)

status = iv_setData(I*4 dtype, I*4 len, ANY data,
I*4 VBOcomp, I*8 item)

Sets the data associated with an item to be used with addGPrim
and modGPrim. Striping is internally performed where necessary.

dtype the type of the data array (see wsss.h or wsserver.inc)

len the number of elements in the data array (Vertices, Normals,
and Colors require 3 words per element)

data the data array of type dtype

VBOcomp the type of the VBO component (see wsss.h or wsserver.inc)
item the output placement for the item

status the return status (negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

« adjustVerts

wv_ad]justVerts (wvData *item, float *focus)
call iv_adjustVerts (I*8 item, R*4 focus)

Allows for the adjustment of the vertex coordinates so they fit into
screen coordinates (not clipped away).

item the Vertices component (from setData)
focus a vector of length 4 that is used to adjust the coordinates
the first is subtracted from the X coordinate
the second is subtracted from the Y coordinate
the third is subtracted from the Z coordinate
the forth is used to normalize (divide) all coordinates

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

e addGPrim

status = wv_addGPrim(wvContext *context, char *name, int gtype,
int attrs, int nItems, wvData *items)

status iv_addGPrim(I*8 context, C** name, I*4 gtype,
I*4 attrs, I*4 nItems, I*8 items)

Creates and adds this Graphics Primitive to the scene graph
associated with this context.

context the WebViewer context (from createContext)
name unique (in the scene graph) name of the primitive

gtype the graphics primitive type: Point, Line, Triangle
(see wsss.h Or wsserver.inc)
attrs the initial plotting attributes (see wsss.h or wsserver.inc)
nltems the number of components used to define the primitive
items the components (from setData)
status the index created for the primitive (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

 modGPrim

status = wv_modGPrim(wvContext *context, int index,
int nItems, wvData *items)

status iv_modGPrim(I*8 context, I*4 index,
I*4 nItems, I*8 items)

Modifies an existing Graphics Primitive in scene graph associated
with this context.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)
nltems the number of components to modify in the primitive
items the components (from setData)

status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

« addArrowHeads

status = wv_addArrowHeads (wvContext *context, int index,
float size, int nHeads, int *heads)
status = iv_addArrowHeads (I*8 context, I*4 index,
R*4 size, I*4 nHeads, I*4 heads)

Add Arrow Head decorations (in the foreground color) to an existing
Line Graphics Primitive associated with this context.

context the WebViewer context (from createContext)

index the index created for the primitive (from addGPrim)

size the size of the arrow head
if adjustVerts is in use, the size should be divided by focus[3]

nHead the number of head definitions

heads the head definitions (index into the line segments -- if negative
the head position (and direction) is associated with the first
point in the segment, otherwise it is the second position. This is
always bias 1.

status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

+ setKey

status = wv_setKey (wvContext *context, int nCol, float *colors,
float beg, float end, char *title)

status iv_setKey (I*8 context, I*4 nCol, R*4 colors,
R*4 beg, R*4 end, C** title)

Specifies the color key that gets drawn at the browser.

context the WebViewer context (from createContext)

nCol the number of colors found in the key — a 0 removes the key
colors the colors for each entry (rgb) — nCol*3 in length

beg the key value for the first color

end the key value for the last color

title the text written above the colors in the key

status the return status (where negative is an error)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

* removeGPrim

wv_removeGPrim (wvContext *context, int index)
call iv_removeGPrim(I*8 context, I*4 index)

Removes an existing Graphics Primitive in scene graph
associated with this context.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)

* removeAll

wv_removeGPrim (wvContext *context)
call iv_removeGPrim (I*8 context)

Removes all Graphics Primitive from the scene graph associated
with this context.

context the WebViewer context (from createContext)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

* indexGPrim

status = wv_indexGPrim(wvContext *context, char *name)
status = iv_indexGPrim(I*8 context, C** name)

Finds the index given the name for an existing Graphics Primitive
in scene graph associated with this context.

context the WebViewer context (from createContext)
name the name of the GPrim in the scene graph
status the index (where a negative value is an error)

* printGPrim

wv_printGPrim(wvContext *context, int index)
call iv_printGPrim(I*8 context, I*4 index)

Prints the Graphics Primitive to standard output.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

« nClientServer

status = wv_nClientServer (int server)
status = iv_nClientServer (I*4 server)

Returns the number of clients connected to the server.

server the server instance (from startServer)
status the number of clients (negative is an error):

« handShake

status = wv_handShake (wvContext *context)
status = iv_handShake (I*8 context)

Performs coarse-level handshaking. Both addGPrim and
modGPrim will do fine-level handshaking, but to fully
synchronize a larger suite of updates use this function.

context the WebViewer context (from createContext)

status 0 — the data is released to send, 1 — the data is grabbed until
invoked again when the updated GPrims will be sent

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

Call-back Required to catch Client Messages

 browserMessage

browserMessage (struct libwebsocket *wsi, char *text, int len)
subroutine browserMessage (I*8 wsi, C** text)

This required routine gets called for each message sent from a
client.

the WebSocket Interface Structure
the ASCII text received from the Browser
the length of the text

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

Text based communication to the Client(s)

 broadcastText

wv_broadcastText (char *text)
call iv_broadcastText (C** text)

Sends the text to all active clients (Browsers).

text the text to send

« sendText

wv_sendText (struct libwebsocket *wsi, char *text)
call iv_sendText (I*8 wsi, C** text)

Sends the text to the specific client designated by wsi.

WSi the WebSocket Interface Structure (from browserMessage)
text the text to send

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

FORTRAN Only Utility Functions

 setPsize

call iv_setPisze (I*8 context, I*4 index, R*4 size)

Sets the Point Size in an existing Graphics Primitive in scene
graph associated with this context.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)

size the point size in pixels

 setLwidth

call iv_setLwidth(I*8 context, I*4 index, R*4 width)

Sets the Line Width in an existing Graphics Primitive.

context the WebViewer context (from createContext)
index the index created for the primitive (from addGPrim)
width the line width in pixels

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Procedural-based Server-side API

usleep

call iv_usleep(I*4 micsec)

Suspends the calling thread for the specified number of
microseconds

micsec the number of microseconds

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

