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1.1 FUN3D AIM Overview

A module in the Computational Aircraft Prototype Syntheses (CAPS) has been developed to interact (primarily
through input files) with NASA LaRC's unstructured flow solver FUN3D [1]. FUN3D is a parallelized flow analysis
and design suite capable of addressing a wide variety of complex aerodynamic configurations by utilizing a mixed-
element, node-based, finite volume discretization. The suite can simulate perfect gas (both incompressible and
compressible), as well as multi-species equilibrium and non-equilibrium flows. Turbulence effects may be repre-
sented through a wide variety of models. Currently only a subset of FUN3D's input options have been exposed in
the analysis interface module (AIM), but features can easily be included as future needs arise.

Current issues include:

• A thorough bug testing needs to be undertaken.

• Not all parameters/variables in fun3d.nml are currently available.

An outline of the AIM's inputs and outputs are provided in AIM Inputs and AIM Outputs, respectively.

The accepted and expected geometric representation and analysis intentions are detailed in Geometry Represen-
tation and Analysis Intent.

Details of the AIM's shareable data structures are outlined in AIM Shareable Data if connecting this AIM to other
AIMs in a parent-child like manner.

Details of the AIM's automated data transfer capabilities are outlined in FUN3D Data Transfer

1.2 Generating fun3d.nml

FUN3D's primarily input file is a master FORTRAN namelist, fun3d.nml. To generate a bare-bones fun3d.nml file
based on the variables set in AIM Inputs, nothing else besides the AIM needs to be provided. Since this will create
a new fun3d.nml file every time the AIM is executed it is essential to set the Overwrite_NML input variable to "True".
This gives the user ample warning that their fun3d.nml (if it exist) will be over written.

Conversely, to read and append an existing namelist file the user needs Python installed so that the AIM may be
complied against the Python API library (and header file - Python.h). The AIM interacts with Python through a
Cython linked script that utilizes the "f90nml" Python module; note, having Cython installed is not required. On
systems with "pip" installed typing "pip install f90nml", will download and install the "f90nml" module.

The Cython script will first try to read an existing fun3d.nml file in the specified analysis directory; if the file does not
exist one will be created. Only modified input variables that have been specified as AIM inputs (currently supported
variables are outlined in AIM Inputs) are updated in the namelist file.

1.3 Examples

An example problem using the FUN3D AIM (coupled with a meshing AIM - TetGen) may be found at FUN3D AIM
Example .

2 Geometry Representation and Analysis Intent

The geometric representation for the FUN3D AIM requires that the body(ies) be either a face body(ies) (FACEBO←↩
DY), solid body(ies) (SOLIDBODY) or non-manifold sheet body(ies) (SHEETBODY). For 2D simulations the attribute
capsIntent should be set to CFD with the geometric representation being either a planar SHEETBODY or FACE←↩
BODY, while for 3D simulations it should again be set to CFD, but both SOLIDBODY(ies) or SHEETBODY(ies) are
acceptable.
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3 AIM Inputs

The following list outlines the FUN3D inputs along with their default values available through the AIM interface. One
will note most of the FUN3D parameters have a NULL value as their default. This is done since a parameter in the
FUN3D input deck (fun3d.nml) is only changed if the value has been changed in CAPS (i.e. set to something other
than NULL).

• Proj_Name = "fun3d_CAPS"
This corresponds to the project_rootname variable in the &project namelist of fun3d.nml.

• Mach = NULL
This corresponds to the mach_number variable in the &reference_physical_properties namelist of fun3d.nml.

• Re = NULL
This corresponds to the reynolds_number variable in the &reference_physical_properties namelist of fun3d.←↩
nml.

• Viscous = NULL
This corresponds to the viscous_terms variable in the &governing_equation namelist of fun3d.nml.

• Equation_Type = NULL
This corresponds to the eqn_type variable in the &governing_equation namelist of fun3d.nml.

• Alpha = NULL
This corresponds to the angle_of_attack variable in the &reference_physical_properties namelist of fun3d.nml
[degree].

• Beta = NULL
This corresponds to the angle_of_yaw variable in the &reference_physical_properties namelist of fun3d.nml
[degree].

• Overwrite_NML = NULL

– If Python is NOT linked with the FUN3D AIM at compile time or Use_Python_NML is set to False this flag
gives the AIM permission to overwrite fun3d.nml if present. The namelist produced will solely consist of
input variables present and set in the AIM.

– If Python IS linked with the FUN3D AIM at compile time and Use_Python_NML is set to True the namelist
file will be overwritten, as opposed to being appended.

• Mesh_Format = "AFLR3"
Mesh output format. By default an AFLR3 mesh will be used.

• Mesh_ASCII_Flag = True
Output mesh in ASCII format, otherwise write a binary file if applicable.

• Num_Iter = NULL
This corresponds to the steps variable in the &code_run_control namelist of fun3d.nml.

• CFL_Schedule = NULL
This corresponds to the schedule_cfl variable in the &nonlinear_solver_parameters namelist of fun3d.nml.

• CFL_Schedule_Inter = NULL
This corresponds to the schedule_iteration variable in the &nonlinear_solver_parameters namelist of fun3d.←↩
nml.

• Restart_Read = NULL
This corresponds to the restart_read variable in the &code_run_control namelist of fun3d.nml.

• Boundary_Condition = NULL
See CFD Boundary Conditions for additional details.
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• Use_Python_NML = False
By default even if Python has been linked to the FUN3D AIM it is not used unless the this value is set to True.

• Pressure_Scale_Factor = 1.0
Value to scale Cp data when transferring data. Data is scaled based on Pressure = Pressure_Scale_←↩
Factor∗Cp + Pressure_Scale_Offset.

• Pressure_Scale_Offset = 0.0
Value to offset Cp data when transferring data. Data is scaled based on Pressure = Pressure_Scale_←↩
Factor∗Cp + Pressure_Scale_Offset.

• NonInertial_Rotation_Rate = NULL [0.0, 0.0, 0.0]
Array values correspond to the rotation_rate_x, rotation_rate_y, rotation_rate_z variables, respectively, in the
&noninertial_reference_frame namelist of fun3d.nml.

• NonInertial_Rotation_Center = NULL, [0.0, 0.0, 0.0]
Array values correspond to the rotation_center_x, rotation_center_y, rotation_center_z variables, respectively,
in the &noninertial_reference_frame namelist of fun3d.nml.

• Two_Dimensional = False
Run FUN3D in 2D mode. If set to True, the body must be a single "sheet" body in the x-z plane (a rudimentary
node swapping routine is attempted if not in the x-z plane). A 3D mesh will be written out, where the body is
extruded a length of 1 in the y-direction.

• Modal_Aeroelastic = NULL
See Modal Aeroelastic Inputs for additional details.

• Modal_Ref_Velocity = NULL
The freestream velocity in structural dynamics equation units; used for scaling during modal aeroelastic sim-
ulations. This corresponds to the uinf variable in the &aeroelastic_modal_data namelist of movingbody.input.

• Modal_Ref_Length = 1.0
The scaling factor between CFD and the structural dynamics equation units; used for scaling during modal
aeroelastic simulations. This corresponds to the grefl variable in the &aeroelastic_modal_data namelist of
movingbody.input.

• Modal_Ref_Dynamic_Pressure = NULL
The freestream dynamic pressure in structural dynamics equation units; used for scaling during modal
aeroelastic simulations. This corresponds to the qinf variable in the &aeroelastic_modal_data namelist of
movingbody.input.

• Time_Accuracy = NULL
Defines the temporal scheme to use. This corresponds to the time_accuracy variable in the &nonlinear_←↩
solver_parameters namelist of fun3d.nml.

• Time_Step = NULL
Non-dimenional time step during time accurate simulations. This corresponds to the time_step_nondim vari-
able in the &nonlinear_solver_parameters namelist of fun3d.nml.

• Num_Subiter = NULL
Number of sub-interations used during a time step in a time accurate simulations. This corresponds to the
subiterations variable in the &nonlinear_solver_parameters namelist of fun3d.nml.

• Temporal_Error = NULL
This sets the tolerance for which subiterations are stopped during time accurate simulations. This corresponds
to the temporal_err_floor variable in the &nonlinear_solver_parameters namelist of fun3d.nml.

• Reference_Area = NULL
This sets the reference area for used in force and moment calculations. This corresponds to the area_←↩
reference variable in the &force_moment_integ_properties namelist of fun3d.nml. Alternatively, the geometry
(body) attribute "capsReferenceArea" maybe used to specify this variable (note: values set through the AIM
input will supersede the attribution value).
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• Moment_Length = NULL, [0.0, 0.0]
Array values correspond to the x_moment_length and y_moment_length variables, respectively, in the
&force_moment_integ_properties namelist of fun3d.nml. Alternatively, the geometry (body) attributes "caps←↩
ReferenceChord" and "capsReferenceSpan" may be used to specify the x- and y- moment lengths, respec-
tively (note: values set through the AIM input will supersede the attribution values).

• Moment_Center = NULL, [0.0, 0.0, 0.0]
Array values correspond to the x_moment_center, y_moment_center, and z_moment_center variables, re-
spectively, in the &force_moment_integ_properties namelist of fun3d.nml. Alternatively, the geometry (body)
attributes "capsReferenceX", "capsReferenceY", and "capsReferenceZ" may be used to specify the x-, y-,
and z- moment centers, respectively (note: values set through the AIM input will supersede the attribution
values).

4 AIM Shareable Data

Currently the FUN3D AIM does not have any shareable data types or values. It will try, however, to inherit a "←↩
Volume_Mesh" (for 3D simulations) or a "Surface_Mesh" (for 2D simulations) from any parent AIMs. Note that the
inheritance of the volume/surface mesh variable is required if the FUN3D aim is to write a suitable grid and ∗.mapbc
(boundary condition file for the AFLR3 mesh format) file.

5 AIM Outputs

The following list outlines the FUN3D outputs available through the AIM interface. All variables currently correspond
to values for all boundaries (total) found in the ∗.forces file

Net Forces - Pressure + Viscous:

• CLtot = The lift coefficient.

• CDtot = The drag coefficient.

• CMXtot = The moment coefficient about the x-axis.

• CMYtot = The moment coefficient about the y-axis.

• CMZtot = The moment coefficient about the z-axis.

• CXtot = The force coefficient about the x-axis.

• CYtot = The force coefficient about the y-axis.

• CZtot = The force coefficient about the z-axis.

Pressure Forces:

• CLtot_p = The lift coefficient - pressure contribution only.

• CDtot_p = The drag coefficient - pressure contribution only.

• CMXtot_p = The moment coefficient about the x-axis - pressure contribution only.

• CMYtot_p = The moment coefficient about the y-axis - pressure contribution only.

• CMZtot_p = The moment coefficient about the z-axis - pressure contribution only.

• CXtot_p = The force coefficient about the x-axis - pressure contribution only.

• CYtot_p = The force coefficient about the y-axis - pressure contribution only.

• CZtot_p = The force coefficient about the z-axis - pressure contribution only.
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Viscous Forces:

• CLtot_v = The lift coefficient - viscous contribution only.

• CDtot_v = The drag coefficient - viscous contribution only.

• CMXtot_v = The moment coefficient about the x-axis - viscous contribution only.

• CMYtot_v = The moment coefficient about the y-axis - viscous contribution only.

• CMZtot_v = The moment coefficient about the z-axis - viscous contribution only.

• CXtot_v = The force coefficient about the x-axis - viscous contribution only.

• CYtot_v = The force coefficient about the y-axis - viscous contribution only.

• CZtot_v = The force coefficient about the z-axis - viscous contribution only.

6 FUN3D Data Transfer

The FUN3D AIM has the ability to transfer surface data (e.g. pressure distributions) to and from the AIM using the
conservative and interpolative data transfer schemes in CAPS. Currently these transfers may only take place on
triangular meshes.

6.1 Data transfer from FUN3D

• "Pressure", "P", "Cp", or "CoefficientofPressure"
Loads the coefficient of pressure distribution from [project_name]_ddfdrive_bndry[#].dat file(s) (as generate
from a FUN3D command line option of --write_aero_loads_to_file) into the data transfer scheme. This dis-
tribution may be scaled based on Pressure = Pressure_Scale_Factor∗Cp + Pressure_Scale_Offset, where
"Pressure_Scale_Factor" and "Pressure_Scale_Offset" are AIM inputs (AIM Inputs)

6.2 Data transfer to FUN3D

• "Displacement"
Retrieves nodal displacements (as from a structural solver) and updates FUN3D's surface mesh; a new
[project_name]_body1.dat file is written out which may be loaded into FUN3D to update the surface
mesh/move the volume mesh using the FUN3D command line option --read_surface_from_file

• "EigenVector_#"
Retrieves modal eigen-vectors from a structural solver, where "#" should be replaced by the corresponding
mode number for the eigen-vector (eg. EigenVector_3 would correspond to the third mode, while Eigen←↩
Vector_6 would be the sixth mode) . A [project_name]_body1_mode#.dat file is written out for each mode.

7 CFD Boundary Conditions

Structure for the boundary condition tuple = ("CAPS Group Name", "Value"). "CAPS Group Name" defines the
capsGroup on which the boundary condition should be applied. The "Value" can either be a JSON String dictionary
(see Section JSON String Dictionary) or a single string keyword string (see Section Single Value String)
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7.1 JSON String Dictionary

If "Value" is a JSON string dictionary (eg. "Value" = {"bcType": "Viscous", "wallTemperature": 1.1}) the following
keywords ( = default values) may be used:

• bcType = "Inviscid"
Boundary condition type. Options:

– Inviscid

– Viscous

– Farfield

– Extrapolate

– Freestream

– BackPressure

– Symmetry

– SubsonicInflow

– SubsonicOutflow

– MassflowIn

– MassflowOut

– MachOutflow

7.1.1 Wall Properties

• wallTemperature = 0.0
The ratio of wall temperature to reference temperature for inviscid and viscous surfaces. Adiabatic wall = -1

7.1.2 Stagnation Properties

• totalPressure = 0.0
Ratio of total pressure to reference pressure on a boundary surface.

• totalTemperature = 0.0
Ratio of total temperature to reference temperature on a boundary surface.

7.1.3 Static Properties

• staticPressure = 0.0
Ratio of static pressure to reference pressure on a boundary surface.

7.1.4 Velocity Components

• machNumber = 0.0
Mach number on boundary.

7.1.5 Massflow Properties

• massflow = 0.0
Massflow through the boundary in units of grid units squared.
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7.2 Single Value String

If "Value" is a single string the following options maybe used:

• "Inviscid" (default)

• "Viscous"

• "Farfield"

• "Extrapolate"

• "Freestream"

• "SymmetryX"

• "SymmetryY"

• "SymmetryZ"

8 Modal Aeroelastic Inputs

Structure for the modal aeroelastic tuple = ("EigenVector_#", "Value"). The tuple name "EigenVector_#" defines the
eigen-vector in which the supplied information corresponds to, where "#" should be replaced by the corresponding
mode number for the eigen-vector (eg. EigenVector_3 would correspond to the third mode, while EigenVector_6
would be the sixth mode). This notation is the same as found in FUN3D Data Transfer. The "Value" must be a JSON
String dictionary (see Section JSON String Dictionary).

8.1 JSON String Dictionary

If "Value" is a JSON string dictionary (eg. "Value" = {"generalMass": 1.0, "frequency": 10.7}) the following keywords
( = default values) may be used:

• frequency = 0.0
This is the frequency of specified mode, in rad/sec.

• damping = 0.0
The critical damping ratio of the mode.

• generalMass = 0.0
The generalized mass of the mode.

• generalDisplacement = 0.0
The generalized displacement used at the starting time step to perturb the mode and excite a dynamic
response.

• generalVelocity = 0.0
The generalized velocity used at the starting time step to perturb the mode and excite a dynamic response.

• generalForce = 0.0
The generalized force used at the starting time step to perturb the mode and excite a dynamic response.

9 FUN3D AIM Example

This is a walkthrough for using FUN3D AIM to analyze a three-dimensional two-wing configuration.
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9.1 Prerequisites

It is presumed that ESP and CAPS have been already installed, as well as FUN3D. In this example the open-source,
tetrahedral mesh generator, TetGen, is coupled to the FUN3D AIM to provide a volumetric mesh.

9.1.1 Script files

Two scripts are used for this illustration:

1. cfdMultiBody.csm: Creates geometry, as described in following section.

2. fun3d_and_Tetgen_PyTest.py: pyCAPS script for performing analysis, as described in Performing analysis
using pyCAPS.

9.2 Creating Geometry using ESP

In our example ∗.csm file setting up the CAPS fidelity is the first step. If multiple bodies exist in the ∗.csm file the
tag, capsIntent, can be used to distinguish what type of analysis the body may be used for. In this example, the
geometry model generated can be used for CFD analysis, as shown:

attribute capsIntent CFD

A typical geometry model can be created and interactively modified using design parameters. These design pa-
rameters are either design- or geometry- based. In this example a two wing configuration is created using following
design parameters.

despmtr series[1,1] 8412.00000
despmtr series2[1,1] 20.00000
despmtr area[1,1] 40.00000
despmtr aspect[1,1] 5.00000
despmtr taper[1,1] 0.50000
despmtr twist[1,1] 15.00000
despmtr lesweep[1,1] 30.00000
despmtr dihedral[1,1] 1.00000

Next, internal CAPS reference attributes are set.

# Set reference values
attribute capsReferenceArea area
attribute capsReferenceChord sqrt(area/aspect)
attribute capsReferenceSpan sqrt(area/aspect)*aspect

After our design parameters are defined they are used to setup other local variables (analytically) for the wing.

set cmean sqrt(area/aspect)
set span cmean*aspect
set sspan span/2
set croot 2*cmean/(1+taper)
set ctip croot*taper
set xtip sspan*tand(lesweep)
set ytip sspan*tand(dihedral)
set ybot -0.1*croot
set ytop +0.2*croot+ytip
set extend 0.02*cmean

Once all design and locale variables are defined, a half span, solid model is created by "ruling" together NACA
series airfoils (following a series of scales, rotations, and translations).

mark
udprim naca Series series

scale croot
udprim naca Series series2

scale ctip
rotatez -twist 0 0
translate xtip ytip -sspan

rule 0
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A full span model is then created by mirroring and joining the half-span model.

# Store half of wing
store HalfWing 0 0

# Restore the half wing
restore HalfWing 0

# Restore and mirror the half wing
restore HalfWing 0

mirror 0 0 1 0

# Combine halfs into a whole
join 0

Once the desired model obtained it needs to be rotated so that it is in the expected aero-coordinated system (y- out
the right wing, x- in the flow direction, and +z- up).

# Get body into a typical aero-system
rotatex 90 0 0

Next, an attribute is then placed in the geometry so that the geometry components may be reference by the FUN3D
AIM.

# Store the wing
store Wing 0 0

# Wing 1 - Restore
restore Wing 0

attribute capsGroup $Wing1

Following the completion of the first wing, a second wing is created and scaled using the store/restore operations.

# Wing 2 - Restore and scale, translate
restore Wing 0

attribute capsGroup $Wing2

scale 0.4
translate 10 0 0

Finally, for three-dimensional CFD analysis with the FUN3D AIM a "farfield" or "bounding box" boundary needs to
be provided. In this example a simple sphere is created and tagged as a farfield boundary using the capsGroup
attribute.

sphere 0 0 0 80
attribute capsGroup $Farfield

9.3 Performing analysis using pyCAPS

The first step in the pyCAPS script is to import the required modules. For this example the following modules are
used,

from __future__ import print_function

try:
import os

except:
print ("Unable to import os module")
raise SystemError

In order to create a new capsProblem the pyCAPS module also needs to be imported; on Linux and OSx this is the
pyCAPS.so file, while on Windows it is the pyCAPS.pyd file. For convenience, it is recommended that the path to
this file is added to the environmental variable PYTHONPATH.

from pyCAPS import capsProblem
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Similarly, local variables used throughout the script may be defined.

workDir = "FUN3DTetgenAnalysisTest"

Once the required modules have been loaded, a capsProblem can be instantiated.

myProblem = capsProblem()

Using the loadCAPS() function, the desired geometry file is then loaded into the problem.

myGeometry = myProblem.loadCAPS("./csmData/cfdMultiBody.csm")

Any design parameters available in ∗.csm file are also available within the pyCAPS script. The following snippet
changes the despmtrs "area" which will force a rebuild of the geometry that FUN3D will now use.

myGeometry.setGeometryVal("area", 50)

When loading each analysis tools the desired capsIntent needs to be specified. Optionally this may be set at the
problem level as follows to avoid redundancy.

myProblem.capsIntent = "CFD"

A typical high-fidelity CFD analysis requires meshing AIMs to be coupled to the analysis AIM (unless a mesh already
exists).For surface meshing, the face tessellation from the ESP geometry can be directly used as the surface mesh.
If the face tessellation is not satisfactory, a surface meshing AIM may be coupled to the volume meshing AIM. In
this example, the face tessellation is used as the surface mesh and TetGen for volumetric mesh generation. The
TetGen AIM in loaded using the following

meshAIM = myProblem.loadAIM(aim = "tetgenAIM",
analysisDir = workDir)

Once loaded, the appropriate inputs to the mesh generator required to generate mesh with adequate mesh quality
are set. Refer TetGen AIM documentation for the list of all the available options.

# Set new EGADS body tessellation parameters
meshAIM.setAnalysisVal("Tess_Params", [.05, 0.01, 20.0])

# Preserve surface mesh while messhing
meshAIM.setAnalysisVal("Preserve_Surf_Mesh", True)

After options are set aimPreAnalysis needs to be executed. For example,

meshAIM.aimPreAnalysis()

In the case of the TetGen AIM, TetGen was already ran during preAnalysis. To make the volumetric mesh available
to other AIMs, aimPostAnalysis just needs to be additionally implemented.

meshAIM.aimPostAnalysis()

Next the FUN3D AIM needs to be loaded. In this example the previously loaded TetGen AIM is linked as a parent.
This allows the volume mesh generated by the TetGen AIM to be inherited (see AIM Shareable Data) by the FUN3D
AIM, in which case FUN3D will write out the mesh in its preferred, native format.

# Load FUN3D aim - child of Tetgen AIM
fun3dAIM = myProblem.loadAIM(aim = "fun3dAIM",

altName = "fun3d",
analysisDir = workDir, parents = meshAIM.aimName)
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Once loaded analysis parameters specific to FUN3D need to be set (see AIM Inputs). These parameters are
automatically converted into FUN3D specific format and transferred into the FUN3D configuration file. One will note
in the following snippet the instance of the AIM is referenced in two different manners: 1. Using the returned object
from load call and 2. Using the "altName" name reference in the analysis dictionary. While syntactically different,
these two forms are essentially identical.

# Set project name
fun3dAIM.setAnalysisVal("Proj_Name", "fun3dTetgenTest")

fun3dAIM.setAnalysisVal("Mesh_ASCII_Flag", False)

# Set AoA number
myProblem.analysis["fun3d"].setAnalysisVal("Alpha", 1.0)

# Set Mach number
myProblem.analysis["fun3d"].setAnalysisVal("Mach", 0.5901)

# Set equation type
fun3dAIM.setAnalysisVal("Equation_Type","compressible")

# Set Viscous term
myProblem.analysis["fun3d"].setAnalysisVal("Viscous", "inviscid")

# Set number of iterations
myProblem.analysis["fun3d"].setAnalysisVal("Num_Iter",10)

# Set CFL number schedule
myProblem.analysis["fun3d"].setAnalysisVal("CFL_Schedule",[0.5, 3.0])

# Set read restart option
fun3dAIM.setAnalysisVal("Restart_Read","off")

# Set CFL number iteration schedule
myProblem.analysis["fun3d"].setAnalysisVal("CFL_Schedule_Iter", [1, 40])

# Set overwrite fun3d.nml if not linking to Python library
myProblem.analysis["fun3d"].setAnalysisVal("Overwrite_NML", True)

Along the same lines of setting the other input values the "Boundary_Condition" tuple is used to set the boundary
conditions (CFD Boundary Conditions). These boundary tags (which reference capsGroup attributes in the ∗.csm
file) and associated boundary conditions are converted into FUN3D specific boundary conditions and set in the
FUN3D configuration file.

inviscidBC1 = {"bcType" : "Inviscid", "wallTemperature" : 1}
inviscidBC2 = {"bcType" : "Inviscid", "wallTemperature" : 1.2}
fun3dAIM.setAnalysisVal("Boundary_Condition", [("Wing1", inviscidBC1),

("Wing2", inviscidBC2),
("Farfield","farfield")])

Again, after all desired options are set aimPreAnalysis needs to be executed.

At this point the required files necessary run FUN3D should have be created and placed in the specified analysis
working directory. Next FUN3D needs to executed either through its Python interface module (not shown) or an OS
system call such as,

print ("\n\nRunning FUN3D......")
currentDirectory = os.getcwd() # Get our current working directory

os.chdir(fun3dAIM.analysisDir) # Move into test directory

os.system("nodet_mpi --animation_freq -1 --write_aero_loads_to_file> Info.out"); # Run fun3d via system
call

os.chdir(currentDirectory) # Move back to top directory

After FUN3D is finished running aimPostAnalysis needs to be executed.

fun3dAIM.aimPostAnalysis()

Finally available AIM outputs (see AIM Outputs) may be retrieved, for example:
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print ("Total Force - Pressure + Viscous")
# Get Lift and Drag coefficients
print ("Cl = " , fun3dAIM.getAnalysisOutVal("CLtot"),

"Cd = " , fun3dAIM.getAnalysisOutVal("CDtot"))

# Get Cmx, Cmy, and Cmz coefficients
print ("Cmx = " , fun3dAIM.getAnalysisOutVal("CMXtot"),

"Cmy = " , fun3dAIM.getAnalysisOutVal("CMYtot"),
"Cmz = " , fun3dAIM.getAnalysisOutVal("CMZtot"))

# Get Cx, Cy, Cz coefficients
print ("Cx = " , fun3dAIM.getAnalysisOutVal("CXtot"),

"Cy = " , fun3dAIM.getAnalysisOutVal("CYtot"),
"Cz = " , fun3dAIM.getAnalysisOutVal("CZtot"))

print ("Pressure Contribution")
# Get Lift and Drag coefficients
print ("Cl_p = " , fun3dAIM.getAnalysisOutVal("CLtot_p"),

"Cd_p = " , fun3dAIM.getAnalysisOutVal("CDtot_p"))

# Get Cmx, Cmy, and Cmz coefficients
print ("Cmx_p = " , fun3dAIM.getAnalysisOutVal("CMXtot_p"),

"Cmy_p = " , fun3dAIM.getAnalysisOutVal("CMYtot_p"),
"Cmz_p = " , fun3dAIM.getAnalysisOutVal("CMZtot_p"))

# Get Cx, Cy, and Cz, coefficients
print ("Cx_p = " , fun3dAIM.getAnalysisOutVal("CXtot_p"),

"Cy_p = " , fun3dAIM.getAnalysisOutVal("CYtot_p"),
"Cz_p = " , fun3dAIM.getAnalysisOutVal("CZtot_p"))

print ("Viscous Contribution")
# Get Lift and Drag coefficients
print ("Cl_v = " , fun3dAIM.getAnalysisOutVal("CLtot_v"),

"Cd_v = " , fun3dAIM.getAnalysisOutVal("CDtot_v"))

# Get Cmx, Cmy, and Cmz coefficients
print ("Cmx_v = " , fun3dAIM.getAnalysisOutVal("CMXtot_v"),

"Cmy_v = " , fun3dAIM.getAnalysisOutVal("CMYtot_v"),
"Cmz_v = " , fun3dAIM.getAnalysisOutVal("CMZtot_v"))

# Get Cx, Cy, and Cz, coefficients
print ("Cx_v = " , fun3dAIM.getAnalysisOutVal("CXtot_v"),

"Cy_v = " , fun3dAIM.getAnalysisOutVal("CYtot_v"),
"Cz_v = " , fun3dAIM.getAnalysisOutVal("CZtot_v"))

results in,

Total Force - Pressure + Viscous
Cl = 0.671595 Cd = 0.517818
Cmx = -0.002830832 Cmy = -1.342669 Cmz = -0.0020397
Cx = 0.5060182 Cy = -0.004986118 Cz = 0.6805299
Pressure Contribution
Cl_p = 0.671595 Cd_p = 0.517818
Cmx_p = -0.002830832 Cmy_p = -1.342669 Cmz_p = -0.0020397
Cx_p = 0.5060182 Cy_p = -0.004986118 Cz_p = 0.6805299
Viscous Contribution
Cl_v = 0.0 Cd_v = 0.0
Cmx_v = 0.0 Cmy_v = 0.0 Cmz_v = 0.0
Cx_v = 0.0 Cy_v = 0.0 Cz_v = 0.0

When finally finished with the script, the open CAPS problem should be closed.

myProblem.closeCAPS()

9.4 Executing pyCAPS script

Issuing the following command executes the script:

python fun3d_and_Tetgen_PyTest.py

Below are representative result images generated by the above script:
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Figure 1: FUN3D coupled to TetGen example
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