Bob Haimes
haimes @mit.edu

Aerospace Computational Design Lab
Department of Aeronautics & Astronautics
Massachusetts Institute of Technology

u]
]
i
N
0
Q

®P Engineering Sketch Pad (ESP)

ul

pyCAPS

ESP K

A

User

MDO
Framework
Sorcer
OpenMDAO
ModelCenter

Bob Haimes

v

ESP Concepts

Y
Geometry - >
Subsystem Geometry
» Database
OpenCSM
EGADS Tm——
Computa- / ¢
s| tional
Analysis _ Analysis
Prototype f¢—s| Analysis | | Interface
Syntheses| |Subsystem[* | & Meshing
(CAPS) \ (AIM)
API 1 A
M~
Problem
Database
N~
P ——
Analysis Analysis
tools I/O Files

28 March 2017

2/40

@ ESP’s Geometry Subsystem Architecture
e EGADS Geometry
e EGADS Topology
e EGADS Attribution
e OpenCSM Terminology

@ ESP’s Analysis Subsystem — CAPS

o CAPS Definitions
e CAPS Objects
e CAPS Analysis Interface & Meshing (AIM)

u]
@
I
n
it

12N Ge

Defined
Components

Database
*.Csm

OpenCASCADE

oA

P EGADS Geometry Objects

@ 3D surfaces of 2 parameters [u, V|

o Types: Plane, Spherical, Cylindrical, Revolution, Toriodal, Trimmed, Bezier, BSpline, Offset,

Conical, Extrusion

@ All types abstracted to [x,y,z| = f(u,v)

pcurve — Parameter Space Curves
@ 2D curves in the Parametric space [u, v] of a surface
o Types: Line, Circle, Ellipse, Parabola, Hyperbola, Trimmed, Bezier, BSpline, Offset

@ All types abstracted to [u, v] = g(r)

|

curve
@ 3D curve — single running parameter ()

@ Same types as pcurve but abstracted to [x,y, z] = g(7)

vy

Bob Haimes ESP Concepts 28 March 2017 51740

P EGADS Topology

Boundary Representation — BRep

Top | Topological Entity | Geometric Entity | Function

Down
Model
Body Solid, Sheet, Wire
Shell
Face surface (x,y,2) = f(u,v)
Loop
Bottom | £48e curve (x,y,2) = g(1)
Up Node point

@ Nodes that bound Edges may not be on underlying curves

e Edges in the Loops that trim the Face may not sit on the surface
hence the use of pcurves

Bob Haimes ESP Concepts 28 March 2017 6/40

P EGADS Topology Objects

Node
e Contains a point — [, y, 7]
@ Types: none

|

Edge

@ Has a 3D curve (if not Degenerate)

@ Has a t range (2, tO t,4r, Where 2, < tnay)
Note: The positive orientation is going from t,,;, to #,,.,

@ Has a Node for t,,;, and for #,,,, — can be the same Node

o Types: ONENODE - periodic, TWONODE - normal,
DEGENERATE - single Node, ¢ range used for the pcurve

t = Lyn t = Lo

—0 O—
N1 N2

Bob Haimes ESP Concepts 28 March 2017

7140

P EGADS Topology Objects — Loops

Loop — without a reference surface

@ Free standing connected Edges that can be used in a non-manifold
setting (for example in WireBodies)

© A list of connected Edges associated with a Plane (which does not
require pcurves)

@ An ordered collection of Edge objects with associated senses that
define the connected Wire/Contour/Loop

@ Segregates space by maintaining material to the left of the
running Loop (or traversed right-handed pointing out of the
intended volume)

@ No Edges should be Degenerate

@ Types: OPEN or CLOSED (comes back on itself)

v

Bob Haimes ESP Concepts 28 March 2017 8740

Loop — without a reference surface

Ny E;S N3
+| E
+
Ny E N
Open: +E| +E, -E; Closed: +E| +E, -E5 -E4

28 March 2017

9/40

P EGADS Topology Objects — Loops

Loop — with a reference surface

@ Collections of Edges (like without a surface) followed by a
corresponding collection of pcurves that define the [u, v] trimming
on the surface

@ Degenerate Edges are required when the [u, v] mapping collapses
like at the apex of a cone (note that the pcurve is needed to be
fully defined using the Edge’s range)

@ An Edge may be found in a Loop twice (with opposite senses)
and with different pcurves. For example a closed cylindrical
surface at the seam — one pcurve would represent the beginning of
the period where the other is the end of the periodic range.

@ Types: OPEN or CLOSED (comes back on itself)

Bob Haimes ESP Concepts 28 March 2017 10740

Loop — with a reference surface (CLOSED)

dotted lines indicate associated pcurves

nax
28 March 2017 11/40

&P EGADS Topology Objects — Face

Face

@ A surface bounded by one or more Loops with associated senses

@ Only one outer Loop (sense = 1) and any number of inner Loops
(sense = -1). Note that under very rare conditions a Loop may be
found in more than 1 Face — in this case the one marked with
sense = +/- 2 must be used in a reverse manner.

o All Loops must be CLOSED
@ Loop(s) must not contain reference geometry for Planar surfaces
@ If the surface is not a Plane then the Loops reference Object must
match that of the Face
@ Type is the orientation of the Face based on surface’s U ® V:
o SFORWARD or SREVERSE when the orientations are opposed

Note that this is coupled with the Loop’s orientation (i.e. an outer Loop traverses the Face in a
right-handed manner defining the outward direction)

Bob Haimes ESP Concepts 28 March 2017 12740

&P EGADS Topology Objects — Face

Face

@ An outer Loop traverses the Face in a right-handed manner
@ Inner Loops trim the Face in a left-handed manner
@ Material is to the left of the Edges going around the Loops

surface normal
is out of the page

Single Outer Loop — right handed/counterclockwise: +E; +E; -E5 -E4

Bob Haimes ESP Concepts 28 March 2017 13740

Moo 0N
. -
! I
! |
! |
! |
! |
! |
Ey |\~ +| E2
| |
! |
! |
! |
! |
L . K
O >0
Ny E N>

@ Outer Loop — right handed/counterclockwise: +E;| +E; -E5 -E4
@ Inner Loop — left handed/clockwise: -E5 -E¢

u]
@
I
n
it

12N Ge

T i
1 1
| |
| |
| |
| |
| |
E Ey |, pcs pex || By
1
| |
1 1
1 1
[! |
|
\Q—/ CI________pfl _______ _):\O V= Vi
Np E; Ny
Ny u=0 u=2m

Unrolled periodic cylinder Face

Single Outer Loop — right handed/counterclockwise:

+E, +E, -E5 -E»

=] F

12N Ge

o
S
N2 m
o
Q\w ||||| 53]
" ||||||||| \MN% it
e | : T
IS ! _
s | _
s _
©lig "
Q& _ ﬁ
! :
[! m.._ EI.
S _ |
| 1
| 1
1 o |
3 1
o= E _ :
S " O
&y o1 E
_ 3
s 2
p—
g
)

Ey4

O
Ny

E;

@ Outer Loop — right handed/counterclockwise: +E; +E, -E5 -E,4
@ Inner Loop #1 — left handed/clockwise: -Es -Eg

@ Inner Loop #2 — left handed/clockwise: +E; +Eg

’\)Nz

[m]

F

N6('\

Eg

N:
Q 5

E7

O
Ny

Single Outer Loop — right handed/counterclockwise:
+E, +E, +E5 -E> +E4 +E5 -E¢ -E
Note: pcurve is the same for both sides of E;

=] F

12N Ge

P EGADS Topology Objects

Shell

@ A collection of one or more connected Faces that if CLOSED
segregates regions of 3-Space

@ All Faces must be properly oriented

@ Non-manifold Shells can have more than 2 Faces sharing an Edge

@ Types: OPEN (including non-manifold) or CLOSED

Face #1 Loop: +E| +E; -E3 -Ey
Face #2 Loop: +E5 +E¢ -E7 -E>

Bob Haimes ESP Concepts 28 March 2017

19740

P EGADS Topology Objects

@ Container used to aggregate Topology
@ Connected to support non-manifold collections at the Model level

@ Owns all the Objects contained within

o A WIREBODY type contains a single Loop

o A FACEBODY contains a single Face — IGES import

o A SHEETBODY contains a single Shell which can be either
non-manifold or manifold (though usually a manifold Body of this
type is promoted to a SOLIDBODY)

o SOLIDBODY:

@ A manifold collection of one or more CLOSED Shells with
associated senses

o There may be only one outer Shell (sense = 1) and any number of
inner Shells (sense = -1)

o Edges (except DEGENERATE) found exactly twice (sense = 1)

Bob Haimes ESP Concepts 28 March 2017 20/40

Simple SOLIDBODY example

8 Nodes, 12 Edges, 6 Loops and 6 Faces
~ BobHaimes

[} (=] =
ESP Concepts

na
28 March 2017 21/40

P EGADS Topology Objects

Manifold (SOLID) vs. Non-manifold (SHEET) Bodies

non-manifold manifold manifold

@ A collection of Bodies — becomes the Owner of contained Objects
@ Returned by SBO & Sew Functions
@ Read and Written by EGADS

Bob Haimes ESP Concepts 28 March 2017 22/40

y

Body Examples
— /
T >l@ -

Wire Bodies

Face (Sheet) Bodies *

Sheet Bodies

Solid Body
* OpenCSM treats all FACEBODY's as SHEETBODY s
~ BobHaimes ESPConcepts

nax
28 March 2017 23740

®P EGADS Objects — Attribution

o Attributes — metadata consisting of name/value pairs
o Unique name — no spaces
o A single type: Integer *, Real, String, CSys (Coordinate Systems)
o A length (not for strings)
@ Objects
e Any EGADS Object can have multiple Attributes (each with a
unique name)
e Only Attributes on Topological Objects are copied and are
persistent (saved)
@ SBO & Intersection Functions
e Unmodified Topological Objects maintain their Attributes
o Face Attributes are carried through to the resultant fragments
o All other Attributes are lost

@ CSys Attributes are modified through Transformations

* OpenCSM supports only Real numeric attributes (integer values are converted)

Bob Haimes ESP Concepts 28 March 2017 24740

P OpenCSM Terminology

OpenCSM (Constructive Solid Modeling) is an ESP component that:

allows for the build of Parametric Models

uses a stack-like language specifically targeted for:

e building geometries that exactly fit the analysis/meshing at-hand

e building multidisciplinary geometries, which share parameters and
geometric entities

o consistently fagging resultant geometry with attributes

stack contains EGADS Body objects and/or Nodes
provides “design velocities” (Parametric Sensitivities)

(]

@ can access custom CAD-like “features” (operations)
UDPs, UDFs, and UDCs

Bob Haimes ESP Concepts 28 March 2017 25740

P OpenCSM Terminology

Solid Modeling

@ Construction process guarantees that built models can be
realizable SOLIDs

e watertight representation needed for 3D grid generators
o WIREBODYs and SHEETBODYs are supported where needed

@ Parametric models are defined in terms of:
o Feature Tree

e “recipe” for the construction of geometry
@ each “branch” specifies a stack operation
o Design Parameters
e “values” (dimension/sizing) that together describe a particular
instance of the resultant build
@ can be scalar, vector or arrays
@ can have an associated “velocity”

e Internal (driven) variables — in the form of mathematical
expressions that depend on Design Parameters

Bob Haimes ESP Concepts 28 March 2017 26/40

€P OpenCSM — Customized Features

User Defined Primitives

e UDP geometry construction can be written either top-down,
bottom-up or both
@ UDPs are EGADS applets

e create and return EGADS Body or Node Objects

e has access to the entire suite of methods provided by EGADS

o written in C, C++, or FORTRAN, are compiled and built into
Shared Objects/DLLs

@ UDPs are coupled into ESP dynamically at run time

| \

User Defined Functions
UDFs are like UDPs except:

@ can pull items off of the stack

@ are not required to return EGADS Body or Node Objects

vy

Bob Haimes ESP Concepts 28 March 2017 271740

@ UDCs can be thought of as “macros”
and are found as separate files (from the .csm file)
@ UDC:s create zero or more stack entries

@ UDC:s are written as CSM-like scripts

like routines, UDCs have interface syntax and specific internal
variable scoping

ESP Concepts

nax
28 March 2017 28 /40

...to be supplied by John

<ps Computational Aircraft Prototype Synthesis

Caps

., e

CAPS Goals
o Augment/fix MDO frameworks

@ Provide the tools & techniques for generalizing analysis coupling
o multidisciplinary coupling: aeroelastic, FSI
o multi-fidelity coupling: conceptual and preliminary design

@ Provide the tools & techniques that directly deal with geometry

CAPS Access
@ The main entry point into the CAP S system is the C/C++ API

|

@ pyCAPS: Python interface for testing, demos and training

vy

Bob Haimes ESP Concepts 28 March 2017 30740

<ps ESP’s Analysis Subsystem — CAP S

Geometry
Subsystem
OpenCSM
EGADS
Computa- / T
s
Analysis Interface
) Prototype [€= > Meshi
PYCAPS = syntheses Subsystem * 7| & (Aﬁfw)‘ng
(CAPS) =
Executive \ ¢_
Mee______—
MDO SERRY Problem
Framework Database
— ~—
'.l:
Sorcer
ModelCenter . .
...y Analysis Analysis
Clpaathionor 8 tools /O Files

Bob Haimes ESP Concepts 28 March 2017 31740

<ps CAPS Definitions

Problem Object

The Problem is the top-level container for a single mission. It maintains a single set
of interrelated geometric models, analyses to be executed, connectivity and data
associated with the run(s), which can be both multi-fidelity and multidisciplinary.
There can be multiple Problems in a single execution of CAPS and each Problem is
designed to be thread safe allowing for multi-threading of CAPS at the highest level.

Value Object

A Value Object is the fundamental data container that is used within CAPS. It can
represent inputs to the Analysis and Geometry subsystems and outputs from both.
Also Value Objects can refer to mission parameters that are stored at the top-level of
the CAPS database. The values contained in any input Value Object can be bypassed
by the linkage connection to another Value (or DataSet) Object of the same shape.

Bob Haimes ESP Concepts 28 March 2017 32740

<ps CAPS Definitions

Analysis Object

The Analysis Object refers to an instance of running an analysis code. It holds the
input and output Value Objects for the instance and a directory path in which to
execute the code (though no explicit execution is initiated). Multiple various
analyses can be utilized and multiple instances of the same analysis can be handled
under the same Problem.

| A

Bound Object

A Bound is a logical grouping of BRep Objects that all represent the same entity in
an engineering sense (such as the outer surface of the wing). A Bound may include
BRep entities from multiple Bodies; this enables the passing of information from one
Body (for example, the aero OML) to another (the structures Body).

Dimensionally:
@ 1D - Collection of Edges
@ 2D - Collection of Faces

v

Bob Haimes ESP Concepts 28 March 2017 33740

<ps CAPS Definitions

VertexSet Object

A VertexSet is a connected or unconnected group of locations at which discrete
information is defined. Each connected VertexSet is associated with one Bound and a
single Analysis. A VertexSet can contain more than one DataSet. A connected
VertexSet can refer to 2 differing sets of locations. This occurs when the solver stores
its data at different locations than the vertices that define the discrete geometry (i.e.
cell centered or non-isoparametric FEM discretizations). In these cases the solution
data is provided in a different manner than the geometric.

| A

DataSet Object

A DataSet is a set of engineering data associated with a VertexSet. The rank of a
DataSet is the (user/pre)-defined number of dependent values associated with each
vertex; for example, scalar data (such as pressure) will have rank of one and vector
data (such as displacement) will have a rank of three. Values in the DataSet can
either be deposited there by an application or can be computed (via evaluations, data
transfers or sensitivity calculations).

4

Bob Haimes ESP Concepts 28 March 2017 34740

<@ps CAPS Object Hierarchy

Object Internals

All Objects can have:

@ a SubType

@ children in the form of CAP S Objects
Note: Body Objects are EGADS Objects (egos)

Problem Object — SubTypes: Parametric or Static (no Value Objects)

| Children Objects | SubTypes |

capsValue Geometryln, GeometryOut,
Branch, Parameter, User

capsAnalysis
capsBound

Bob Haimes ESP Concepts 28 March 2017 35740

Analysis Object

| Children Objects | SubTypes
| capsValue

Bound Object

|
| AnalysisIn, AnalysisOut |

| Children Objects | SubTypes
| capsVertexSet

VertexSet Object

|
| Connected, Unconnected |

capsDataSet

User, Analysis, Interpolate,
Conserve, Builtin, Sensitivity
=] (=]
~ BobHaimes ESPConcepts

| Children Objects | SubTypes

nax
28 March 2017 36/40

«@ps CAPS Intent

This value reflects the “Intention” that will be used for a specific analysis. When a
geometric entity (a Body) is constructed it should have the Attribute “capsIntent”
assigned. The assignment along with the EGADS Body Type allows CAPS the ability
to filter the Bodies available for any Analysis.

Intent | Reference | Body Type | Reference
0 | ALL 0 | ALL
32 | WAKE 20 | NODE
64 | STRUCTURE 6 | WIREBODY
128 | LINEARAERO 7 | FACEBODY
256 | FULLPOTENTIAL 8 | SHEETBODY
512 | CFD 9 | SOLIDBODY

The Body filtering is performed by a “bit-orred” combination of the Intent and the Body Type. For
example: if you were looking for a BEM you would specify (SHEETBODY |STRUCTURE), which would
be 72. If you wanted all SHEETBODY s regardless of analysis it would be (SHEETBODY |ALL), or simply
the value 8. And if you wanted any body marked as structure the it would be (ALL|STRUCTURE), 64 in
this case.

Bob Haimes ESP Concepts 28 March 2017 37740

<«@ps Other Reserved CAPS Attribute names

capsLength

This string Attribute must be applied to an EGADS Body to indicate the length units
used in the geometric construction.

|

capsBound

This string Attribute must be applied to EGADS BRep Objects to indicate which
CAPS Bound(s) are associated with the geometry. A entity can be assigned to
multiple Bounds by having the Bound names separated by a semicolon. Face

CEINTS

examples could be “Wing”, “Wing;Flap”, “Fuselage”, and etc.

Note: Bound names should not cross dimensional lines.

|

capsGroup

This string Attribute can be applied to EGADS BRep Objects to assist in grouping
geometry into logical sets. A geometric entity can be assigned to multiple groups in
the same manner as the capsBound attribute.

Note: CAPS does not internally use this, but is suggested of classifying geometry.

Bob Haimes ESP Concepts 28 March 2017 38740

<P Analysis Interface & Meshing (AIM)

CAPS AlIMs are dynamically loaded EGADS applets, which are
similar in concept to OpenCSM’s UDPs and UDFs

@ Analysis identification — at AIM registration
e number of inputs expected & number of possible outputs
e geometric intention(s) expected

@ Analysis input generation — Pre

e supplies Analysis Subsystem with information required to generate
the input for the analysis (and optionally meshing)

o format for the input file
@ possibly attribute BRep with geometric-based information
e preparing the BRep data to be used for grid generation

o plugin deals with populating the discrete BRep data from the mesh
(the CAPS bound object)

Deals with the idiosyncrasies and peculiarities of each Analysis

Bob Haimes ESP Concepts 28 March 2017 39740

<P Analysis Interface & Meshing (AIM)

@ Analysis output parsing — Post
o plugin deals with populating bound-based scalar, vector and/or
state vector data from the solver run
e reads or calculates integrated (performance) measures that can be
used as objective functions for optimization
@ Multidisciplinary coupling — when required
e plugin provides functions to use the discrete data to Interpolate
and/or Integrate (consistent with solver)
e plugin provides reverse differentiated Interpolate and Integrate
functions to facilitate conservative transfer optimization
e automatically initiated in a lazy manner when the data transfer is
requested

Bob Haimes ESP Concepts 28 March 2017 40/40

