
Engineering Sketch Pad (ESP)

Training Session 4

CSM Language (1)

John F. Dannenhoffer, III
jfdannen@syr.edu
Syracuse University

Bob Haimes
haimes@mit.edu

Massachusetts Institute of Technology

updated for v1.18

Dannenhoffer ESP Training - Session 4 15 June 2020 1 / 34

Overview

Format of .csm file

Special characters

Numbers

Parameters

Types
Names
Dimensions
Lower and Upper Bounds

Expressions

Numeric
String

Reading Help File

CSM File Editor

Dannenhoffer ESP Training - Session 4 15 June 2020 2 / 34

Opening Thoughts

All configuration information is contained in .csm (or
possibly .udc) files

.csm files are plain ASCII text that are readable by humans
because they are ASCII files, they can either be written
directly by humans (using any text editor) or by other
programs

When you build a configuration using the ESP user interface,
you are actually building a .csm file

Using the interface can be effective for beginning users who
are building small models

Once a user gets experience with ESP, most of the models are
created by “typing” a .csm directly

Dannenhoffer ESP Training - Session 4 15 June 2020 3 / 34

Format of the .csm file (1)

The .csm file contains a series of statements.

If a line contains a hash (#), all characters starting at the
hash are ignored.

If a line contains a backslash (\), all characters starting at
the backslash are ignored and the next line is appended;
spaces at the beginning of the next line are treated normally.

All statements begin with a keyword (described below) and
must contain at least the indicated number of arguments.

The keywords may either be all lowercase or all
UPPERCASE.

Any CSM statement can be used in a .csm file except the
INTERFACE statement.

Dannenhoffer ESP Training - Session 4 15 June 2020 4 / 34

Format of the .csm file (2)

Blocks of statements must be properly nested. The Blocks
are bounded by

PATBEG/PATEND

IFTHEN/ELSEIF/ELSE/ENDIF

SOLBEG/SOLEND

CATBEG/CATEND

Extra arguments in a statement are discarded. If one wants
to add a comment, it is recommended to begin it with a hash
(#) in case optional arguments are added in future releases.

Any statements after an END statement are ignored.

hint: if debugging, consider THROWing an error instead to
avoid unclosed Blocks

All arguments must not contain any spaces or must be
enclosed in a pair of double quotes (for example, "a + b").

Dannenhoffer ESP Training - Session 4 15 June 2020 5 / 34

Format of the .csm file (3)

Parameters are evaluated in the order that they appear in the
file, using MATLAB-like syntax (see ’Expression rules’
below).

During the build process, OpenCSM maintains a
last-in-first-out (LIFO) “Stack” that can contain Bodys and
Sketches.

The .csm statements are executed in a stack-like way, taking
their inputs from the Stack and depositing their results onto
the Stack.

The default name for each Branch is Brch xxxxxx, where
xxxxxx is a unique sequence number.

Dannenhoffer ESP Training - Session 4 15 June 2020 6 / 34

Special characters (1)

introduces comment

" ignore spaces until following "

\ ignore this and following characters and

concatenate next line

<space> separates arguments in .csm file (except

between " and ")

0-9 digits used in numbers and in names

A-Z a-z letters used in names

_ : @ characters used in names (see rule for names)

. decimal separator (used in numbers),

introduces dot-suffixes (in names)

, separates function arguments and row/column

in subscripts

; multi-value item separator

Dannenhoffer ESP Training - Session 4 15 June 2020 7 / 34

Special characters (2)

() groups expressions and function arguments

[] specifies subscripts in form [row,column] or [index]

{ } < > characters used in strings

+ - * / ^ arithmetic operators

$ as first character, introduces a string that is

terminated by end-of-line or un-escaped plus,

comma, or open-bracket

@ as first character, introduces @-parameters

’ used to escape comma, plus, or open-bracket

within strings

! if first character of implicit string, ignore

$! and treat as an expression

| cannot be used (reserved for OpenCSM internals)

~ cannot be used (reserved for OpenCSM internals)

& cannot be used (reserved for OpenCSM internals)

Dannenhoffer ESP Training - Session 4 15 June 2020 8 / 34

Numbers

Start with a digit or decimal (.)

Followed by zero or more digits and/or decimals (.)

There can be at most one decimal in a number

Optionally followed by an e, e+, e-, E, E+, or E-

If there is an e or E, it must be followed by one or more digits

If numbers are in a list, the elements are separated by a
semicolon (;)

Dannenhoffer ESP Training - Session 4 15 June 2020 9 / 34

Types of Parameters (1)

Constant Parameter

values are declared in a CONPMTR statement
follows all rules for DESPMTRs
are usable anywhere

Design Parameter

must contain one or more numbers
if multi-valued, must be first DIMENSIONed
values are declared in a DESPMTR statement
can contain lower- and upper bounds, specified in LBOUND

and UBOUND statements
are only usable in .csm file (unless the .udc file has
INTERFACE . ALL in its preamble)
sensitivities can be computed for Design Parameters

Dannenhoffer ESP Training - Session 4 15 June 2020 10 / 34

Types of Parameters (2)

Configuration Parameter

must contain one or more numbers
if multi-valued, must be first DIMENSIONed
values are declared in a CFGPMTR statement
can contain lower- and upper bounds, specified in LBOUND

and UBOUND statements
are only usable in .csm file (unless the .udc file has
INTERFACE . ALL in its preamble)
sensitivities CANNOT be computed for Configuration
Parameters

Dannenhoffer ESP Training - Session 4 15 June 2020 11 / 34

Types of Parameters (3)

Local Variables

can contain one or more numbers or a character string
if multi-valued, must first be DIMENSIONed
is created by a SET or PATBEG statement
can be an @-parameter (described below)
are only usable in .csm or .udc file in which it was defined
(unless the .udc file has INTERFACE . ALL in its preamble)

Output Parameters

declared in a OUTPMTR statement
refers to any local variable whose value is available outside
ESP (such as to CAPS)

Dannenhoffer ESP Training - Session 4 15 June 2020 12 / 34

Valid Parameter Names

Start with a letter, colon (:), or at-sign (@)

Contains letters, digits, at-signs (@), underscores (),
and colons (:)

Contains fewer than 32 characters

Names that start with an at-sign cannot be set by a CONPMTR,
DESPMTR, CFGPMTR, SET, or PATBEG statement

When listed in ESP, are sub-grouped based upon the colons
(:)

Dannenhoffer ESP Training - Session 4 15 June 2020 13 / 34

Dot-suffixes

If a name has a dot-suffix, a property of the parameter (and
not its value) is returned
x.nrow number of rows in x

x.ncol number of columns in x

x.size number of elements or characters in x

x.sum sum of elements in x

x.norm RMS norm of elements in x

x.min minimum value in x

x.max maximum value in x

Example:

DIMENSION myvar 2 3 1

DESPMTR myvar "1; 2; 3;\

4; 5; 6"

myvar.nrow returns 2
myvar.sum returns 21

Dannenhoffer ESP Training - Session 4 15 June 2020 14 / 34

Accessing Element of an Array

Basic format is: name[irow,icol] or name[ielem]

Name must follow rules above

irow, icol, and ielem must be valid expressions

irow, icol, and ielem start counting at 1

For 2D arrays, either name[irow,icol] or name[ielem] be
used

Values are stored across rows ([1,1], [1,2], ..., [2,1], ...)

Dannenhoffer ESP Training - Session 4 15 June 2020 15 / 34

@-parameters (1)

Every time a Body gets created, or after a SELECT statement,
readable local variables are set

Dannenhoffer ESP Training - Session 4 15 June 2020 16 / 34

@-parameters (2)

body face edge node <- last SELECT

@seltype -1 2 1 0 selection type (0=node,1=edge,2=face)

@selbody x - - - current Body

@sellist -1 x x x list of Nodes/Edges/Faces

@nbody x x x x number of Bodys

@ibody x x x x current Body

@nface x x x x number of Faces in @ibody

@iface -1 x -1 -1 current Face in @ibody

@nedge x x x x number of Edges in @ibody

@iedge -1 -1 x -1 current Edge in @ibody

@nnode x x x x number of Nodes in @ibody

@inode -1 -1 -1 x current Node in @ibody

@igroup x x x x group of current Body

@itype x x x x 0=NodeBody, 1=WireBody,

2=SheetBody, 3=SolidBody

@nbors -1 x - x number of incident Edges

@nbors -1 - x - number of incident Faces

Dannenhoffer ESP Training - Session 4 15 June 2020 17 / 34

@-parameters (3)

@ibody1 -1 x x -1 first element of ’Body’ Attribute in @ibody

@ibody2 -1 x x -1 second element of ’Body’ Attribute in @ibody

@xmin x x * x x-min of bounding box or x at beg of edge

@ymin x x * x y-min of bounding box or y at beg of edge

@zmin x x * x z-min of bounding box or z at beg of edge

@xmax x x * x x-max of bounding box or x at end of edge

@ymax x x * x y-max of bounding box or y at end of edge

@zmax x x * x z-max of bounding box or z at end of edge

@length 0 0 x 0 length of edge

@area x x 0 0 area of face or surface area of body

@volume x 0 0 0 volume of body (if a solid)

@xcg x x x x location of center of gravity

@ycg x x x x

@zcg x x x x

Dannenhoffer ESP Training - Session 4 15 June 2020 18 / 34

@-parameters (4)

@Ixx x x x 0 centroidal moment of inertia

@Ixy x x x 0

@Ixz x x x 0

@Iyx x x x 0

@Iyy x x x 0

@Iyz x x x 0

@Izx x x x 0

@Izy x x x 0

@Izz x x x 0

@signal x x x x current signal code

@nwarn x x x x number of warnings

@edata only set up by EVALUATE statement

@stack Bodys in stack: 0=mark, -1=none

in above table:

x -> value is set

- -> value is unchanged

* -> special value is set (if edge)

0 -> value is set to 0

-1 -> value is set to -1

Dannenhoffer ESP Training - Session 4 15 June 2020 19 / 34

Expression Rules (Valid operators)

Valid operators (in order of precedence):
() parentheses, inner-most evaluated first
func(a,b) function arguments, then function itself
∧ exponentiation (evaluated left to right)
* / multiply and divide (evaluated left to right)
+ - add and subtract (evaluated left to right)

Dannenhoffer ESP Training - Session 4 15 June 2020 20 / 34

String Variables

Contains the sequence of characters starting after a
dollar-sign($) and ending with a space, plus-sign (+), comma
(,), or closed-parenthesis ())

If escaped with an apostrophe (’), can contain a plus-sign
(’+), comma (’,) or closed-parenthesis (’))

for example:

$thisStringContainsAComma(’,’)

returns thisStringContainsAComma(,)

Can never contain a space

Are parsed left-to-right, as is any expression

for example:

SET one 1

SET mystr $thereIsA+one+$inThisString

returns (in mystr) thereIsA1inThisString

Dannenhoffer ESP Training - Session 4 15 June 2020 21 / 34

Functions (1)

pi(x) 3.14159...*x
min(x,y) minimum of x and y
max(x,y) maximum of x and y
sqrt(x) square root of x
abs(x) absolute value of x
int(x) integer part of x (3.5 → 3, −3.5 → −3)

produces derivative=0
nint(x) nearest integer to x

produces derivative=0
ceil(x) smallest integer not less than x

produces derivative=0
floor(x) largest integer not greater than x

produces derivative=0

Dannenhoffer ESP Training - Session 4 15 June 2020 22 / 34

Functions (2)

mod(a,b) modulus(a/b), with same sign as a and b≥0
sign(test) returns -1, 0, or +1

produces derivative=0
exp(x) exponential of x
log(x) natural logarithm of x
log10(x) common logarithm of x

Dannenhoffer ESP Training - Session 4 15 June 2020 23 / 34

Functions (3)

sin(x) sine of x (in radians)
sind(x) sine of x (in degrees)
asin(x) arc-sine of x (in radians)
asind(x) arc-sine of x (in degrees)
cos(x) cosine of x (in radians)
cosd(x) cosine of x (in degrees)
acos(x) arc-cosine of x (in radians)
acosd(x) arc-cosine of x (in degrees)

Dannenhoffer ESP Training - Session 4 15 June 2020 24 / 34

Functions (4)

tan(x) tangent of x (in radians)
tand(x) tangent of x (in degrees)
atan(x) arc-tangent of x (in radians)
atand(x) arc-tangent of x (in degrees)
atan2(y,x) arc-tangent of y/x (in radians)
atan2d(y,x) arc-tangent of y/x (in degrees)

hypot(x,y) hypotenuse:
√

x2 + y2

hypot3(x,y,z) hypotenuse:
√

x2 + y2 + z2

Dannenhoffer ESP Training - Session 4 15 June 2020 25 / 34

Functions (5)

Xcent(xa,ya,dab,xb,yb) X-center of circular arc
produces derivative=0

Ycent(xa,ya,dab,xb,yb) Y -center of circular arc
produces derivative=0

Xmidl(xa,ya,dab,xb,yb) X-point at midpoint of circular arc
produces derivative=0

Ymidl(xa,ya,dab,xb,yb) Y -point at midpoint of circular arc
produces derivative=0

seglen(xa,ya,dab,xb,yb) length of segment
produces derivative=0

Dannenhoffer ESP Training - Session 4 15 June 2020 26 / 34

Functions (6)

incline(xa,ya,dab,xb,yb) inclination of chord (in degrees)
produces derivative=0

radius(xa,ya,dab,xb,yb) radius of curvature (or 0 for linseg)
produces derivative=0

sweep(xa,ya,dab,xb,yb) sweep angle of circular arc (in degree
produces derivative=0

turnang(xa,ya,dab,...

xb,yb,dbc,xc,yc) turning angle at b (in degrees)
produces derivative=0

dip(xa,ya,xb,yb,rad) acute dip between arc and chord
produces derivative=0

smallang(x) ensures −180 ≤ x ≤ 180

Dannenhoffer ESP Training - Session 4 15 June 2020 27 / 34

Functions (7)

val2str(num,digits) convert num to a string
str2val(string) convert string to a number
findstr(str1,str2) finds location of str2 in str1

(bias-1) or 0 if not found
slice(str,ibeg,iend) substring of str from ibeg

to iend (bias-1)
path($pwd) returns present working directory
path($csm) returns directory of current .csm file
path($root) returns $ESP ROOT
path($file) returns name of .csm file

Dannenhoffer ESP Training - Session 4 15 June 2020 28 / 34

Functions (8)

ifzero(test,ifTrue,ifFalse) if test = 0, return ifTrue,
else return ifFalse

ifpos(test,ifTrue,ifFalse) if test > 0, return ifTrue,
else return ifFalse

ifneg(test,ifTrue,ifFalse) if test < 0, return ifTrue,
else return ifFalse

ifnan(test,ifTrue,ifFalse) if test is NaN, return ifTrue,
else return ifFalse

Dannenhoffer ESP Training - Session 4 15 June 2020 29 / 34

Reading Help File (1)

STORE $name index=0 keep=0

use: stores Group on top of Stack

pops: any

pushes: -

notes: Sketch may not be open

Solver may not be open

$name is used directly (without evaluation)

previous Group in name/index is overwritten

if $name=. then Body is popped off stack

but not actually stored

if $name=.. then pop Bodys off stack back

to the Mark

if $name=... then the stack is cleared

if keep==1, the Group is not popped off stack

cannot be followed by ATTRIBUTE or CSYSTEM

signals that may be thrown/caught:

$insufficient_bodys_on_stack

Dannenhoffer ESP Training - Session 4 15 June 2020 30 / 34

Reading Help File (2)

If argument starts with dollar-sign ($), then the argument is
assumed to be string, and the user does not need to prepend
the argument with a dollar-sign ($)

if an expression is given that should be evaluated (to a string
value), prepend the argument with an exclamation point (!),
as in:

SET i 10

STORE !$ThisIsBody+i+$.

stores the Body in a location named ThisIsBody10.

For arguments that are listed with an equal-sign (=), the
value after the equal sign is the default value

Dannenhoffer ESP Training - Session 4 15 June 2020 31 / 34

CSM File Editor (1)

Started via the button File→Edit:

Dannenhoffer ESP Training - Session 4 15 June 2020 32 / 34

CSM File Editor (2)

Options (on top row) include:

Copy — copy highlighted text into paste-buffer
Cut — copy highlighted text into paste-buffer and remove it
from the file
Paste — copy paste-buffer into .csm file at the cursor
Search — search for text (input is on top line)
Next — search for next occurrence
Prev — search for previous occurrence
Replace — replace one text string with another
. . .

Dannenhoffer ESP Training - Session 4 15 June 2020 33 / 34

CSM File Editor (3)

Options on top row include:

. . .
Comment — if first statement in highlighted region is not a
comment, block comment the whole region. Otherwise, block
un-comment the whole region
Indent — indent the highlighted region
Hint — provide a hint (on the top line) for the statement at
the cursor
Undo — un-do the previous edit
Cancel — leave the editor (and lose your changes)
Save — save the file to disk. If there is only one file in the
session, the configuration is also automatically re-built

Dannenhoffer ESP Training - Session 4 15 June 2020 34 / 34

