
Engineering Sketch Pad (ESP)

Training Session 10

Putting It All Together

John F. Dannenhoffer, III
jfdannen@syr.edu

Syracuse University

Bob Haimes
haimes@mit.edu

Massachusetts Institute of Technology

updated for v1.22

Dannenhoffer ESP Training - Session 10 December 2022 1 / 63

Multi-X Models

During the design of an aircraft, various coupled models are
needed

different disciplines

structures
controls
aerodynamics
. . .

different fidelities

conceptual design
preliminary design
detailed design

There needs to be communication between these models

Dannenhoffer ESP Training - Session 10 December 2022 2 / 63

Computational Aircraft Prototype Syntheses

(CAPS)

In order to support multi-fidelity and multi-disciplinary
analyses, the CAPS program has been developed

funded by the AFRL

CAPS uses geometries (and sensitivities) generated by ESP

CAPS provides interfaces to many analysis programs,
including:

aerodynamics (at various fidelities)
structures (at various fidelities)
. . .

There is a companion training course for CAPS that can be
offered if there is sufficient interest

Dannenhoffer ESP Training - Session 10 December 2022 3 / 63

Multiple Views

One of the strengths of ESP is to be able to have multiple
“views” of a single configuration

tailored to a specific analysis method
driven by a single set of Design Parameters
attributed so that “common” features could be linked
together

Biggest problem is that such models can get very large

break up into nested user-defined compnents (UDCs)

Dannenhoffer ESP Training - Session 10 December 2022 4 / 63

High level UDCs

Control — top level

transport.csm — definition of various “views”
transport init — definition of various components

Views — specific geometric model for a specific AIM,
including necessary CAPS Attributes

viewConcept — conceptual view, useful to understand
interactions
viewVlm — vortex lattic method (such as AVL)
viewCfdInviscid — outer-model line, including deflected
controls, for CFD analyses (such as SU2 or fun3d)
viewCfdViscous — outer-model line, including free-flying
controls, for CFD analyses (such as SU2 or fun3d)
viewBem — built-up element model, for use by structural
solvers (such as ASTROS or NASTRAN)

Dannenhoffer ESP Training - Session 10 December 2022 5 / 63

UDCs for each Component — 1
Does not include any reference to CAPS

Models — geometric models, created by various combinations
of the primitives

wingVlm — cross-sectional cuts
wingCfdInviscis — outer mold line, including deflected
control surfaces
wingCfdViscous — outer mold line, including free-flying
control surfaces
wingBem — built-up element model, built by intersecting a
waffle with the wing shape

Primitives — lowest-level geometries

wingOml — outer mold line
wingWaffle — arrangement of spars and ribs
wingHinges — location of hinge lines for control surfaces

Dannenhoffer ESP Training - Session 10 December 2022 6 / 63

UDCs for each Component — 2
Does not include any reference to CAPS

Initialization

wingPmtrs — definition of CFGPMTRs and DESPMTRs
wingCalc — high-level values computed from the
CFGPMTRs and DESPMTRs

Dannenhoffer ESP Training - Session 10 December 2022 7 / 63

Basic Rules for Initializations

wingPmtrs

Written as include-type UDC (INTERFACE . ALL)
Contains only DIMENSION, CFGPMTR, and DESPMTR statements

wingCalcs

Written as include-type UDC (INTERFACE . ALL)
Contains only OUTPMTR and SET statements (for values that
are useful by other components)

Dannenhoffer ESP Training - Session 10 December 2022 8 / 63

Basic Rules for Model and Primitives

Knows nothing about CAPS

Written as an include-type UDC (INTERFACE . ALL)

Returns immediately if Body already exists

Builds all subordinate models and primitives

Puts all Bodys into one STOREd Group (with the name
matching the model or primitive name)

Leaves stack the same as it was upon entry

Dannenhoffer ESP Training - Session 10 December 2022 9 / 63

Basic Rules for Views

Written as an include-type UDC (INTERFACE , ALL)

Builds necessary Groups

RESTOREs each Group

add view-specific (CAPS) Attributes
provide a name

Leaves all RESTOREd Bodys on the stack

Dannenhoffer ESP Training - Session 10 December 2022 10 / 63

Use of Unit Tests

As each new .udc file is written, a unit test should be created

wingVlm (test driver)

written by John Dannenhoffer

UDPRIM $/../transport_init

make and show the wingVlm

UDPRIM $/../wingVlm

RESTORE wingVlm

END

Dannenhoffer ESP Training - Session 10 December 2022 11 / 63

Adding a New “view”
New view will be called vvv

Create viewVvv.udc and unittest/viewVvv.csm

Edit transport.csm

add

CFGPMTR VIEW:Vvv 1

add

IFTHEN VIEW:Vvv NE 0

UDPRIM $/viewVvv

ENDIF

Dannenhoffer ESP Training - Session 10 December 2022 12 / 63

Adding a new component — 1
New component will be called ccc

Create cccPmtrs.udc that contains all CFGPMTRs and
DESPMTRs

Create cccCalc.udc that contains all top-level values

Edit transport init.udc

add

CFGPMTR COMP:ccc 1

add

UDPRIM $/cccPmtrs

add

UDPRIM $/cccCalc

Dannenhoffer ESP Training - Session 10 December 2022 13 / 63

Adding a new component — 2
New component will be called ccc

For each primitive (called ppp)

create cccPpp.udc and unittest/cccPpp.csm

For each model (called mmm)

create cccMmm.udc and unittest/cccMmm.csm

For each view file

add

IFTHEN COMP:ccc NE 0

UDPRIM $/cccMmm

ENDIF

add

IFTHEN COMP:ccc NE 0

<< build necessary view >>

ENDIF

Dannenhoffer ESP Training - Session 10 December 2022 14 / 63

Build Up Config. in Multiple Versions — 1
Note: a unittest file should be created for every starred .udc file

1 add transport.csm, transport init.udc, wingPmtrs.udc,
wingCalc.udc, wingOml.udc*, and viewConcept.udc*

2 add viewVlm.udc*

3 add wingHinges.udc*

4 add viewCfdInviscid.udc*

5 add wingWaffle.udc* and wingBem.udc*, viewBem.udc*

6 add htailPmtrs.udc, htailCalc.udc, htailOml.udc*,
htailHinges.udc*, and tt htailVlm.udc*

7 add htailWaffle.udc*, htailBem.udc*

8 add vtailPmtrs.udc, vtailCalc.udc, vtailOml.udc*,
vtailHinges.udc*, and tt vtailVlm.udc*

9 add vtailWaffle.udc*, vtailBem.udc*

Dannenhoffer ESP Training - Session 10 December 2022 15 / 63

Build Up Config. in Multiple Versions — 2
Note: a unittest file should be created for every starred .udc file

10 add fusePmtrs.udc, fuseCalc.udc, and fuseOml.udc*

11 add fuseIml.udc*, fuseWaffle.udc*, and fuseBem.udc*

12 add nacellePmtrs.udc, nacelleCalc.udc,
nacelleOml.udc*, pylonPmtrs.udc, pylonCalc.udc, and
pylonOml.udc*

13 add payloadPmtrs.udc and payload.udc*

14 add viewCfdViscous.udc*

15 add CAPS Attributes to all view* files

16 add viewCantilevel.udc*, viewSimpleSupport.udc*, and
viewSkins.udc*

Dannenhoffer ESP Training - Session 10 December 2022 16 / 63

Example “views” for Version 5
viewConcept showing all Primitives

Dannenhoffer ESP Training - Session 10 December 2022 17 / 63

Example “views” for Version 5
viewConcept with waffle off and transparent OML

Dannenhoffer ESP Training - Session 10 December 2022 18 / 63

Example “views” for Version 5
viewVlm

Dannenhoffer ESP Training - Session 10 December 2022 19 / 63

Example “views” for Version 5
viewCfdInviscid

Dannenhoffer ESP Training - Session 10 December 2022 20 / 63

Example “views” for Version 5
viewBem with some transparent panels

Dannenhoffer ESP Training - Session 10 December 2022 21 / 63

wingPmtrs.udc — 1
.udc to define the DESPMTRs and CFGPMTRs for a wing

written by John Dannenhoffer

INTERFACE . ALL

wing Oml

DESPMTR wing:area 4240 # area

DESPMTR wing:aspect 9.00 # aspect ratio

DESPMTR wing:taperi 0.48 # inboard taper ratio

DESPMTR wing:tapero 0.23 # outboard taper ratio

DESPMTR wing:sweep 35.0 # leading edge sweep

DESPMTR wing:dihedral 7.0 # dihedral

DESPMTR wing:break 0.37 # inboard/outboard

DESPMTR wing:alphar -1.0 # setting angle at root

DESPMTR wing:thickr 0.10 # thickness ratio at root

DESPMTR wing:camberr 0.08 # camber ratio at root

DESPMTR wing:alphab -3.0 # setting angle at break

DESPMTR wing:thickb 0.15 # thickness ratio at break

DESPMTR wing:camberb 0.04 # camber ratio at break

DESPMTR wing:alphat -8.0 # setting angle at tip

DESPMTR wing:thickt 0.08 # thickness ratio at tip

DESPMTR wing:cambert 0.01 # camber ratio at tip

DESPMTR wing:xroot 50.0 # xloc at root LE

DESPMTR wing:zroot -8.0 # zloc at root LE

Dannenhoffer ESP Training - Session 10 December 2022 22 / 63

wingPmtrs.udc — 2

wing hinge lines

DIMENSION wing:hinge 6 9 1 # ymin ymax

theta x/c y/span z/t x/c y/span z/t gap grp

DESPMTR wing:hinge "-10.0; 0.75; -0.98; 0.50; 0.75; -0.70; 0.50; 0.25; 1; \ left aileron

+10.0; 0.75; -0.69; 0.00; 0.75; -0.43; 0.00; 0.25; 2; \ left oflap

+15.0; 0.85; -0.33; 0.00; 0.90; -0.14; 0.00; 0.25; 3; \ left iflap

+15.0; 0.90; 0.14; 0.00; 0.85; 0.33; 0.00; 0.25; 3; \ rite iflap

+10.0; 0.75; 0.43; 0.00; 0.75; 0.69; 0.00; 0.25; 2; \ rite oflap

+10.0; 0.75; 0.70; 0.50; 0.75; 0.98; 0.50; 0.25; 4" # rite aileron

wing structure

DESPMTR wing:spar1 0.20 # fraction of chord for LE spar

DESPMTR wing:spar2 0.70 # fraction of chord for TE spar

CFGPMTR wing:nrib1 2 # number of internal ribs in region 1

CFGPMTR wing:nrib2 4 # number of internal ribs in region 1

CFGPMTR wing:nrib3 12 # number of internal ribs in region 1

DESPMTR wing:waffleGap 1 # distance between fuselage and wing root rib

DESPMTR wing:dxnom 2.0 # nominal .bdf element side length

END

Dannenhoffer ESP Training - Session 10 December 2022 23 / 63

wingCalc.udc

.udc to calculate critial locations and dimensions for a wing

written by John Dannenhoffer

INTERFACE . ALL

OUTPMTR wing:mac

OUTPMTR wing:span

SET wing:span sqrt(wing:aspect*wing:area)

SET wing:yroot 0

SET wing:ytip -wing:span/2

SET wing:xtip wing:xroot-wing:ytip*tand(wing:sweep)

SET wing:ztip wing:zroot-wing:ytip*tand(wing:dihedral)

SET wing:ybreak wing:ytip*wing:break

SET wing:xbreak wing:xroot-wing:ybreak*tand(wing:sweep)

SET wing:zbreak wing:zroot-wing:ybreak*tand(wing:dihedral)

SET wing:chordr wing:area/((wing:yroot-wing:ybreak)*(wing:taperi+1)+(wing:ybreak-wing:ytip)*wing:taperi*(wing:tapero+1))

SET wing:chordb wing:chordr*wing:taperi

SET wing:chordt wing:chordb*wing:tapero

SET wing:mac sqrt(wing:area/wing:aspect)

SET wing:sharpte SHARP_TE

END

Dannenhoffer ESP Training - Session 10 December 2022 24 / 63

wingOml.udc — 1
.udc to make the wingOml

written by John Dannenhoffer

INTERFACE . ALL

set a mark so that we can restore the stack back to

where it was when we started

MARK

check to see if the Body already exits

RESTORE wingOml

if it does not exist, make it now

CATBEG $name_not_found

MESSAGE Building_wingOml

lay out left wing

MARK

root

UDPRIM naca thickness wing:thickr camber wing:camberr sharpte wing:sharpte

SCALE wing:chordr

ROTATEX 90 0 0

ROTATEY wing:alphar 0 0

TRANSLATE wing:xroot wing:yroot wing:zroot

Dannenhoffer ESP Training - Session 10 December 2022 25 / 63

wingOml.udc — 2
UDPRIM naca camber wing:camberb thickness wing:thickb sharpte wing:sharpte

SCALE wing:chordb

ROTATEX 90 0 0

ROTATEY wing:alphab 0 0

TRANSLATE wing:xbreak wing:ybreak wing:zbreak

left tip

UDPRIM naca thickness wing:thickt camber wing:cambert sharpte wing:sharpte

SCALE wing:chordt

ROTATEX 90 0 0

ROTATEY wing:alphat 0 0

TRANSLATE wing:xtip wing:ytip wing:ztip

RULE

ATTRIBUTE tagComp $leftWing

SET ruledBody @nbody

SELECT FACE ruledBody 1

ATTRIBUTE tagType $root

SELECT FACE ruledBody 2

ATTRIBUTE tagType $tip

ATTRIBUTE tagIndex $1

SELECT FACE ruledBody 3

ATTRIBUTE tagType $upper

Dannenhoffer ESP Training - Session 10 December 2022 26 / 63

wingOml.udc — 3

SELECT FACE ruledBody 4

ATTRIBUTE tagType $upper

SELECT FACE ruledBody 5

ATTRIBUTE tagType $lower

SELECT FACE ruledBody 6

ATTRIBUTE tagType $lower

SELECT EDGE ruledBody 3 ruledBody 5 1

ATTRIBUTE tagType $leadingEdge

SELECT EDGE ruledBody 4 ruledBody 6 1

ATTRIBUTE tagType $leadingEdge

IFTHEN wing:sharpte EQ 0

SELECT FACE ruledBody 7

ATTRIBUTE tagType $trailingEdge

SELECT FACE ruledBody 8

ATTRIBUTE tagType $trailingEdge

ELSE

SELECT EDGE ruledBody 3 ruledBody 5 2

ATTRIBUTE tagType $trailingEdge

SELECT EDGE ruledBody 4 ruledBody 6 2

ATTRIBUTE tagType $trailingEdge

ENDIF

Dannenhoffer ESP Training - Session 10 December 2022 27 / 63

wingOml.udc — 4

right wing too

STORE LeftWing 0 1

RESTORE LeftWing

ATTRIBUTE tagComp $riteWing

SELECT FACE $tagType $tip

ATTRIBUTE tagIndex $2

SELECT EDGE $tagType $leadingEdge

IFTHEN @iedge GT 0

SELECT EDGE $tagType $leadingEdge

ATTRIBUTE tagComp $riteWing

ENDIF

IFTHEN wing:sharpte EQ 1

SELECT EDGE $tagType $trailingEdge

IFTHEN @iedge GT 0

SELECT EDGE $tagType $trailingEdge

ATTRIBUTE tagComp $riteWing

ENDIF

ENDIF

MIRROR 0 1 0

join into single wing

JOIN

Dannenhoffer ESP Training - Session 10 December 2022 28 / 63

wingOml.udc — 5

attribute the root

SELECT EDGE ruledBody 3 ruledBody 3 1

ATTRIBUTE tagType $root

SELECT EDGE ruledBody 5 ruledBody 5 1

ATTRIBUTE tagType $root

store the final Body

STORE wingOml

CATEND

make sure that we did not leave any new Bodys on the stack

STORE ..

END

Dannenhoffer ESP Training - Session 10 December 2022 29 / 63

wingHinges.udc — 1
.udc to make the wingHinges

written by John Dannenhoffer

INTERFACE . ALL

set a mark so that we can restore the stack back to

where it was when we started

MARK

skip this if controls are off

IFTHEN COMP:controls EQ 0

THROW -7681

ENDIF

check to see if the Body already exists

RESTORE wingHinge 1

if they do not exist, make them now

CATBEG $name_not_found

MESSAGE Building_wingHinges

make sure the wingOml exists

UDPRIM $/wingOml

Dannenhoffer ESP Training - Session 10 December 2022 30 / 63

wingHinges.udc — 2
PATBEG ihinge wing:hinge.nrow

SET y_ibd wing:hinge[ihinge,3]*(-wing:ytip)

BOX -1000 y_ibd -1000 2000 0 2000

RESTORE wingOml

INTERSECT

SET x_ibd @xmin+wing:hinge[ihinge,2]*(@xmax-@xmin)

STORE .

BOX x_ibd y_ibd -1000 0 0 2000

RESTORE wingOml

INTERSECT

SET z_ibd @zmin+wing:hinge[ihinge,4]*(@zmax-@zmin)

STORE .

SET y_obd wing:hinge[ihinge,6]*(-wing:ytip)

BOX -1000 y_obd -1000 2000 0 2000

RESTORE wingOml

INTERSECT

SET x_obd @xmin+wing:hinge[ihinge,5]*(@xmax-@xmin)

STORE .

BOX x_obd y_obd -1000 0 0 2000

RESTORE wingOml

INTERSECT

SET z_obd @zmin+wing:hinge[ihinge,7]*(@zmax-@zmin)

STORE .

Dannenhoffer ESP Training - Session 10 December 2022 31 / 63

wingHinges.udc — 3

SKBEG x_ibd y_ibd z_ibd

LINSEG x_obd y_obd z_obd

SKEND

SELECT EDGE 1

ATTRIBUTE tagComp $wing

ATTRIBUTE tagType $hinge

ATTRIBUTE tagIndex !val2str(wing:hinge[ihinge,9],0)

ATTRIBUTE deflect wing:hinge[ihinge,1]

ATTRIBUTE xoverc1 wing:hinge[ihinge,2]

ATTRIBUTE xoverc2 wing:hinge[ihinge,5]

ATTRIBUTE gap wing:hinge[ihinge,8]

ATTRIBUTE compIndex !val2str(ihinge,0)

SELECT BODY

ATTRIBUTE _name $wingHinge_+ihinge

store the final Body

STORE wingHinge ihinge

PATEND

CATEND

Dannenhoffer ESP Training - Session 10 December 2022 32 / 63

wingHinges.udc — 4

CATBEG -7681

CATEND

make sure that we did not leave any new Bodys on the stack

STORE ..

END

Dannenhoffer ESP Training - Session 10 December 2022 33 / 63

wingWaffle.udc — 1
.udc to make the wingWaffle

written by John Dannenhoffer

INTERFACE . ALL

set a mark so that we can restore the stack back to

where it was when we started

MARK

check to see if the Body already exits

RESTORE wingWaffle

if it does not exist, make it now

CATBEG $name_not_found

MESSAGE Building_wingWaffle

make sure the wingOml exists

UDPRIM $/wingOml

outline of the waffle

SET yA 0

SET xA wing:xroot

SET yB -wing:ytip

Dannenhoffer ESP Training - Session 10 December 2022 34 / 63

wingWaffle.udc — 2
SET xB wing:xtip

SET yC 0

SET xC wing:xroot+wing:chordr

SET yD -wing:ybreak

SET xD wing:xbreak+wing:chordb

SET yE -wing:ytip

SET xE wing:xtip+wing:chordt

get required depth of the waffle

RESTORE wingOml

SET zmin @zmin-0.1

SET zmax @zmax+0.1

STORE .

make the waffle

UDPARG waffle depth zmax-zmin

UDPRIM waffle filename <<

construction lines for wing outline

CPOINT A AT xA yA

CPOINT B AT xB yB

CPOINT C AT xC yC

CPOINT D AT xD yD

CPOINT E AT xE yE

Dannenhoffer ESP Training - Session 10 December 2022 35 / 63

wingWaffle.udc — 3

CLINE AB A B

CLINE CD C D

CLINE DE D E

CLINE AC A C

CLINE BE B E

construction lines for fuselage side and wing break

CPOINT F ON AB YLOC y@D

CPOINT K ON AB YLOC wing:waffleGap

CPOINT L ON CD YLOC wing:waffleGap

CLINE FD F D

construction lines for spars

CPOINT G ON FD FRAC wing:spar1

CPOINT H ON BE FRAC wing:spar1

CPOINT I ON FD FRAC wing:spar2

CPOINT J ON BE FRAC wing:spar2

CLINE GH G H

CLINE IJ I J

CLINE KL K L

Dannenhoffer ESP Training - Session 10 December 2022 36 / 63

wingWaffle.udc — 4
spars

POINT M ON GH XSECT KL

LINE MH M H tagType=spar tagIndex=1

POINT N ON IJ XSECT KL

LINE NJ N J tagType=spar tagIndex=2

POINT O ON KL XLOC x@I

LINE OI O I tagType=spar tagIndex=3

fuselage wing box

POINT MM AT x@M 0

LINE . M MM tagType=fusespar tagIndex=1

POINT X AT x@N 0

LINE . N X tagType=fusespar tagIndex=2

POINT OO at x@O 0

LINE . O OO tagType=fusespar tagIndex=3

rib

LINE MN M N

LINE NO N O

Dannenhoffer ESP Training - Session 10 December 2022 37 / 63

wingWaffle.udc — 5
wing root

LINE . MM OO tagType=root

wing tip

LINE HJ H J tagType=tip

ribs in region 1

PATBEG iIi wing:nrib1

POINT X AT x@M+(x@N-x@M)*iIi/(wing:nrib1+1) y@M+(y@N-y@M)*iIi/(wing:nrib1+1)

POINT Y ON MH PERP X

LINE . X Y tagType=rib tagIndex=!val2str(iIi,0)

PATEND

rib from point N

CPOINT X AT x@N y@N

POINT Y ON MH PERP X

LINE . X Y tagType=rib tagIndex=!val2str(wing:nrib1+1,0)

ribs in region 2

PATBEG iIi wing:nrib2

POINT X AT x@N+(x@I-x@N)*iIi/(wing:nrib2+1) y@N+(y@I-y@N)*iIi/(wing:nrib2+1)

POINT Y ON MH PERP X

LINE . Y X tagType=rib tagIndex=!val2str(wing:nrib1+2+iIi,0)

POINT Z ON OI PERP X

LINE . X Z tagType=rib tagIndex=!val2str(wing:nrib1+2+iIi,0) tagExtra=rear

PATEND
Dannenhoffer ESP Training - Session 10 December 2022 38 / 63

wingWaffle.udc — 6
rib from point I

CPOINT X AT x@I y@I

POINT Y ON MH PERP X

LINE . X Y tagType=rib tagIndex=!val2str(wing:nrib1+wing:nrib2+2,0)

ribs in region 3

PATBEG iIi wing:nrib3

POINT X AT x@I+(x@J-x@I)*iIi/(wing:nrib3+1) y@I+(y@J-y@I)*iIi/(wing:nrib3+1)

POINT Y ON MH PERP X

LINE . Y X tagType=rib tagIndex=!val2str(wing:nrib1+wing:nrib2+2+iIi,0)

PATEND

>>

move down to be coincident with wingOml

TRANSLATE 0 0 zmin

attribute the rite wing Faces

SELECT FACE

ATTRIBUTE tagComp $riteWing

make a copy for the left wing

RESTORE .

MIRROR 0 1 0 0

Dannenhoffer ESP Training - Session 10 December 2022 39 / 63

wingWaffle.udc — 7
re-attribute the left wing Faces

SELECT FACE

ATTRIBUTE tagComp $leftWing

make a single waffle

JOIN

get the locations of the wing spars through the fuselage

SELECT FACE $tagType $fusespar $tagIndex $1

SET wing:xspar1 @xcg

SELECT FACE $tagType $fusespar $tagIndex $2

SET wing:xspar2 @xcg

SELECT FACE $tagType $fusespar $tagIndex $3

SET wing:xspar3 @xcg

store the final Body

STORE wingWaffle

CATEND

make sure that we did not leave any new Bodys on the stack

STORE ..

END

Dannenhoffer ESP Training - Session 10 December 2022 40 / 63

viewConcept.udc
.udc to make the Concept view

written by John Dannenhoffer

INTERFACE . ALL

make sure we have the necessary Bodys

IFTHEN COMP:wing NE 0

UDPRIM $/wingOml

UDPRIM $/wingWaffle

UDPRIM $/wingHinges

ENDIF

now that we have all the Bodys, show them

IFTHEN COMP:wing NE 0

RESTORE wingOml

ATTRIBUTE _name $wingOml

RESTORE wingWaffle

ATTRIBUTE _name $wingWaffle

PATBEG ihinge wing:hinge.nrow*COMP:controls

RESTORE wingHinge ihinge

PATEND

ENDIF

END

Dannenhoffer ESP Training - Session 10 December 2022 41 / 63

viewOml.udc

.udc to make the Oml view

written by John Dannenhoffer

INTERFACE . ALL

make sure we have the necessary Bodys

IFTHEN COMP:wing NE 0

UDPRIM $/wingOml

UDPRIM $/wingHinges

ENDIF

get the wing

IFTHEN COMP:wing NE 0

RESTORE wingOml

ATTRIBUTE _name $wing

ENDIF

END

Dannenhoffer ESP Training - Session 10 December 2022 42 / 63

viewCfdInviscid.udc — 1

.udc to make the CfdInvisicd view

written by John Dannenhoffer

INTERFACE . ALL

get the Oml first

UDPRIM $/viewOml

DIMENSION xflap 1 4

DIMENSION yflap 1 4

since we are going to restore the various Bodys (below)

clear the stack now

STORE ...

add the control surfaces to the wing

IFTHEN COMP:wing NE 0

set the at-parameters for the wing

RESTORE wingOml

Dannenhoffer ESP Training - Session 10 December 2022 43 / 63

wingCfdInviscid.udc — 2

PATBEG ihinge wing:hinge.nrow*COMP:controls

aileron and outboard flap

IFTHEN wing:hinge[ihinge,3] LT -wing:break OR wing:hinge[ihinge,3] GT +wing:break

SET s (abs(wing:hinge[ihinge,6])-wing:break)/(1-wing:break)

SET c2 wing:chordb*(1-s)+wing:chordt*s

SET xflap[1] @xmax+1

SET yflap[1] wing:hinge[ihinge,6]*wing:span/2

SET xflap[2] wing:xbreak*(1-s)+wing:xtip*s+c2*wing:hinge[ihinge,5]

SET yflap[2] yflap[1]

SET s (abs(wing:hinge[ihinge,3])-wing:break)/(1-wing:break)

SET c3 wing:chordb*(1-s)+wing:chordt*s

SET xflap[3] wing:xbreak*(1-s)+wing:xtip*s+c3*wing:hinge[ihinge,2]

SET yflap[3] wing:hinge[ihinge,3]*wing:span/2

SET xflap[4] xflap[1]

SET yflap[4] yflap[3]

Dannenhoffer ESP Training - Session 10 December 2022 44 / 63

wingCfdInviscid.udc — 3
inboard flaps

ELSE

SET s abs(wing:hinge[ihinge,6])/wing:break

SET c2 wing:chordr*(1-s)+wing:chordb*s

SET xflap[1] @xmax+1

SET yflap[1] wing:hinge[ihinge,6]*wing:span/2

SET xflap[2] wing:xroot*(1-s)+wing:xbreak*s+c2*wing:hinge[ihinge,5]

SET yflap[2] yflap[1]

SET s abs(wing:hinge[ihinge,3])/wing:break

SET c3 wing:chordr*(1-s)+wing:chordb*s

SET xflap[3] wing:xroot*(1-s)+wing:xbreak*s+c3*wing:hinge[ihinge,2]

SET yflap[3] wing:hinge[ihinge,3]*wing:span/2

SET xflap[4] xflap[1]

SET yflap[4] yflap[3]

ENDIF

generate the flap

UDPARG $$/flapz xflap xflap

UDPARG $$/flapz yflap yflap

UDPRIM $$/flapz gap wing:hinge[ihinge,8] theta wing:hinge[ihinge,1]
Dannenhoffer ESP Training - Session 10 December 2022 45 / 63

wingCfdInviscid.udc — 4

IFTHEN yflap.min GT 0

UDPRIM editAttr filename <<

FACE HAS *=*

ANDNOT HAS tagComp=*

SET tagComp=riteWing

SET tagType=filler

>>

ELSE

UDPRIM editAttr filename <<

FACE HAS *=*

ANDNOT HAS tagComp=*

SET tagComp=leftWing

SET tagType=filler

>>

ENDIF

PATEND

SELECT BODY

ATTRIBUTE _name $wing

ENDIF

Dannenhoffer ESP Training - Session 10 December 2022 46 / 63

wingCfdInviscid.udc — 5

get the extrema

SET nbody @stack.size

PATBEG ibody nbody

STORE tempBody ibody

PATEND

SET xmin +1e20

SET xmax -1e20

SET ymin +1e20

SET ymax -1e20

SET zmin +1e20

SET zmax -1e20

PATBEG ibody nbody

RESTORE tempBody nbody+1-ibody

SET xmin min(xmin,@xmin)

SET xmax max(xmax,@xmax)

SET ymin min(ymin,@ymin)

SET ymax max(ymax,@ymax)

SET zmin min(zmin,@zmin)

SET zmax max(zmax,@zmax)

PATEND

Dannenhoffer ESP Training - Session 10 December 2022 47 / 63

wingCfdInviscid.udc — 6

build the farfield

SET size 20*max(xmax-xmin,ymax-ymin)

BOX (xmin+xmax-size)/2 (ymin+ymax-size)/2 (zmin+zmax-size)/2 \

size size size

ATTRIBUTE _name $Farfield

END

Dannenhoffer ESP Training - Session 10 December 2022 48 / 63

viewVlm.udc

.udc to make the Vlm view

written by John Dannenhoffer

INTERFACE . ALL

make sure we have the necessary Bodys

IFTHEN COMP:wing NE 0

UDPRIM $/wingVlm

ENDIF

now that we have all the Bodys, show and Attribute them

IFTHEN @stack[1] EQ -1

SET prevStack 0

ELSE

SET prevStack @stack.size

ENDIF

wing

IFTHEN COMP:wing NE 0

RESTORE wingVlm

ENDIF

END

Dannenhoffer ESP Training - Session 10 December 2022 49 / 63

viewBem.udc

.udc to make the Bem

written by John Dannenhoffer

INTERFACE . ALL

make sure we have the wingBem

IFTHEN COMP:wing NE 0

UDPRIM $/wingBem

ENDIF

IFTHEN COMP:wing NE 0

RESTORE wingBem

ATTRIBUTE _name $wingBem

ENDIF

END

Dannenhoffer ESP Training - Session 10 December 2022 50 / 63

transport init.udc — 1

.udc to set up DESPMTRs, CFGPMTRs, and critical locations and dimensions

written by John Dannenhoffer

INTERFACE . ALL

global tolerance

set EPS06 1.0e-6

make a list of the components

CFGPMTR COMP:wing 1

controls must be either 0=off or 1=on

CFGPMTR COMP:controls 1

IFTHEN COMP:controls NE 0 AND COMP:controls NE 1

MESSAGE COMP:controls_must_be_0_or_1

THROW -999

ENDIF

define the DESPMTRs and CFGPMTRs

UDPRIM $/wingPmtrs

Dannenhoffer ESP Training - Session 10 December 2022 51 / 63

transport init.udc — 2

put sharp trailing edges on all aero surfaces

SET SHARP_TE 1

compute critical locations / dimensions

UDPRIM $/wingCalc

CG location used to drive design parametres, not the actual CG

DIMENSION CG:ref 3 1

DESPMTR CG:ref "90; 0; 0"

END

Dannenhoffer ESP Training - Session 10 December 2022 52 / 63

transport.csm — 1

transport

written by John Dannenhoffer

define the views

CFGPMTR VIEW:Concept 1

CFGPMTR VIEW:Vlm 0

CFGPMTR VIEW:CfdInviscid 0

CFGPMTR VIEW:Bem 0

UDPRIM $/transport_init

IFTHEN VIEW:Concept NE 0

UDPRIM $/viewConcept

ENDIF

Dannenhoffer ESP Training - Session 10 December 2022 53 / 63

wingOml.udc — 2

IFTHEN VIEW:Vlm NE 0

UDPRIM $/viewVlm

ENDIF

IFTHEN VIEW:CfdInviscid NE 0

UDPRIM $/viewCfdInviscid

ENDIF

IFTHEN VIEW:Bem NE 0

UDPRIM $/viewBem

ENDIF

END

Dannenhoffer ESP Training - Session 10 December 2022 54 / 63

Example “views” for Version 16
viewConcept showing all Primitives

Dannenhoffer ESP Training - Session 10 December 2022 55 / 63

Example “views” for Version 16
viewConcept with waffle off and transparent OML

Dannenhoffer ESP Training - Session 10 December 2022 56 / 63

Example “views” for Version 16
viewVlm

Dannenhoffer ESP Training - Session 10 December 2022 57 / 63

Example “views” for Version 16
viewCfdInviscid

Dannenhoffer ESP Training - Session 10 December 2022 58 / 63

Example “views” for Version 16
viewCfdViscous

Dannenhoffer ESP Training - Session 10 December 2022 59 / 63

Example “views” for Version 16
viewBem with some transparent panels

Dannenhoffer ESP Training - Session 10 December 2022 60 / 63

Next Steps

Explore this model

track the changes of any file over time (version)
examine how components interact with each other

fuselage length depends on tail placement
fuselage bulkheads depend on spars in wings and tail
nacelle and pylon depend on wing parametes
...

Dannenhoffer ESP Training - Session 10 December 2022 61 / 63

Summary

ESP is a powerful geometry-generating system that was
designed for the analysis of complex configurations

supports multiple linked models
supports persistent attribution
provides sensitivities
can easily be coupled with other systems

For CAPS, a set of “views” were defined; but these are only an
example

Each organization will want to develop a set of rules and
conventions that are consistent with the rest of the
organization’s design systems

Dannenhoffer ESP Training - Session 10 December 2022 62 / 63

Final Thoughts

ESP is freely available for download from acdl.mit.edu/ESP

Based upon user requests, new and improved features are
added continually

Send bug reports to jfdannen@syr.edu

Also send success stories to jfdannen@syr.edu

Thank you for attending; send comments about the course to
jfdannen@syr.edu

Dannenhoffer ESP Training - Session 10 December 2022 63 / 63

