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Abstract

Despite the generally accepted notion that geometric variability is undesirable in turbo-
machinery airfoils, little is known in detail about its impact on aerothermal compressor
performance. In this work, statistical and probabilistic techniques were used to assess the
impact of geometric and operating condition uncertainty on axial compressor performance.
High-fidelity models of geometric variability were constructed from surface measurements
of existing hardware using principal component analysis (PCA). A quasi-two-dimensional
cascade analysis code, at the core of a parallel probabilistic analysis framework, was used to
assess the impact of uncertainty on aerodynamic performance of compressor rotor airfoils.
Three rotor blades with inlet relative Mach numbers of 0.82, 0.90 and 1.25 were considered.
Discrepancies between nominal and mean loss (mean-shift) of up to 20% were observed.
Loss and turning variability were found to grow linearly with geometric noise amplitude.

A probabilistic, gradient-based approach to compressor blade optimization was pre-
sented. Probabilistic objectives, constraints and gradients are approximated using low-
resolution Monte Carlo sampling. Test airfoils were optimized both deterministically and
probabilistically and then analyzed probabilistically to account for geometric variability.
Probabilistically redesigned airfoils exhibited reductions in mean loss of up to 25% and in
loss variability of as much as 65% from corresponding values for deterministically redesigned
airfoils. A probabilistic mean-line multi-stage axial compressor model was used to estimate
the impact of geometric variability on overall compressor performance. Probabilistic loss
and turning models were exercised on a six-stage compressor model. At realistic levels of
geometric variability, the mean polytropic efficiency was found to be upwards of 1% lower
than nominal. Compressor simulations using airfoils redesigned probabilistically for mini-
mum loss variability exhibited reductions of 30 to 40% in polytropic efficiency variability
and mean shift.

Thesis Supervisor: David L. Darmofal
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Despite the generally accepted notion that geometric variability is undesirable in turboma-
chinery airfoils, little detailed information is known about the detrimental effects that geo-
metric variability has on the aerodynamic performance of compressor airfoils. Furthermore,
open literature regarding origins and characteristics of compressor airfoil shape variability
due to manufacturing or wear is scars at best.

Finished airfoils inevitably exhibit deviations from their intended shape and size [9].
Geometric uncertainty may be introduced, for instance, by noisy manufacturing processes
or hand-finishing operations. Figure 1-1 illustrates the discrepancies between actual man-
ufactured compressor airfoil sections (dashed lines) and their intended design (solid line).

baseline
measured

baseline
measured

0.1 in

in0.1 

Figure 1-1: Example of geometric variability in manufactured compressor airfoils. Measure-
ments are represented by dashed-lines and the nominal shape by a solid line

As pointed out by Roberts [105], geometric variability in the form of leading-edge erosion
in core compressor airfoils may account for an increase of 3% or more on thrust-specific fuel
consumption. To put this into perspective, as little as a one percent change in fuel burn
can mean the difference between profitability or loss to a fleet operator [35].
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Restricting manufacturing tolerances to reduce the amount of geometric uncertainty
may be exceedingly costly or otherwise impractical to achieve. Furthermore, normal engine
operation leads to changes in compressor and fan airfoil shapes through erosion, corrosion
and other means. In addition to geometric variability, perturbations in operating conditions
may be simply unavoidable due to the variable environments in which gas turbine engines
must operate.

Since little is known in detail about the impact of geometric variability on aerodynamic
performance of compressor airfoils, few strategies exist to mitigate the detrimental effects
of geometric and operating condition variability on overall compressor performance.

In this work, measured geometric variability from an existing compressor blade is charac-
terized using statistical techniques. The resulting statistical description is used to construct
high-fidelity models of geometric variability to be used in turn to assess probabilistically the
impact of geometric noise on airfoil performance. The impact of geometric variability on
overall compressor performance is estimated by means of a probabilistic mean-line com-
pressor model. A gradient-based probabilistic optimization methodology for redesigning
compressor airfoils is presented and used to redesign three rotor blades.

1.2 Background

Probabilistic techniques applied to structural analysis and design have been in use in the
aerospace industry for more than two decades [78]. For instance, NASA has employed prob-
abilistic design methods to assess the reliability of advanced launch systems [16, 111]. Fur-
thermore, NASA has developed a probabilistic structural analysis code, NESSUS (numerical
evaluation of stochastic structures under stress), which has been used in static and dynamic
analyses of critical structural components of the space shuttle’s main engine [87, 109]. The
Air Force has likewise been involved in implementing probabilistic design tools in an at-
tempt to decrease the typically large safety factors involved in designing turbine disks [78].
The Air Force has also used probabilistic methods in predicting the life of other critical
engine components [129] and airframes [139].

The potential payoffs that may result from judicious application of probabilistic tech-
niques has not escaped the attention of gas turbine engine manufacturers. In the United
States, both Pratt and Whitney and General Electric Aircraft Engines have developed prob-
abilistic tools, primarily for structural design. Pratt and Whitney developed a probabilistic
design system that brings together deterministic analysis codes and probabilistic methods
to address various structural reliability problems [1,39,40]. GE Aircraft Engine’s AURORA
(Approximation Used to Rapidly Obtain Reliability Analysis) system implements a set of
techniques collectively known as fast probability integration to reduce the computational
expense of structural reliability analyses [45, 133]. GE’s “Six-Sigma” quality initiative ex-
emplifies the high-level commitment of leading aerospace corporations to the use of statistics
and probability throughout their enterprises.

In contrast to the aggressive application of probabilistic techniques to structural analy-
sis and durability, there have been considerably fewer investigations involving aerothermal

probabilistic analysis and design of turbomachinery components. Probabilistic aerothermal
analysis of turbomachinery components is particularly challenging due to the complexity of
the physical phenomena encountered. A marked increase in computational requirements ap-
pears in direct proportion to the physical complexity of the turbomachinery physics. Until
recently, probabilistic treatments of turbomachinery aerothermal analysis and design have
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been deemed prohibitively expensive. The advent of relatively affordable parallel hardware
is making such considerations possible in a number of practical applications.

Although not particularly abundant in turbomachinery fluid dynamics applications,
probabilistic methods are not rare in fluid mechanics at large. For instance, stochastic
ideas have found application in the description of turbulent flows [41, 77]. Other examples
include recent studies of stochastic versions of Burgers’ [12, 43, 64, 132] and Navier-Stokes
equations [14] as well as probabilistic treatments of flow in porous media [59]. Recently, at-
tempts to quantify uncertainty in complex fluid-mechanical problems with stochastic inputs
have appeared [69].

In the past decade probabilistic methods have been employed in optimizing overall
engine cycle parameters as well as individual engine components. For instance, Egorov
et al. proposed the use of stochastic optimization techniques for axisymmetric design of
axial compressors [10, 31, 32] and other gas turbine engine components [33]. Mavris and
coworkers [82,83] applied probabilistic analysis techniques such as Monte Carlo simulation,
fast probability integration and response surface methodology to commercial engine cycle
selection.

In recent years, a number of articles dealing with the effects of randomness in aerody-
namic shape optimization have appeared. Putko et al. used moment closure methods and
Monte Carlo simulation to propagate Mach number and back-pressure uncertainty through
a numerical one-dimensional inviscid flow model [101]. Kock et al. implemented a parallel
probabilistic analysis and design framework for multidisciplinary optimization and applied
it to the preliminary design of a commercial transport aircraft [73]. This work concentrated
on preliminary design variables such as wing span, wing area, fuselage length, thrust and
weight, rather than on aerodynamic shape design. Huyse demonstrated applied moment
closure techniques and statistical decision theory to optimize airfoil shapes in the presence
of Mach number uncertainty [61–63]. More recently, Gumbert et al. studied the effect of
geometric uncertainty on flexible wing structural design using moment closure methods and
a three-dimensional Euler solver [51]. Investigations of the effect of uncertainty on aerome-
chanical and structural simulation-based design are more numerous than those dealing with
aerodynamic shape optimization (e.g., [29, 72, 112]).

Global non-convex optimization methods have also been applied to aerodynamic and
turbomachinery shape design, including genetic algorithms [80, 97] and simulated anneal-
ing [134, 135]. Despite the initial appeal of these global heuristic methods, their utilization
in probabilistic aerodynamic shape optimization is hindered by their typically high compu-
tational requirements. Obayashi and Tsukahara [91] presented a comparison of gradient-
based, simulated annealing and genetic algorithm methods applied to aerodynamic shape
optimization. A family of low-speed NACA airfoils was optimized for maximum lift under
two-dimensional inviscid assumptions. The genetic algorithm optimum design was found
to produce the best lift coefficient of the three methods, but at six times the cost of the
gradient-based method.

Detailed aerodynamic analysis and design requires computer simulations which are often
too expensive to be used effectively as part of a design framework. This fact has fueled in re-
cent years the interest on surrogate-based optimization methods. A surrogate is a low-order
model relating numerical simulation outputs to their inputs. The surrogate (or metamodel)
is less expensive to evaluate than the full numerical model and is typically constructed
off-line prior to the optimization work. Surrogate optimization relies on the premise that
the surrogate, though less accurate, is able to predict the general direction of improvement
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which can be advantageously exploited in a constrained optimization algorithm.
Various types of surrogate models have been proposed and used in aerodynamic opti-

mization applications. Among them are polynomial fits, interpolating multivariate splines,
kriging models, and neural networks [3, 4, 48, 79, 113, 116]. Garzon and Darmofal used
quadratic polynomial surrogates to optimize a transonic compressor airfoil in the presence
of geometric variability [44]. Rigorous validation techniques for surrogate model construc-
tion in fluid dynamics and heat transfer applications have been presented by Yesilyurt, Otto
and coworkers [94, 140].

Although surrogate optimization offers the attractive possibility of simulation-free op-
timization, the initial construction step may be excessively expensive when a large number
of design variables is involved. For instance, the number of simulations required in the
construction of a quadratic response surface typically grows exponentially with the number
of design variables. In aerodynamic applications, where large numbers of modeshapes are
typically employed, this exponential growth in complexity severely hinders the applicability
of high-order response surfaces to probabilistic optimization.

Arguably the best-known robust design methods today are those introduced by Taguchi [98].
Taguchi methods (TM) have been in use for more than two decades in the United States
as a means to reduce variability in products and processes via parameter redesign [89, 98].
Although used to some degree in the automotive and telecommunications industries, TM
have not found wide acceptance in manufacturing industries at large, and are not com-
monly taught in academic institutions [68]. As pointed out by Parks [96] one of the major
limitations of TM is that the underlying assumption of additivity (“linearity”) precludes
its use in systems dominated by nonlinear interactions. Since such interactions abound
in mathematical models of viscous transonic flow applications (as hinted, for instance, by
the results presented in Chapters 3–5), TM have not been applied to aerodynamic shape
optimization problems.

The impact of corrosion, erosion and ingestion of particulates on gas turbine engine
performance has been the subject of various investigations in the past two decades (see for
example Ref. [2]). The impact of blade erosion on turbine engine performance has been
investigated numerically and experimentally by Tabakoff, Hamed and coworkers [55, 86]
among others. Semi-empirical blade erosion models have been proposed by Tabakoff et
al. [125].

Among the first rigorous experimental investigations of the effects of leading-edge shape
on transonic rotor performance was that of Reid and Urasek [102] in 1973. Using both
experimental and numerical techniques Suder et al. [123] found that surface roughness near
the blade leading edge results in thicker boundary layers which in turn lead to increased
blockage and reduced aerodynamic performance.

The importance of leading-edge shape on engine performance is illustrated by the interest
in compressor blade refurbishment operations that offer performance restoration at costs
below those of part replacement [35,103,105]. The ability to refurbish compressor blades by
“recontouring” relies in part in experimental investigations that indicate that chord length
variations above the stall chord limit are not significant [104].

1.3 Thesis Objectives

The main objectives of the work reported in this thesis are:
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• Construct a high-fidelity model of geometric variability which captures the important
features present in data from advanced compressor rotor blades and which is suitable
for use in probabilistic analysis and design.

• Employ the model to assess the impact of geometric variability on the aerodynamic
performance (profile loss and turning) of transonic compressor blade rows.

• Probabilistically optimize the nominal shapes of compressor airfoils and compare with
similarly constrained deterministic redesigns.

• Estimate the impact of geometric variability, including noise amplitude and redesign
effects, on the performance of a multistage axial compressor.

1.4 Contributions

The following is a summary of the main contributions of this thesis.

• First application of statistical methods to constructing high-fidelity models of manu-
facturing variability from surface measurements of existing compressor blades. Using
principal component analysis, models of geometric variability suitable for probabilistic
analysis and design were constructed from surface measurements of an existing core
compressor rotor blade.

• First probabilistic assessment of the impact of geometric variability on aerodynamic
performance of compressor blades. The effect of geometric variability found in exist-
ing hardware was assessed using Monte Carlo simulation and quasi-two-dimensional
cascade analysis codes. Discrepancies between nominal and mean loss coefficient of
up to 20% were observed. Loss and turning variability were found to grow linearly
with geometric noise amplitude.

• First probabilistic assessment of the impact of blade shape variability on aerothermal
performance of multi-stage axial compressors. A probabilistic multi-stage mean-line
compressor model was used to estimate the effect of geometric variability on compres-
sor efficiency and pressure ratio. The compressor model included loss coefficient and
turning angle statistics derived from the analysis of existing hardware. At five-times
the baseline level of blade geometric variability, the discrepancy between nominal and
mean polytropic efficiency was found to be about one percentage point. Pressure ratio
variability was found to vary linearly with geometric variability amplitude.

• Development of a gradient-based probabilistic optimization method for redesigning
compressor airfoils in the presence of geometric variability. Reductions in mean loss
coefficient of up to 25% and in loss variability of up to 65% relative to deterministi-
cally redesigned airfoils were observed. At the compressor level, compressor simula-
tions using airfoils optimized probabilistically for minimum loss variability exhibited
reductions of 30 to 40% in polytropic efficiency variability and nominal-to-mean dis-
crepancy.
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1.5 Outline

The thesis follows the order of the aforementioned objectives. Chapter 2 illustrates the use
of principal component analysis, a well known order-reduction technique, to characterizing
and modeling measured geometric variability in compressor blades. Chapter 3 reports
the use of probabilistic analysis techniques to assess the impact of geometric variability
on the aerodynamic performance of isolated compressor airfoils. Chapter 4 presents a
gradient-based probabilistic optimization method for redesigning compressor airfoils in the
presence of geometric and inlet flow variability. In Chapter 5, a probabilistic mean-line
compressor model is used to assess the impact of geometric variability on overall compressor
performance. The last chapter summarizes the contributions of the thesis and offers a few
recommendations for future work.
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Chapter 2

Characterization of Geometric

Variability

Despite general agreement that airfoil shape imperfections are detrimental to aerodynamic
performance, limited information can be found in the open literature about their origins
and quantitative effects. The lack of characterizations of turbomachinery shape variability
is in part due to the random nature of the processes that cause it (i.e., noisy manufactur-
ing processes, foreign object damage, etc.) Nonetheless, high-fidelity models of geometric
variability must be constructed in order to assess their impact on aerodynamic performance.

This chapter outlines the basic ideas behind a method to provide such high fidelity
models and summarizes its application to the characterization of geometric variability in
compressor airfoils. The method, referred to as principal component analysis (PCA), has
been used in various fields to reduce the dimensionality of large ensembles of measured or
sampled data. In essence, PCA involves finding a statistically optimal basis for representing
the scatter of the measured data. PCA results for surface measurements of an existing
integrally-bladed rotor are discussed. High-fidelity models of geometric variability suitable
for probabilistic analysis and design are constructed. The geometric noise modes resulting
from the analysis are found not to correspond in general to customary geometric design and
tolerancing parameters of known aerodynamic importance.

In addition to the PCA-based geometric variability model, a leading-edge bluntness
mode is introduced to account for airfoil erosion.

2.1 Principal Component Analysis of Airfoil Measurements

Hacker [52] used principal components analysis and other statistical techniques to produce
reduced-order models of compressor blade performance. In Hacker’s study, heuristically-
based models of geometric variability were used in lieu of actual measurements. This section
presents results from the application of principal component analysis to a set of actual high-
resolution measurements of an high-pressure compressor integrally-bladed rotor (IBR). A
two-dimensional analysis is presented in this section. Three-dimensional effects are discussed
in Appendix A.
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2.1.1 Background

The nominal airfoil geometry is assumed to be defined by p coordinate points x0
j ∈ R

m,
j = 1, . . . , p where m is typically 2 or 3. Consider a set of n coordinate measurements
{x̂i,j ∈ R

m | i = 1, . . . , n; j = 1, . . . , p} taken, for instance, with a coordinate-measuring
machine. The measurements may correspond to single radial locations (m = 2) or entire
blade segments (m = 3). Index j uniquely identifies specific nominal points and their
measured counterparts. Similarly index i identifies a distinct set of measured points, i.e.,
belonging to a particular blade. The discrepancies from nominal in the coordinate measure-
ments can be expressed as error vectors

x′

i,j = x̂i,j − x0
j , i = 1, . . . , n; j = 1, . . . , p .

Subtracting from these error vectors their ensemble average

x̄j =
1

n

n
∑

i=1

x′

i,j, j = 1, . . . , p ,

gives a centered set of m-dimensional vectors, X = {xi,j = x̂i,j − x̄j | i = 1, . . . , n; j =
1, . . . , p}. Writing the m-dimensional measurements in vector form, Xj = [xT

1,j , . . . ,x
T
n,j]

T ,
the scatter matrix of set X is given by

S = XT X.

The scatter matrix is related to the covariance matrix C via C = (n− 1)−1S.
It can be shown (see Appendix A or standard references such as [100] and [67]) that the

directions along which the scatter is maximized correspond to non-trivial solutions of the
eigenvalue problem

Sv = λv. (2.1)

Because S is symmetric positive definite, it has in general mp orthonormal eigenvectors vi ∈
R

mp, i = 1, . . . ,mp with corresponding real, non-negative eigenvalues λi, i = 1, . . . ,mp [130].
The eigenvector corresponding to the largest eigenvalue indicates the direction along which
the scatter of the data is maximized. The eigenvector corresponding to the next largest
eigenvalue maximizes the scatter along a direction normal to the previous eigenvector. It
is in this sense that it is said that the eigenvectors of S provide an optimal statistical basis
for the decomposition of the scatter of the samples.

The total scatter (or energy [8]) E of the data in set X can be shown to be (see Ap-
pendix A)

E ≡ tr(XTX) =

mp
∑

j=1

λj .

In other words, the total scatter of the data set is given by the sum of the eigenvalues of
the scatter matrix S.

The PCA synthesis of S can be shown to be equivalent to the Singular Value Decompo-

sition (SVD) of X in reduced form [130],

X = UΣVT , (2.2)
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where Σ = diag(σ1, . . . , σmp), σj =
√

λj , j = 1, . . . ,mp and the columns of V are the
corresponding eigenvectors of S. The columns of A = UΣ are called the amplitude vectors
or principal components of the data set X (see Appendix A). The SVD of X is made unique
by requiring that {σj}mp

j=1 be a non-increasing sequence.

2.1.2 Application

As an application of the PCA formalism outlined above, an integrally-bladed rotor (IBR)
consisting of 56 nominally identical blades with inlet tip radius of 9.87 inches and tip-to-
hub ratio of 1.172 is considered. The IBR is part of an industrial design axial compressor.
The measurements correspond to parts fabricated via flank-milling [138]. Surface measure-
ments of blades from four separate rotors (150 blades in total) were taken using a scanning
coordinate-measuring machine (CMM).1 Each blade was measured at 13 different radial
locations. The scanning CMM measurements of each radial station were condensed to 112
points. Axial elongation and untwisting of the blade due to centrifugal forces and thermal
loading incurred during operation are assumed small and neglected in the current analysis
of geometric variability, as well as in the subsequent aerothermal analyses.

For the present application the 13 separate cross-sectional measurements were stacked
together to form a three-dimensional representation of the measured portion of the blade.
Using bicubic spline interpolation [21] the nominal geometry, as well as each measured blade,
were “cut” along a mid-span axial streamline path of varying radius (see Section 3.3.1). The
resulting sets of points are further modified by removing nine points (five from the suction
and four from the pressure sides) around the trailing edge, as shown in Fig. 2-1, to produce
an airfoil with a blunt trailing edge as required by the blade passage analysis code (see
Sect. 3.1.2 and Ref. 27).

Original coord.
Blunt TE coord.
Mean camber

Figure 2-1: Schematic blunt trailing edge modification

Using the notation introduced above, the resulting set X of two-dimensional mean-
centered measurement vectors can be written as n ×mp matrix X where n = 224, m = 2
and p = 103. The SVD of X produces diagonal matrix Σ of singular values σi =

√
λi

1Section 2.3 in Appendix A discusses the impact of number of samples on PCA results.
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(arranged in non-increasing order) and orthonormal matrix V of eigenvectors of the scatter
matrix S.

Figure 2-2(a) shows the modal scatter fraction λk/
∑mp

i=1 λi (decreasing) and the partial

scatter
∑k

i=1 λi/
∑mp

i=1 λi (increasing) of the first six eigenmodes of S. The first mode
contains 79% of the total scatter in the original measurement set and it clearly dwarfs the
scatter fraction of the other modes. For instance, the scatter corresponding to the second
most energetic mode is eight times smaller in magnitude than the first.

Figures 2-2(b)–(d) show the directions along which the first three eigenmodes of S,

xi = x0 + x̄ + σivi, i = 1, 2, 3 . (2.3)

act with respect to the average geometry x0 + x̄. More details of eigenmodes 1, 3 and
6 are shown in Figs. 2-4, 2-5 and 2-6 respectively. An additional scaling factor indicated
at the top of each figure was used to distinguish the effect of the eigenmode from the
mean geometry. Only the positive mode amplitude contribution is depicted in the figures.
Figure 2-4 indicates that the main effects of mode 1 are uniform thickening of the airfoil and
azimuthal translation. Mode 3, on the other hand, exhibits a thinning of the airfoil on the
suction surface away from the leading edge, with the shape of the latter being maintained.
Mode 6 shows more localized effects at both the nose and tail of the airfoil, i.e., a distortion
of the leading edge characterized by thickening and the appearance of a bulge on the pressure
side. The perturbations on the airfoil nose are noteworthy as the aerodynamic performance
of transonic airfoils is known to be sensitive to leading-edge shape and thickness. At the
tail of the airfoil, mode 6 causes an increase in thickness and the appearance of ripples on
both the suction and pressure surfaces.

Figure 2-2(a) indicates that the first six modes, when combined contain 99% of the total
scatter present in the sample. Figure 2-3 depicts the first 50 eigenvalues of S, showing that
they decrease in amplitude exponentially fast. This rapid decrease in relative energy of the
higher modes suggests that a reduced-order model containing only the first few modes may
be sufficient to represent most of the geometric variability contained in the original set of
measurements. The construction of such a model is discussed in Sect. 2.2.

The description of modes 1, 3 and 6 suggests a decomposition of the PCA modes into
geometric parameters of known aerodynamic and aeromechanic importance. Table 2.1
summarizes percent changes in maximum thickness, maximum camber, leading-edge ra-
dius, chord length and cross-sectional area, as well as trailing-edge deflection angles for the
first six eigenmodes. In computing the parameter values, the PCA modes were scaled as
in Eq. (2.3). The parameter values, except for trailing-edge angle, were computed with
XFOIL, an isolated airfoil design and analysis code developed by Drela and Youngren [28].
Trailing-edge angle changes were calculated by comparing mean camber line angles in the
vicinity of the trailing edge (5% of the camber line arclength). The row labeled “mean”
contains the changes corresponding to the average airfoil, x̄. Table 2.1 suggests that modes
2 and 4 exhibit non-negligible changes in maximum thickness, while modes 4 and 5 cause the
largest relative changes in trailing-edge angle. Although to a lesser degree than the mean
geometry, modes 2 and 5 also impact the maximum camber. The dominant contribution to
leading-edge radius change in the measurement data can be ascribed to the average airfoil.
On the other hand, the measured airfoils do not show substantial changes in chord length
from the design intent. In summary, it is not clear that any one mode leads to a dominant
change in a particular geometric feature; rather each mode contributes to changes in some
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Figure 2-2: IBR mid-span section: PCA modes
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Table 2.1: IBR mid-span section: Geometric features of PCA modes. Numbered entries are
percentage changes with respect to the average airfoil geometry, x0 + x̄. TE angle entries
are given in degrees. The average geometry is compared to the nominal airfoil.
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Avg -0.12 -0.98 18.33 0.06 -0.04 -1.03

1 -0.54 -0.06 -4.22 0.00 -0.04 -0.77

2 -1.09 0.28 2.15 0.04 -0.04 -1.27

3 0.53 0.04 1.83 -0.02 0.01 0.85

4 -0.74 0.10 1.34 -0.07 0.02 -0.87

5 -0.11 0.27 4.23 0.06 0.02 -0.01

6 0.03 -0.01 -4.11 0.01 0.00 -0.08

7 0.06 -0.03 3.04 -0.02 0.00 0.02

8 -0.04 0.16 0.65 0.00 0.00 -0.05

of the features to greater or lesser extent.
The above suggests a characterization of actual manufacturing variability involving sta-

tistical mode shapes to complement customary tolerancing parameters. Further, by linking
individual mode shapes to their impact on aerodynamic performance, a functionally based
tolerancing scheme could be devised. This issue will be discussed further in Chapter 3 which
addresses the impact of geometric variability on aerodynamic performance of compressor
airfoils.

2.2 PCA-Based Models of Geometric Variability

A high-fidelity model of the geometric variability present in X , for use in CFD-based proba-
bilistic aerodynamic analysis, is motivated as follows. Let Zi, 1 = 1, . . . ,mp be independent,
identically distributed random variables from N (0, 1) (normally distributed with zero mean
and variance one). By linearity the random vector

X = x0 + x̄ +

mp
∑

i=1

√

λiZivi (2.4)

has mean x0+x̄ and total scatter
∑mp

i=1 λi = E, i.e., a set of instances of X will have the same
mean and unbiased estimator of the variance, as the set of measurements X . Furthermore,
the number of samples of X for use in probabilistic analysis, N , can be large; for instance
in Monte Carlo simulation N � mp may be required (see Chapter 3).

A reduced-order model of X may be useful in preliminary analyses or when techniques
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other than Monte Carlo simulation are to be employed (e.g., moment methods, response
surfaces, etc). The rapid decay of the eigenvalues of the scatter matrix of the data (Fig. 2-3)
suggests a reduced-order model of X of the form

X̃ = x0 + x̄ +

K
∑

i=1

√

λiZivi

where K < mp is a free truncation parameter. For large enough N , as K increases from
unity the total variance of X̃ approaches that of X. In fact, the total scatter of a finite set
of instances of X̃ is bounded by

∑K
i=1 λi ≤ E.

As discussed in the next Chapter, although the geometric variability present in mea-
surement samples may be well described by the first few PCA modes, assessing its impact
on aerodynamic performance may require including a larger number of modes in the model
of geometric variability.

A PCA-based high-fidelity model obtained for the IBR airfoil is used in Chapter 3 to as-
sess probabilistically the impact of manufacturing variability on aerodynamic performance.
The impact of individual modes and noise amplitude are also addressed in that Chapter.

2.3 PCA Results Vs. Number of Samples

In the application of PCA to compressor rotor blade measurements discussed above, all
available samples (150) were used in the analysis. This section discusses how PCA results
(covariance matrix eigenvalues) vary according to the number of samples being considered.
For instance, given n measurement samples, there are

(n
k

)

different ways of selecting k ≤ n
among them.2

Figure 2-7 depicts convergence trends of the first four eigenvalues of the covariance ma-
trix for k measured samples. The average value and standard deviation of each eigenvalue
are computed from min

[(n
k

)

, 104
]

random permutations of the indices {1 . . . n}. For each
random permutation the eigenvalues of the covariance matrix of the corresponding indexed
measurements is computed via singular value decomposition. In Fig. 2-7 the average eigen-
values are shown as solid lines and a one-standard-deviation interval about the mean by
dashed lines. Table 2-7 shows mean and standard deviation values for the first 12 covari-
ance matrix eigenvalues for 5, 10, 60 and 150 samples. As shown in Fig. 2-7 and further
illustrated in Table 2-7, the uncertainty of the first computed covariance matrix eigenvalue
is very large for small sample sizes, and decreases monotonically as the sample size is in-
creased. Figure 2-7(d) indicates that the likelihood that a sample subset consisting of less
than ∼20 randomly-selected samples will be sufficient to approximate the fourth eigenvalue
to within 10% is rather small. It follows that in order to reduce the uncertainty of the PCA
due to sample size to acceptable levels, a large fraction of the total number of samples must
be considered.

2
�
n

k � or “n choose k” is defined for k ≤ n by [108]�
n

k � :=
n!

(n − k)!k!
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Figure 2-7: Eigenvalues of covariance matrix versus number of samples
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Table 2.2: Eigenvalues covariance matrix versus number of samples

Nsmpl 5 10 60 150

n
E[λn] σλn

E[λn] σλn
E[λn] σλn

E[λn] σλn

×103 ×103 ×103 ×103 ×103 ×103 ×103 ×103

1 3.0219 1.1010 3.0546 0.8124 3.1103 0.2745 3.1198 0.0192
2 1.0353 0.2741 1.0580 0.1883 1.0467 0.0669 1.0454 0.0047
3 0.5528 0.1675 0.6518 0.1118 0.6531 0.0382 0.6383 0.0029
4 0.2793 0.1080 0.4434 0.0925 0.5602 0.0427 0.5886 0.0039
5 0.2840 0.0666 0.4083 0.0355 0.4214 0.0025
6 0.1786 0.0369 0.2142 0.0164 0.2119 0.0012
7 0.1258 0.0246 0.1794 0.0153 0.1907 0.0013
8 0.0908 0.0184 0.1310 0.0083 0.1306 0.0007
9 0.0629 0.0147 0.1126 0.0074 0.1152 0.0007
10 0.0975 0.0062 0.1006 0.0006
11 0.0848 0.0060 0.0927 0.0006
12 0.0712 0.0043 0.0725 0.0004

2.4 Other Methods of Describing Geometric Noise

As pointed out earlier, the statistical characterization afforded by principal component
analysis can be used in modeling geometric variability for probabilistic simulation and
optimization purposes. However, high-resolution measurements of new or used airfoils are
not available in many turbomachinery design situations. In the absence of this type of
data, heuristic information such as expert opinion and past experience may be used in
describing geometric variability. Furthermore, known statistical characterizations may be
used to construct geometric variability models for similar airfoils (e.g., airfoils fabricated by
the same process).

Examples of additional geometric modes of possible aerodynamic interest to probabilistic
simulations include perturbations to thickness and camber distributions, twist, leading-
edge shape perturbations, overall chord-length changes, trailing-edge angle variations, etc.
The aerodynamic performance of transonic and supersonic airfoils is sensitive to thickness
distribution, particularly to the value and location of its maximum. For instance, in axial
compressor blade passages the maximum thickness influences the shock structure and flow
passing capabilities. Similarly, transonic airfoils are sensitive to variations in leading-edge
thickness and shape, as pressure distribution, boundary layer transition, separation and
reattachment depend to some degree on the shape of the leading-edge.

Thickness, camber, leading edge bluntness and twist modes are used in the sequel to
model airfoil geometric variability when manufacturing or wear data are not available. The
thickness perturbation consists of a smooth distribution acting along the directions normal
to the suction or pressure surfaces of the airfoil. The thickness distribution is given by

f(x) = axα−1(1− x)β−1

for 0 < x < 1, where α and β are distribution parameters which control the location of
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maximum thickness increase and how fast the mode dies out as it approaches the leading
and trailing edges. The parameter a controls the amplitude of the thickness perturbation.
Figure 2-8(a) shows the effect of applying the thickness mode with parameters a = 0.01
chord lengths, α = β = 4 to a sample compressor airfoil. Figure 2-8(a) also shows the effect
of twist which under the present two-dimensional restriction is implemented as a solid-body
rotation about the airfoil’s centroid.

Thickness and Rotation

Nominal
Perturbed

(a) Thickness, twist

b=1
b=1.5
b=2

(b) Leading edge bluntness

Figure 2-8: Thickness, twist and leading-edge bluntness

Leading edge shape variability is of particular interest in assessing the impact of wear
on airfoil performance. Aircraft engines, for instance, ingest foreign particles that erode
the leading edges of fan and compressor blades [102]. A leading-edge bluntness mode is
implemented by fitting a profile to the “nose” of the airfoil section. The profile is defined
by

g(x) = [4x(1 − x)]1/b

for 0 < x < 1 where b ≥ 1 serves a “bluntness” parameter. For b = 1, g(x) is a concave-
down parabola centered at x = 1/2 with maximum value of 1. As b increases so does the
bluntness of the leading edge. Only values of b greater than or equal to unity are pertinent
to the present application. Figure 2-8(b) shows the nose of an airfoil to which three different
profiles with b values of 1, 1.5 and 2 have been fitted.

Although the other heuristic geometric noise modes discussed here can be assumed to
be normally distributed, the impact of erosion on the leading edge is more likely to result
in an increase, rather than a reduction, of the leading-edge radius [104]. It follows that
a symmetric distribution (as is the Gaussian distribution) that equally favors smaller and
larger leading edge radii is not appropriate. Therefore, bluntness is modeled here as a
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random variable Xb with Beta probability density, i.e.,

fXb
(x) =

{

xα−1(1−x)β−1

B(α,β) , 0 < x < 1

0 , otherwise

where

B(α, β) =

∫ 1

0
xα−1(1− x)β−1dx =

Γ(α)Γ(β)

Γ(α+ β)
.

The mean and variance of Xb thus defined can be shown to be [108] (see also Chapter 3)

E[Xb] =
α

α+ β
, Var(Xb) =

αβ

(α+ β)2(α+ β + 1)
.

The amount of asymmetry or skewness of Xb—as indicated by its third central moment—
can be found to be [88]

2(β − α)
√
α+ β + 1

(α+ β + 2)
√
αβ

.

As suggested in Refs. 105 and 103, the leading-edge radius of eroded airfoils has been
observed to increase to twice the baseline value. The amount of leading-edge shape distor-
tion will depend on many factors such as thickness distribution and wear rate. A continuous
Beta distribution in the interval [0.8, 2.0] with parameters α = 2, β = 4 is assumed for the
leading-edge bluntness mode. Figure 2-9 shows the density function of Xb for the chosen
parameters; the dashed line indicates the location of the mean value. The standard devia-
tion and skewness of Xb are 0.21 and 0.81 respectively, indicating that the distribution of
Xb is weighed toward values higher than the average.

0.8 1 1.2 1.4 1.6 1.8 2
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0.5

1
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Bluntness Parameter, b

f X
b

Figure 2-9: Aerodynamic performance trends and bluntness parameter density

The selection of input statistics for the discrete modes mentioned above is discussed
in Chapter 3 as part of assessing their impact to aerodynamic performance of isolated
compressor airfoils.
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2.5 Summary

This chapter outlines a procedure for characterizing the geometric variability of compres-
sor blades by means of Principal Component Analysis (PCA). PCA is a technique used
in various fields to reduce the dimensionality of large ensembles of measured or sampled
data. In the present context PCA is used to obtain high-fidelity and reduced-order models
of geometric variability from compressor airfoil measurements. The high-fidelity statistical
characterization thus afforded provides a model of geometric variability suitable for prob-
abilistic simulation and optimization. PCA results for CMM measurements of an existing
integrally-bladed rotor were presented. The geometric variability in the original sample was
found to be well represented with less than ten discrete modes. The geometric noise modes
were found in general not to correspond uniquely to single geometric design and tolerancing
parameters of known aerodynamic importance. Additional modes of geometric variability
pertaining to airfoil wear were also discussed.
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Chapter 3

Impact of Geometric Variability

On Compressor Blade

Aerodynamics

Numerical codes implementing techniques from computational fluid dynamics (CFD) have
for many year been used to analyze and design turbomachinery blading. However, there have
been few rigorous attempts to use CFD tools to assess the impact of geometric variability
on compressor blading performance, due primarily to the excessive computational expense
involved. In this Chapter, the quasi-2D flow analysis code MISES was used as part of a
probabilistic analysis framework to assess the impact of geometric and inlet flow condition
uncertainty on the aerodynamic performance of transonic compressors. Blade row total
pressure loss coefficient and turning were the selected measures of aerodynamic performance.
Three rotor blades are considered, with inlet Mach numbers in the range of common high
pressure axial compressor operation. The inlet Mach numbers considered are 0.82, 0.90 and
1.25. The geometric noise models are based on the PCA results of Chapter 2. The input
variability is found to affect the expected values of loss and turning as well as their the
uncertainty. It is observed that the amplitude of the geometric noise variability is linearly
related to increase of output variability. The relative mean-shift—or difference between the
nominal and expected values—is found to be larger in the subsonic-inlet cases than in the
supersonic one, but the latter exhibits more variability in both loss coefficient and turning.
The relative contribution of the average geometry of the noise model to mean shift decreases
as the noise variability is increased.

3.1 Aerodynamic Performance Assessment

3.1.1 Background

The aerodynamic performance of a compressor rotor may be summarized by the changes
in total enthalpy and entropy in the flow across the blade row, i.e., the amount of work
transfered to the fluid and the losses (profile, endwall, shock) accrued in the process.

Applying the first law of thermodynamics and conservation of angular momentum to
a control volume surrounding a stream-tube across the blade passage leads to the Euler

29



turbine equation
∆ht = ω(r2v2 − r1v1) , (3.1)

where ∆ht denotes the change in total enthalpy; ω, r and v denote wheel speed, radius and
flow velocity, and the subscripts 1 and 2 stand for inlet and exit respectively. Eq. (3.1)
relates the change in total enthalpy per unit mass ∆ht to the change in angular momentum
per unit mass across the passage. For small radial changes across the blade row, Eq (3.1)
reduces to

∆ht = ωr [u1 tanβ1 − u2 tan(β1 + ϑ)]

where u and β are the the axial flow velocity and relative flow angle respectively and ϑ
denotes the flow turning, ϑ ≡ β2 − β1.

An appropriate choice for a measure of loss in an adiabatic machine is entropy gen-
eration [23]. The increase in entropy results in a decrease of the stagnation pressure rise
compared to the ideal (isentropic) value. In what follows the loss coefficient is defined as the
drop in total pressure from the ideal value at passage exit scaled by the difference between
inlet total and static pressure,

$ =
p0

T2
− p̄T2

pT1 − p1
. (3.2)

In Eq. (3.2), p0
T2

is the ideal (isentropic) total pressure at the passage exit,

p0
T2

=
γ − 1

γ
h0ρ0ref

(

h0

I

)
1

γ−1

.

The rothalpy, I,

I = h+
|u|2
2
− (Ωr)2

2

is invariant in the rotating frame of reference and h0 = I + 1
2(Ωr)2, where Ω is the wheel

speed and r the streamtube radius. In MISES the reference quantity ρ0ref
is taken to be

unity. Finally p̄T2 is the mass-averaged total pressure at the passage exit. Details of MISES’
cascade loss calculation can be found in Appendix C of Ref. 141.

3.1.2 Blade row aerodynamic analysis: MISES

MISES (Multiple blade Interacting Streamtube Euler Solver) is an interactive quasi-two-
dimensional viscous flow analysis package [27] used for turbomachinery analysis and design.
MISES’ flow solver, ISES can be used to analyze and design single or multi-element airfoils
over a wide range of flow conditions. ISES incorporates a zonal approach in which the
inviscid part of the flow is described by the projection of the steady-state 3-D Euler equations
onto an axisymmetric stream-surface of variable thickness and radius. The resulting two-
dimensional equations are discretized in conservation form over a streamline grid. The
viscous parts of the flow (boundary layers and wake) are modeled by means of a two-
equation integral boundary layer formulation [24]. The viscous and inviscid portions of the
flowfield are coupled through the displacement thickness and the resulting nonlinear system
of equation is solved using the Newton-Raphson method [141].

ISES can model transitional, trailing-edge and shock-induced separation [141] and recent
modifications allow for boundary layer suction and blowing [85]. MISES has recently been
used to design high-pressure ratio conventional and counter-rotating compressors [70,85] as
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well as aspirated fan stages [114]. Preliminary MISES results from the present study were
used by Häcker [52] to create reduced order models of the impact of shape variability on
compressor blade performance.

A feature of MISES that is particularly relevant to probabilistic analysis is its speed.
For the cases discussed herein, typical execution times are 3 to 10 seconds per trial on a
current commodity CPU. 1.

3.2 Probabilistic Analysis

Conceptually, the computed loss coefficient and turning may be seen as functions of n inde-
pendent variables representing the geometry of the flow passage andm variables representing
other flow parameters,

$ = $(x, y), ϑ = ϑ(x, y)

where x ∈ R
n denotes the vector of geometric parameters and y ∈ R

m contains the remain-
ing parameters. Both $ and ϑ are deterministic functions of x and y, that is, for given x
and y, there is a unique value of $.

Consider next a continuous random vector X with joint probability density function
fX [108]. For fixed flow parameters y, the expected value of $(X, y) is defined by

µ$ := EX [$(X, y)] =

∫�
n

$(X, y)fX(x) dx , (3.3)

and the variance of $(X, y) is given by

σ2
$ := Var($(X, y)) = EX [($(X, y) − µ$)2] . (3.4)

Similar expressions follow for mean µϑ and variance σ2
ϑ of turning. It is often useful in com-

paring the variability of outputs with dissimilar expected values to consider their coefficient
of variability (COV), defined as the ratio of the standard deviation to the mean of a given
random variable, e.g. the COV of loss coefficient is defined to be

V$ :=
σ$

µ$
.

In general the functional dependence of $ on the geometric parameters x is too involved
to allow for closed form evaluation of the integrals in definitions (3.3) and (3.4). However,
numerical approximations can be obtained via numerical probabilistic analysis techniques.
One such technique, the Monte Carlo method, is described below and later applied to es-
timating the effect of geometric and inlet flow condition variability for three compressor
airfoils. Garzon and Darmofal [44] applied and compared two other probabilistic analysis
techniques, response surface methodology and probabilistic quadrature, to assessing the
impact of geometric variability on aerodynamic performance. In that study, probabilistic
quadrature outperformed quadratic response surfaces in predicting mean and standard de-
viation of loss coefficient. Mean loss coefficient predictions by probabilistic quadrature were
in good agreement with Monte Carlo predictions, but standard deviations were in general
under-predicted.

1Intel 1.8 GHz Xeon processor
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3.2.1 Monte Carlo Simulation

The systematic application of Monte Carlo method to scientific problems dates from the
1940s (see Ref. [56], Sect. 1.2 for a more detailed historical account). During World War
II Monte Carlo methods were used to solve neutron diffusion problems. After the war
Ulam, Fermi and von Neumann showed how Monte Carlo methods can be used to obtain
approximate solutions to otherwise intractable deterministic problems [56].

Monte Carlo methods are numerical techniques used to approximate multivariate in-
tegrals via statistical sampling, a procedure also known as random quadrature [128]. The
Monte Carlo method can be applied to both deterministic and probabilistic problems. Ap-
plications of the former type include approximating multidimensional integrals [37] and
solving partial differential equations numerically [50, 53, 110]. In the present context the
Monte Carlo method is used to estimate probabilistic moments (mean and variance) of de-
terministic functions having random arguments, that is, mean and variance of loss coefficient
and turning for compressor blade rows subjected to geometric variability.

A frequently used unbiased estimator of the mean of a function g of one random variable
X is the arithmetic average, i.e., for sample size N the estimator of the mean of g(X) is
simply

µ̂g =
1

N

N
∑

i=1

g(xi)

which has standard error
σµ̂g

=
σg√
N

where σg is the standard deviation of g(X). In practice σg is not generally known, however
it can be approximated with the unbiased estimator of the variance of g(X),

σ̂2
g =

1

N − 1

N
∑

i=1

[g(Xi)− (µ̂g)]
2 =

1

N − 1

[

N
∑

i=1

g(Xi)
2 −Nµ̂2

g

]

.

The standard error of σ̂2
g is given approximately by

σσ̂2
g
'

σ2
g

√

N/2

with equality holding only when g(X) is normally distributed [56]. It follows from the above
expressions that the standard error of the estimators of mean and variance of g(X) decrease
with the square root of the sample size.

It is often instructive to consider central moments higher than the second one. The
ratio of the third central moment to the cube of the standard deviation, called the skewness

coefficient, provides a measure of asymmetry [7]. Mooney [88] recommends the following
expression as an unbiased estimator of skewness coefficient

ŝ =
1
N

∑N
i=1(g(xi)− µ̂g)

3

[

1
N

∑N
i=1(g(xi)− µ̂g)2

]3/2
.

Many improvements to the basic Monte Carlo algorithm have been introduced to reduce
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the number of evaluations required to achieve a given tolerance level. Among them are
importance sampling, stratification, control variates, conditional Monte Carlo, etc. [37, 65,
84, 128]. In the current implementation simple Monte Carlo sampling will be used in all
simulations.

One of the attractive features of Monte Carlo simulation is that parallelization of con-
current calculations can be readily implemented in shared memory architectures as well as
on heterogeneous machines linked over a network. In the present context each function
evaluation consisted of grid generation, flow-field analysis and post-processing steps that
were automated and parallelized using shell scripts. All probabilistic simulations reported
in this thesis were carried out on a 10-node Beowulf cluster at the Aerospace Computational
Design Laboratory, MIT. Each node was equipped with dual 1.8 GHz Xeon processors. De-
pending on the application (see next section), 2000 MISES trials required on the order of
one to three hours of execution time.

3.3 Applications

This section presents results from probabilistic aerodynamic analyzes of three transonic
compressor rotor blades subjected to geometric variability. The airfoils and their inlet
conditions are representative of typical transonic sections found in core compressors rotors.
The first airfoil, denoted IBR, corresponds to the mid-span section of the integrally-bladed
rotor discussed in Section 2.1. The second case, denoted DFVLR belongs to a transonic
cascade with relative inlet Mach number of 0.82. The last case is the mid-span section of
the NASA Stage 37 experimental rotor at relative inlet Mach number of 1.25.

3.3.1 Integrally-bladed rotor, mid-span section

The integrally-bladed rotor is part of the fifth stage of an experimental core compression
system. The rotor consists of 56 blades with inlet tip radius of 9.87 inches and hub-to-tip
ratio of 0.85.

The axisymmetric viscous flow package MTFLOW was used to perform the initial
through-flow calculation for the IBR and R37 cases (Sect. 3.3.3 below). MTFLOW im-
plements a meridional streamline grid discretization of the axisymmetric Euler equations in
conservation form. Total enthalpy at discrete flowfield locations and constant mass along
each streamtube are prescribed directly. This allows MTFLOW to incorporate localized
effects of swirl, entropy (loss) generation and blockage due to rotating or static blade rows
without having to solve, in addition, differential continuity and energy equations [25, 85].

The following operating conditions were assumed in the through-flow analysis: mass
flow rate of 20 kg/sec, wheel speed of 1200 rad/sec (Utip = 301m/sec) and axial inlet flow
(no swirl). In addition the stage inlet static temperature and pressure were taken to be
390 K and 200 kPa resulting in an inlet axial Mach number of 0.43. Figure 3-1(a) shows
the pressure coefficient contours computed with MTFLOW for the specified flow conditions.
Figure 3-1(b) depicts the approximately mid-span stream path considered in the analysis.

Figure 3-2(a) shows the cross section of the nominal IBR blade along the specified
stream path. The inlet relative Mach number and flow angle are 0.90 and 62.64 degrees
respectively2 and the Reynolds number based on inlet tip radius is 3 × 106. Figure 3-2(b)

2A correction in inlet flow angle predicted by MTFLOW was needed to minimize passage losses
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Figure 3-1: IBR through-flow analysis

shows the pressure distribution on the suction and pressure surfaces of the airfoil. After
a short pre-compression entry region a shock appears on the suction surface followed by
mild compression until about two-thirds of the chord length; from there the flow is further
decelerated until the trailing edge is reached. On the concave side an adverse pressure
gradient exists until about mid-chord, followed by a plateau. The baseline loss coefficient
and turning were computed by MISES to be 0.027 and 14.40◦ respectively.

The noise model employed in the probabilistic analysis is the PCA-based model de-
scribed in Chapter 2. The model is given by

X̃ = x0 + x̄ +

K
∑

i=1

√

λiZivi

where x0 + x̄ is the average geometry, λi and vi are the ith eigenvalue and corresponding
eigenvector of the scatter matrix of measurements, and the Zi i = 1, . . . ,K are independent,
standard normally distributed random variables (i.e., from N (0, 1)). As was discussed in
Chapter 2, each measured blade was “cut” along the path shown in Fig. 3-1(b) and the
resulting two-dimensional cross section was used in constructing the scatter matrix. For
the present calculations all modes were included, i.e., K = mp. The effect of varying the
cut-off parameter K is explored at the end of this sub-section.

The probabilistic analysis consisted of computing the loss coefficient and turning of
blades formed by perturbing the nominal geometry (i.e., instances of X̃) while holding all
other input parameters fixed.

The convergence criterion used for the Monte Carlo simulations was

∣

∣σ̂N
$ − σ̂N−n

$

∣

∣ < ε

where the superscripts indicate the number of samples taken. In the present study ε = 10−5

and n = 10 were used. Results from numerical experimentation suggested that N = 2000
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Figure 3-2: IBR, M1 = 0.90, axial velocity-density ratio (AVDR): 1.27
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trials were typically sufficient to achieve the required tolerance for all the cases reported
here.

Figure 3-3 shows histograms of loss coefficient and turning. The abscissa represents the
values of the output variable, while the ordinate indicates the relative number of trials that
fall within each of the equal-length intervals subdividing the abscissa. In the limit of large
number of trials, N →∞, the outline of the histogram bar plot approaches the continuous
distribution of the output variable. The two vertical dashed lines indicate the nominal
(baseline) and mean values.

The estimated mean loss coefficient is about 4% higher than the baseline (noiseless)
value, while the mean turning is about 1% lower than nominal. The estimated variabilities
of loss coefficient and turning are small, with a coefficient of variability of about 0.03 and
a deviation of less than one-tenth of one degree respectively. The loss coefficient density is
less symmetric (with positive skewness coefficient) than that of the turning.
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Figure 3-3: IBR: Impact of geometric variability

The small impact of geometric variability on aerodynamic performance is not surpris-
ing given the small geometric variability present in the measurement samples. Produc-
tion airfoils, manufactured with processes that are less tightly controlled than the current
flank-milled IBR case, may be expected to exhibit higher levels of geometric variability.
Appendix B illustrates the differences in shape variability between two IBRs manufactured
with point and flank milling respectively. As shown in the appendix, an IBR fabricated via
the more common point milling process can exhibit a ten-fold or larger increase in geometric
variability compared to a flank milled IBR.

To explore the impact of increased manufacturing noise amplitude on the aerodynamic
performance statistics, a series of Monte Carlo simulations were performed with various
levels of geometric noise. In these the geometric noise model was modified to take the form

X̃ = x0 + x̄ +

K
∑

i=1

a
√

λiZivi . (3.5)
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where a is a geometric variability amplitude. Figure 3-4 summarizes the Monte Carlo
estimates of mean and standard deviation of the outputs of interest for a = 1, . . . , 8. In
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Figure 3-4: IBR: Mean and standard deviation vs. noise amplitude

the figure the horizontal dashed line indicates the loss and turning corresponding to the
average geometry, x0 + x̄. Similarly the baseline loss and turning are indicated by solid
lines. At the original noise level, a = 1, the average geometry dominates the difference in
loss coefficient and turning from the baseline values, i.e., the geometric variability about
the average geometry has little effect on the “mean shift.” For a noise amplitude of a = 2,
the effect of the geometric variability becomes noticeable; in the case of the loss coefficient
the noise contributes about half of the total shift. For a = 4 the contribution of the average
geometry to the turning angle shift from nominal is only half of the total. For a > 4 the shift
from nominal in both loss and turning is dominated by the variability of the measurements,
rather than by the average geometry. One implication of the increase in relative importance
of the scatter is that controlling the manufacturing process by “re-centering” the target
geometry may not be sufficient to effectively improve the mean performance.

As mentioned above, at the level a = 1 the loss coefficient mean-shift is about 4% while
the COV is less than 3%. In contrast, at a = 2 the loss coefficient mean-shift and COV are
6% and 5% respectively; and at a = 5 the corresponding values are 23% and 15%.

Mean loss coefficient and turning depicted in Fig. 3-4 do not appear to vary linearly
with geometric noise amplitude in the vicinity of a = 1. Rather the amount of curvature
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indicates a higher-order dependence. On the other hand, the increase in loss and turning
variability—as measured by their estimated standard deviation—increases nearly linearly
with geometric noise amplitude, at the approximate rates of 0.001/a for loss and 0.1/a de-
grees for turning. This behavior can be explained by considering a quadratic approximation
to the loss coefficient; namely

$̂(x) = $̂0 + c1x+ c2x
2 ,

where x is a noise variable. In particular consider a centered normal variableX ∼ N (µX , σ
2
X)

with µX = 0. Then, letting a stand for noise amplitude,

E[$̂(aX)] = $̂0 + c1aE[X] + c2a
2
E[X2]

= $̂0 + c2a
2σ2

X .

In words, the mean-shift in loss coefficient under the assumed quadratic dependence and
centered noise is seen to depend quadratically on the noise amplitude.

The effect of increasing the geometric variability is further illustrated in Figs. 3-5 and
3-6 which show histograms of loss coefficient and turning angle corresponding to noise
amplitudes of a = 2 and a = 5 respectively. In addition to larger mean shift and higher
variability for both loss coefficient and turning, the figures show an increase in skewness
from 0.5 at a = 1 to 0.75 at a = 2 and 1.2 at a = 5. In other words, values of loss coefficient
higher than the average are more widely dispersed than those lower than average. The
increase in asymmetry provides further evidence of the nonlinear dependence of viscous
loss generation on noise amplitude. In contrast, the turning distribution remained fairly
symmetric (low skewness coefficient) for all three cases. Figure 3-7 shows plots of computed
cumulative distribution functions (CDF)3 of loss and turning for values of a ranging from
one to eight. The nominal and average-airfoil values are indicated by dashed and dash-dot
vertical lines respectively and the arrows indicate the direction of increasing a. Figure 3-
7(a) shows how the high-end “tails” of the distributions become thicker as a increases. For
a = 1 the probability that the loss coefficient will take on values smaller than nominal is
only about 15%, while at a = 8 that probability has dropped nearly to zero.

As shown in Fig. 3-7(b), the CDFs of turning seem to all cross in the vicinity of the
nominal value. To see how this behavior arises consider a quadratic approximation to the
turning angle of the form

ϑ̂(x) = ϑ̂0 + c1x+ c2x
2 .

Taking as before X ∼ N (µX , σ
2
X) with µX = 0, then

E[ϑ̂(aX)] = ϑ̂0 + c1aE[X] + c2a
2
E[X2]

= ϑ̂0 + c2a
2σ2

X .

3The distribution function F : � 7→ [0, 1] of a random variable X is defined by F (b) = P{X ≤ b}, i.e.,
the probability that X takes on a value smaller than or equal to b.
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Figure 3-5: IBR: Impact of geometric variability (a = 2)
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Figure 3-6: IBR: Impact of geometric variability (a = 5)
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Figure 3-7: IBR: Impact of geometric variability on distributions of loss and turning, a =
1, 2, . . . , 8

The variance of ϑ̂(aX) is

Var(ϑ̂(aX)) = E

[

(

ϑ̂(aX)− E[ϑ̂(aX)]
)2
]

= E

[

(

c1aX + c2a
2(X2 − σ2

X)
)2
]

Using the moment-generating function for normally distributed functions [115], the third
and fourth moments of X can be readily found to be E[X 3] = 3µXσ

2
X + µ3

X = 0 and
E[X4] = µ4

X + 6µ2
Xσ

2
X + 3σ4

X = 3σ4
X , so that

Var(ϑ̂(aX)) = c21a
2σ2

X + 2c22a
4σ4

X = c21a
2σ2

X

(

1 +
2c22a

2σ2
X

c21

)

It follows that when

2

(

c2aσX

c1

)2

� 1

we can expect approximately linear growth of σϑ with noise amplitude a and a mean shift
that depends quadratically on a. The trend is illustrated by an example in Fig. 3-8 for
Var(ϑ̂0) = 1, c1 = −1 and c2 = −0.01 (cf. Fig. 3-4 and 3-7). Because c2 is small compared
to c1, the contribution of the mean shift is dwarfed by that of the variance in the CDF plot,
causing the curves to cross in the vicinity of the mean value, in the manner of Fig 3-7(b).

The impact of geometric variability on boundary layer thickness is illustrated in Figs. 3-
9 for noise levels (a) a = 1 and (b) a = 5. The figures show plots of nominal and mean
momentum thickness (θ/c) on the suction and pressure sides (indicated in the plots by
SS and PS respectively). The dashed and dot-dashed lines indicate the nominal values—
i.e., without geometric noise—while the solid lines indicate the mean values from Monte
Carlo simulation. The error bars indicate to a one-standard-deviation interval about at the
mean. The discrepancy between nominal and mean momentum thickness values is more
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pronounced on the pressure side, as is variability. At the higher noise level the impact on
the pressure side momentum thickness variability and mean-shift is more evident.
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Figure 3-9: IBR: Effect of geometric variability on displacement thickness. Mean indicated
by solid lines, one-standard deviation interval by error bars. [SS]: suction side, [PS]: pressure
side

Figures 3-10 show nominal and statistical plots of shape parameter H (i.e., the ratio of
displacement to momentum thicknesses) at noise levels a = 1 and 5. H may be thought
of as an indicator of boundary layer “health”, with values above four indicating possible
downstream boundary layer separation [19]. The nominal values of shape parameter are
higher near the airfoil nose, reaching four on the pressure side at about x/c = 0.05 and
then dropping below two for most of the airfoil chord on both sides. The mean-shift and
variability of H is more pronounced on the pressure side, especially at x/c = 0.05. The
effect becomes more evident at that location at the higher variability level (Fig. 3-10(b)).

As discussed by Cumpsty [19] 4, the momentum thickness itself does not necessarily
indicates the mechanism by which losses are created. A more appropriate quantity to

4Sect. 1.5; see also Denton [23]
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Figure 3-10: IBR: Effect of geometric variability on shape parameter H = δ∗/θ.

consider is the boundary layer dissipation coefficient, defined by

C ′

d =

∫ δ

0

τ

ρU2
e

∂

∂y

(

u

Ue

)

dy , (3.6)

where τ stands for shear stress, Ue is the boundary layer edge velocity, ρ stands for density,
δ is the boundary layer thickness and u is the component of the flow velocity along the
dominant flow direction x (x, and its normal direction y, here stand for boundary layer
coordinates).

As shown by Denton [23] the cumulative value of ρU 3
eC

′

d over the interval 0 ≤ x′ ≤ x,
∫ x

0
ρU3

eC
′

ddx
′ , (3.7)

is a measure of the rate of entropy generation per unit span 5 in the boundary layer.
Figures 3-11 show nominal and statistical plots of ρU 3

eC
′

d at noise levels a = 1, 5. The
highest nominal and mean values occur on the airfoil nose on the pressure side and at about
10% chord on the suction side. Local mean dissipation values are higher on the suction side
of the airfoil but the variability is larger on the pressure side.

Figures 3-12 show cumulative values of ρU 3
eC

′

d as per Eq. (3.7). The rate of entropy
generation is about three times higher on the suction side than on the pressure side. The
nominal-to-mean shift is more pronounced on the pressure side, as is the variability. The
final entropy generation rate uncertainty and mean shift are more evident at the a = 5 noise
level.

Although using Monte Carlo simulation—with its weak dependence on number of in-
put variables—rests importance from consideration of reduced order models of geometric
variability, additional information that can be obtained from considering groups of modes

5Assuming that the process takes place at some fixed reference temperature Tref
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Figure 3-11: IBR: Effect of geometric variability on boundary layer dissipation coefficient
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Figure 3-12: IBR: Effect of geometric variability on boundary layer entropy generation as
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separately. Figure 3-13 presents statistics of loss and turning according to the number of
PCA modes used in the geometric noise model (denoted K in Eq. 3.5) for noise amplitude
a = 5. For each value of K, a Monte Carlo simulation with N = 5000 trials was performed.
Baseline and average-geometry values are denoted by constant dashed lines, while the values
corresponding to K = mp (all modes) are shown by a solid line. The average-geometry con-
tribution to mean loss constitutes a relatively small fraction of the total shift from nominal,
as pointed out earlier. The scatter due to the first six modes is responsible for about 90%
of the total loss coefficient mean shift. Similarly, the first six modes taken together produce
close to 90% of the turning mean-shift obtained when all modes are considered. The first six
modes are also the most influential on loss coefficient variability, as indicated by its standard
deviation plot. The first two modes clearly dominate turning angle variability. Table 3.1
shows percent differences between statistics reduced-order and full model simulations for
noise level a = 5. Using only the first PCA mode, mean loss is under-predicted by 15% and
the error in standard deviation of loss and turning is 56 and 71% respectively. It takes 15
modes to reduce the error in standard deviation of loss coefficient to 7%. Beyond K = 15
comparisons stop being meaningful due to lack of resolution in Monte Carlo simulation.

3.3.2 DFVLR transonic cascade

The second application considered in this chapter corresponds to the 45%-span section of a
compressor blade row with design pressure ratio of 1.51 and tip Mach number of 1.38 [119],
denoted here as DFVLR. Quasi-2D analysis of the DFVLR case using MISES for Mach
numbers ranging from 0.82 to 1.1 and axial velocity-density ratios (AVDR) between 1 and
1.184 were conducted and reported by Youngren [141]. For the probabilistic analysis of this
airfoil, inlet Mach number M1 = 0.82, inlet flow angle β1 = 55.95◦, AVDR = 1 and constant
stream-tube radius (2-D cascade) were taken as the baseline conditions.

Figure 3-14(a) shows the DFVLR airfoil cross section (stagger angle ξ = 48.5◦). Fig-
ures 3-14(b) shows the pressure distribution on the surfaces of the airfoil, while 3-14(c)
depicts the Mach number contours in the flow passage. The loss coefficient and turning
computed by MISES for the specified baseline conditions are $0 = 0.0297 and ϑ0 = 9.26◦

respectively.
Three geometric noise modes and Mach number variability are considered. The former

group is comprised of thickness, twist and leading-edge bluntness modes. The selection of
these geometric noise modes was based primarily on two arguments. First, the statistical
analysis of existing hardware reported in Chapter 2 suggested that these modes are strong
contributors to shape variability. Secondly, these modes are known to directly impact
transonic and supersonic airfoil aerodynamics, as discussed in Section 2.4.

Twist, thickness and Mach number are modeled as normally distributed, independent
random variables, Xtw, Xth, XM . The parameters used to define their distributions in the
present application, namely mean and standard deviation, are summarized in Table 3.2.
The thickness variable is scaled with respect to the nominal chord length. Twist is given in
units of degrees.

Detailed information about geometric variability in compressor airfoils, particularly
twist and thickness, is not readily available in the open literature. Thus the values sum-
marized in Table 3.2 were obtained by scaling the amplitude and mode shape results from
the two-dimensional PCA study reported in Chapter 2 to the DFVLR section. Figure 3-
15 shows histograms of exit Mach number from probabilistic simulations of the IBR case
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Figure 3-13: IBR mid section: Statistics versus number of PCA modes, a = 5

Table 3.1: Percent difference in statistics from reduced-order model (with K modes) and
full model (K = mp) simulations, a = 5

K µ$ σ$ µϑ σϑ

1 -14.5 -56.4 1.08 -71.1

5 -5.2 -20.0 0.43 -9.3

10 -2.2 -5.7 0.19 -5.2

15 -1.4 -3.0 0.12 -2.4

20 -0.8 -2.5 0.07 -1.4
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Table 3.2: DFVLR random input statistics

Mode Mean Std. Dev.

Thickness (c.l.) 0 0.002

Twist (deg) 0 1

Mach Number 0.82 0.01

discussed previously. The standard deviations for the a = 1 and a = 5 noise amplitude
cases suggest a reasonable range of inlet Mach number variability to explore would be
0.003 ≤ σM ≤ 0.011. In the DFVLR and R37 cases the higher level of inlet Mach number
variability, σM = 0.01 was used.
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Figure 3-15: IBR exit Mach number variability

The leading-edge shape variability was introduced to account for both manufacturing
imperfections and wear; it is modeled here via the bluntness mode described in Section 2.4.
Figure 3-16(a) illustrates the impact of increasing the leading-edge bluntness of the DFVLR
airfoil while keeping other geometric and flow conditions fixed. Figure 3-16(b) shows the
modified leading-edge shapes for various values of bluntness parameter values. The degra-
dation in performance is shown in the figure as an increase in loss coefficient and a decrease
in turning. When the bluntness parameter has been increased to three, the loss coefficient
has gone up by approximately 8% while the turning has decreased by about 1.5%. At an
increase in b of 3 the increase in loss is about 17% while the turning has decreased by
about 2.8%. The larger relative impact on the loss coefficient is to be expected since the
loss generation for this low-Mach-number transonic case is primarily due to viscous effects,
and the leading edge shape will directly impact the boundary layer transition and growth.
The effect of leading-edge bluntness can be expected to be more pronounced for higher
Mach number cases, as the loss due to leading-edge thickness has been shown to scale with
M2

inlet [71].
Figure 3-17 shows histograms of loss coefficient and turning angle resulting from the
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Monte Carlo simulation. The results indicate that the expected value of loss coefficient in
the presence of the prescribed geometric and inlet flow condition variability is about 0.032,
an increase of 6% from the baseline value. The predicted standard deviation is about 0.002,
which corresponds to a variability of 6% as represented by the coefficient of variability V$.
The skewness coefficient is about 1.8, indicating that $(X) is noticeably asymmetric, with
values higher than the average being more dispersed than those smaller and not normally
distributed. The skewness of $(X) indicates that geometric or inlet condition perturbations
are more likely to cause a deterioration, rather than an improvement, in the aerodynamic
performance of the blade passage. This behavior is typical of airfoils that have been op-
timized for particular operating conditions or without consideration to noisy geometry or
inputs.

In contrast to the loss coefficient statistics, the mean turning angle differs little from
the baseline value (less than 0.2% change) but the coefficient of variability is higher than
that of the loss, at about 0.1. The turning distribution is more symmetric than the loss
coefficient distribution, as indicated by its smaller skewness coefficient.

Figure 3-18(a)–(d) show nominal, mean and standard deviation values of momentum
thickness, shape parameter, dissipation and boundary layer entropy generation rate. The
nominal and mean momentum thickness have similar values until 70% chord after which the
suction side thickness grows faster to become twice as large as the pressure side thickness
at the trailing edge. The mean-shifts are not as pronounced as in the IBR case (cf Fig. 3-9).
The nominal shape parameter is highest in the immediate vicinity of the airfoil nose. H
is below two until 80% chord, after which it grows to three on the suction side. Boundary
layer dissipation, as indicated by ρU 3

eC
′

d is highest and most variable in the vicinity of the
leading edge. Nominal and mean local dissipation values are higher on the suction side and
are also more variable on the aft 70% chord. The total nominal entropy generation rate is
about 2.5 times higher on the suction side. The final mean-shift and standard deviation are
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Figure 3-17: DFVLR: Histograms of loss coefficient and turning angle

twice and five times larger on the pressure side than on the suction side, respectively.

3.3.3 NASA rotor 37, mid-span section

NASA rotor 37 (R37) is an experimental compressor rotor designed at NASA Glenn Re-
search Center. This has been used for experimental and numerical studies of turbomachinery
phenomena such as endwall blockage development [122] and tip clearance effects [17, 121].
The rotor consists of 36 blades having inlet hub-to-tip diameter ratio of 0.7 and aspect
ratios of 1.19 with an inlet tip radius of 0.252 m. The design hub and tip relative inlet
Mach numbers are 1.13 and 1.48 respectively. The design tip speed is 454 m/sec at a wheel
speed of 1800 rad/sec. The choking mass flow rate, ṁch is 20.9 (±0.14) kg/sec [30, 120].

An axial Mach number of 0.43—corresponding to a mass flow rate of of 0.95ṁch at
standard temperature and pressure—was assumed at the inlet of the test region. Exit
swirl conditions were imposed according to experimental measurement data provided by
Strazisar [120]. A radial maximum-blade-thickness distribution was used to impose the
inviscid area blockage. Figure 3-19a shows the flow path, axial blade projection and pressure
coefficient contours computed with MTFLOW.

Figure 3-19(b) shows the streamtube path selected for blade passage analysis, which cor-
responds roughly to the mid-span radial station. Inlet relative Mach number (M1 = 1.25),
inlet flow angle (β1 = 66.21)6 and back pressure (P2/PT1 = 0.65) calculated with MTFLOW
for this streamtube, as well as the axial variation of streamtube radius and thickness were
used as inputs for the baseline blade-to-blade passage analysis. The area velocity-density ra-
tio computed by MTFLOW for this streamtube was 1.452 and the corresponding Reynolds
number based on inlet tip radius was 2.33×106. Nominal total pressure loss coefficient and
turning were computed by MISES to be $0 = 0.084 and ϑ0 = 14.7◦ respectively.

Figure 3-20(a) shows the cross section of the R37 blade along the selected stream path.
Figure 3-20(b) depicts pressure distributions on the airfoil suction and pressure sides. The

6Some adjustment in M1 was required to reduce the passage total pressure loss.
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Figure 3-18: DFVLR: Effect of geometric variability on airfoil boundary layers
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Figure 3-19: NASA rotor 37 through-flow results

suction-side pressure distribution is characterized by a shock near the mid-chord location.
Downstream of the shock there is further compression. On the concave side, the pressure
is relatively constant. Near the blunt trailing edge the flow is accelerated again. The
acceleration at the entry region, between the leading edge and the passage throat on the
pressure side, is due to a slight mismatch in the inlet flow conditions caused perhaps by not
including end-wall blockage. Figure 3-20(c) shows Mach number contours. At the given
operating condition point the bow and passage shocks have coalesced and the impingement
point on the suction surface is just upstream of the passage throat.

Table 3.3: NASA Rotor 37 random input statistics

Mode Mean Std. Dev.

Thickness (c.l.) 0 0.001

Twist (deg) 0 1

Mach Number 1.25 0.01

As with DFVLR airfoil, three geometric noise modes and Mach number variability are
considered in the probabilistic analysis. The geometric noise modes are again thickness,
twist and leading-edge bluntness. The input noise statistics were obtained by scaling the
amplitude and mode shape results from the two-dimensional PCA study of the IBR blade
reported in Chapter 2. The statistics of the normal modes, namely thickness, twist and Mach
number, are summarized in Table 3.3. Thickness is scaled with respect to the nominal chord
length and twist is given in degrees. For the leading-edge bluntness mode a Beta distribution
in the interval [0.8, 2.0] with parameters α = 2, β = 4 was assumed (see Fig. 2-9).

Figure 3-21 shows histograms of loss coefficient and turning angle which are different to
those of the IBR and DFVLR cases. The shift in mean loss coefficient from the baseline
value is only 2%, while the coefficient of variability is roughly 11%. The increase in loss
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variability can be expected given the higher inlet Mach number of the present case. The
skewness coefficient is about 0.3, in agreement with a discernible amount of asymmetry in
the loss distribution. The shift in mean turning is negligible, but not so the variability:
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Figure 3-21: NASA rotor 37 mid section: histograms

its six-sigma interval spans nearly 3 degrees. As will be discussed in Chapter 6, this small
amount of variability in turning angle can have a strong impact on overall compressor
performance, especially on pressure ratio.

Figures 3-22 shows plots of momentum thickness, shape parameter, dissipation and
boundary layer entropy generation rate. At the trailing edge, the nominal and mean mo-
mentum thicknesses are three times larger on the suction side than on the pressure side.
The momentum thickness variability is also larger on the suction side, especially on the
aft 50% chord. Nominal and mean shape parameter values are highest in the vicinity of
the airfoil nose and at mid chord on the suction side. The high mean and variability of
mid-chord shape parameter values occur where the passage shock impinges on the suction
surface, indicating that the shock interacts with the turbulent boundary layer causing it to
separate.

Boundary layer dissipation, as shown in Figs. 3-22(c), is higher and more variable on the
suction side than on the pressure side, particularly behind the shock impingement location.
The total mean entropy generation rate on the suction side is about six times that of the
pressure side, and at least three times more variable. The suction side entropy generation
rate variability becomes more pronounced on the aft 40% of the airfoil, behind the shock
impingement location.

3.4 Summary

In this Chapter, the impact of geometric and inlet flow condition variability on aerodynamic
performance of three compressor blade passages was assessed. The probabilistic analysis
consisted of Monte Carlo simulations using the quasi-2D cascade analysis code MISES.
Geometric noise models were based on the PCA results of Chapter 2. The IBR test case,
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Figure 3-22: R37: Effect of geometric variability on airfoil boundary layers

54



discussed previously in Chapter 2, corresponds to an integrally-bladed rotor passage with
inlet Mach number of 0.9. At the original noise level found in the PCA analysis of surface
measurements, the loss coefficient mean-shift was found to be about 4% while the COV is
less than 3%. At double of baseline geometric noise amplitude, the loss coefficient mean-
shift and COV are 6% and 5% respectively. At a more realistic a = 5 geometric variability
level the loss COV 15% and the mean loss is 23% higher than nominal. The amplitude
of the geometric noise variability had a linear effect on the increase of output variability.
As the noise variability was increased, the relative contribution of the average geometry to
mean shift decreased. The loss coefficient distribution became less symmetric as the noise
leveled increased.

The DFVLR test case, a two-dimensional cascade with inlet Mach number of 0.82,
exhibited loss coefficient mean-shift and COV of 6% when subjected to leading-edge blunt-
ness, inlet Mach number, thickness and twist variability. In contrast, the mean turning
differed by less than 0.2% from the baseline value (less than 0.2% change) but its coefficient
of variability is about 10%. The R37 case, corresponding to the mid-span section of the
NASA rotor 37 experimental rotor, showed a loss coefficient mean shift of 2%, while its
coefficient of variability was more than 10%. The shift in mean turning was negligible but
the six-sigma interval spanned nearly 3 degrees.
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Chapter 4

Probabilistic Optimization of

Compressor Blade Sections

The previous chapters showed that variability in shape and operating condition degrade
actual compressor performance. In this Chapter a probabilistic gradient-based approach
to compressor blade optimization is outlined. Probabilistic objectives, constraints and cor-
responding gradients are approximated using Monte Carlo simulation. The probabilistic
simulations are driven externally by nonlinear optimization software. The design modes
included orthogonal surface modes and blade stagger.

Three airfoils introduced in previous Chapters are optimized both deterministically and
probabilistically and then subjected to simulated geometric variability to assess its impact
on their performance. Two of the airfoils optimized deterministically for minimum loss co-
efficient, without geometric or inlet flow variability considerations, exhibited lower expected
performance and increased variability than those designed probabilistically. Reductions in
mean loss coefficient of 25% and in loss variability of 65% were observed.

Different mechanisms for loss variability reduction are noticed between subsonic inlet
flows, in which viscous dissipation in the boundary layers dominates the generation of
entropy, and supersonic flows, in which shock losses are prevalent. In the two subsonic inlet
cases considered, a small thickness increase on the pressure side near the leading edge caused
to a reduction in the rate of flow deceleration and had a positive effect in reducing entropy
generation variability. In the supersonic inlet case, a decrease in the flow deceleration rate
downstream of the shock impingement location on the suction side helped reduce the loss
variability caused by shock-boundary layer interaction.

4.1 Gradient-Based Probabilistic Optimization

Turbomachinery airfoils are typically designed for optimal aerodynamic performance at
some nominal operating point such as cruise. Single-point optimization is known to produce
airfoils that may perform poorly off-design [62]. This phenomenon is of particular concern
when optimizing transonic airfoils and when the number of geometric design parameters
is high [26], which is commonly the case in turbomachinery applications. An alternative
to single-point optimization is to generalize the objective function under consideration to
a weighted sum involving multiple operating points [34]. This approach has the drawback,
however, that the best relative weights that appear in the generalized objective function are
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not generally known in advance. Also, it has been observed that multi-point optimization
may lead to undesirable localized features such as surface waviness or exceedingly thin
sections [26].

As mentioned above, traditional probabilistic optimization techniques tend to suffer from
either prohibitive computational requirements or from excessive dependence on heuristics.
In this section a gradient-based probabilistic optimization method for compressor airfoil
shape optimization is outlined. The major advantage of present method is that sensitivity
information can be used to accelerate the design space exploration, as well as to provide a
sensible stopping criterion.

In the presence of variability—geometric or otherwise—the design goals themselves
change. For instance, while a deterministic objective may be to minimize the total pres-
sure loss provided turning is preserved, in the presence of variability a more meaningful goal
would be to minimize the expected or mean passage loss subject to mean turning constraints.
Symbolically,

µ∗$ = min
x∈Ω

E
θ

[$(x, θ)] (4.1)

such that ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu ,

where x ∈ Ω ⊂ R
n is an n-dimensional design vector, θ is a random vector representing

geometric or flow variability and Eθ stands for the operation of expectation with respect to
θ. (Other functional dependencies of $ and ϑ are suppressed to simplify the notation.) ϑ l

and ϑu stand for lower- and upper-bound constraints on the mean turning angle.
Alternatively, the probabilistic optimization objective may be to reduce the loss coeffi-

cient variability, subject to mean turning and mean loss constraints, that is

σ∗$ = min
x∈Ω

{

E
θ

[

(

$(x, θ)− E
θ

[$(x, θ)]

)2
]}

1
2

(4.2)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu,

E
θ

[$(x, θ)] ≤ $u,

where $u stands for the maximum allowable mean passage loss coefficient. This objective
amounts to minimizing the uncertainty of the realized loss coefficient in the presence of
geometric variability.

The sequential quadratic programming (SQP) method was employed in solving the non-
linear programs (4.1) and (4.2). SQP is a widely used gradient-based method for solving
nonlinear constrained problems. At each iteration of the main algorithm, the Hessian of a
Lagrangian function, formed by adding the objective function to the weighted sum of non-
linear constraints, is approximated using a quasi-Newton updating method. A quadratic
programming subproblem is formed with the approximate Hessian and the resulting direc-
tion used in a line search procedure. Further details may be found in references such as [38]
and [11]. The Matlab

1 Optimization Toolkit implementation of the SQP algorithm was
used to drive the probabilistic optimization procedure as shown in Fig. 4-1. Hessian ma-
trix approximations were carried out using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
updating [127].

1The Mathworks, Inc., Natick, MA, http://www.mathworks.com
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Figure 4-1: Parallel probabilistic optimization framework

The gradient information required by the probabilistic optimization algorithm, namely
the Jacobian of the loss coefficient and turning with respect to the design variables, can be
obtained from the sensitivity information provided by the flow solver. Under the assumption
that the noise vector θ is independent of the design vector x, it follows by linearity that

∂

∂xi
E
θ

[$(x, θ)] = E
θ

[

∂

∂xi
$(x, θ)

]

i = 1 . . . n

∂

∂xi
E
θ

[ϑ(x, θ)] = E
θ

[

∂

∂xi
ϑ(x, θ)

]

i = 1 . . . n .

Similarly, after some manipulation,

∂

∂xi

{

E
θ

[

(

$ − E
θ

[$]

)2
]}

1
2

=
Eθ

[

$ ∂$
∂xi

]

− Eθ [$] Eθ

[

∂$
∂xi

]

{

Eθ

[

($ − Eθ [$])2
]}

1
2

i = 1 . . . n (4.3)

Since the objectives and nonlinear constraints in (4.1) and (4.2) are probabilistic quan-
tities, their functional evaluation implies the use of probabilistic analysis techniques. In
Chapter 3, the Monte Carlo simulation (MCS) method was used to assess the impact of
geometric and Mach number variability on loss coefficient and turning angle. The disadvan-
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tage of using MCS in the present context is the excessive amount of computation required to
accurately predict the variability of nonlinear functions such as the loss coefficient. Instead,
in the optimization procedure, the mean and variance of loss and turning, as well as their
derivatives with respect to the design variables, are replaced with surrogates consisting of
“low-order” Monte Carlo predictions, i.e., using a small number of trials. For instance, the
surrogate of Eθ[∂$/∂xi] used during optimization is given by

1

N

N
∑

j=1

∂$(x, θj)

∂xi
.

Similarly, the surrogate of (4.3) is given by

1

N
√

σ̂2
$

N
∑

j=1

[$(x, θj)− µ̂$]
∂$(x, θj)

∂xi

where

µ̂$ =
1

N

N
∑

j=1

$(x, θj) and σ̂2
$ =

1

N − 1

N
∑

j=1

[$(x, θj)− µ̂$]2 .

The number of Monte Carlo trials, N , becomes another free parameter that may be selected
according to the severity of the nonlinear behavior in a given application. Furthermore,
N may be allowed to vary as the optimization proceeds to improve the resolution of the
objective and constraints near the boundary of Ω or in the vicinity of extrema. Numerical
experimentation suggested that values of N in the range of 40 to 100 were sufficient to
successfully redesign transonic airfoils in the presence of geometric and inlet Mach number
variability (see Sect. 4.2 below for concrete examples).

The current gradient-based approach assumes that sensitivities of output functions with
respect to design variables are available to the optimizer. In aerodynamic shape optimiza-
tion a number of methods have been introduced for this purpose. Finite difference ap-
proximations, although readily implementable, are often inadequate to simulation-based
aerodynamic shape optimization [13, 36]. As an alternative to finite-difference approxima-
tions, automatic differentiation codes have been developed to simplify the task of computing
discrete sensitivity approximations using existing flow solvers [126]. A more accurate, but
initially more demanding approach, involves solving separate sensitivity equations derived
from linearized versions of the governing equations [20, 131]. Adjoint methods, pioneered
in fluids applications by Jameson [66], provide linearized sensitivity information at little
additional computational expense [46]. CFD software implementing both continuous and
discrete adjoint formulations have been available for some time [47, 90]. Socha presents a
succinct summary of methods for sensitivity analysis of stochastic systems [118].

In MISES the sensitivity derivatives of various output flow quantities with respect to
the design variables are available as by-products of the flow solution algorithm. The Jaco-
bian matrix that is generated and factored at each step of the Newton-Raphson procedure
contains the sensitivity derivatives of the flow solution with respect to global unknowns
including the geometric design modes. Derivatives of flow dependent quantities, such as the
loss coefficient or exit flow angle, are obtained by linearizing the quantity of interest with
respect to the flow variables and applying chain-rule differentiation [141].

As discussed in Appendix C of Ref. 141, the linearized sensitivity information is in
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general only valid in a small neighborhood around the current design point. Therefore care
must exercised in selecting the maximum step-size that the optimizer can take during the
line-search procedure.

4.2 Applications

4.2.1 Objectives and Constraints

To compare the behavior of redesigned airfoils in the presence of geometric variability three
optimization problems are considered: one deterministic and two probabilistic. The de-
terministic program seeks to minimize the loss coefficient without considering geometric
variability. This is expressed as

$∗ = min
x∈Ω

$(x) (DML)

s.t. ϑl ≤ ϑ(x) ≤ ϑu ,

where ϑl and ϑu are low- and high-turning constraints respectively. In contrast, the second
program seeks to minimize the mean value of loss coefficient, subject to mean turning
constraints:

µ∗$ = min
x∈Ω

E
θ

[$(x, θ)] (MML)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu .

The objective of the third redesign is to reduce the variability of loss coefficient, as measured
by its standard deviation, subject to mean turning and mean loss constraints,

σ∗$ = min
x∈Ω

{

Var
θ

($(x, θ))

}
1
2

(MSL)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu,

E
θ

[$(x, θ)] ≤ $u,

for a given upper expected loss coefficient constraint $u. In what follows the three prob-
lems and their resulting redesigned geometries will be denoted DML (deterministic mini-
mum loss), MML (minimum mean loss) and MSL (minimum standard deviation of loss)
respectively.

Appendix C illustrates the use of probabilistic constrained optimization to carry out
robust parameter design. In the sample application, the design space is explored by con-
straining mean performance at different levels and minimizing variability.

4.2.2 Geometric Design Modes

The design mode shapes used to optimize the baseline geometries consisted of modified
Chebyshev polynomials of the first type, i.e.,

T ′

n(x) =
1

n+ 1

{

1− 2x− cos[(n+ 1) arccos(1− 2x)], n even

1− cos[(n+ 1) arccos(1− 2x)], n odd
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x ∈ [0, 1], acting along the direction normal to the pressure or suction surfaces of the airfoil.
The geometric modes that modify the airfoil geometry are then given by

gk(s) =

{

akT
′
k+1
2

(−s)n̂(s), −1 ≤ s ≤ 0

0, 0 < s ≤ 1

for odd k and

gk(s) =

{

0, 0 < s ≤ 1

akT
′
k
2

(s)n̂(s), −1 ≤ s ≤ 0

for k even, where −1 ≤ s ≤ 1 is the airfoil surface arc length coordinate, with negative
values along the suction side and positive on the pressure surface as shown in Fig. 4-2. In
principle the geometric design modes thus defined provide an orthonormal basis onto which
to expand surface modifications to the interior of the airfoil surfaces(i.e., away from the
leading and trailing edges). In addition to the surface-normal modes, a solid body rotation
mode was included to allow for blade stagger changes. Axial chord length modifications
were not considered. (See Ref. [44] for examples of leading and trailing edge droop modes
used in probabilistic compressor airfoil optimization).

In MISES the airfoil geometry is represented by cubic splines which facilitates the cal-
culation of the normal directions at any position on the surface of the airfoil. Figure 4-2(b)
shows the modified Chebyshev polynomial mode shapes. The vector of design parameters
x ⊂ R

n is formed by the collection of modeshape amplitudes ak, k = 1, . . . , n and a rotation
angle ξ.
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Figure 4-2: Airfoil arc length coordinate conventions and modified Chebyshev polynomials
T ′

n(x), n = 1, . . . , 5

4.2.3 IBR Rotor Mid-Span

The IBR airfoil was previously introduced in Chapters 2 and 3. The trade space selected
to redesign this airfoil was Ω = [−0.008, 0.008]n × [−0.05, 0.05] ⊂ R

n+1 where the ak’s
(amplitudes of modified Chebyshev polynomials) are given in fractions of chord length
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and the stagger angle in radians. Eight parameters (n = 8) were used to redesign the
IBR, DFVLR and R37 airfoils; that is, the first four modified Chebyshev polynomials
described above acting independently on convex and concave airfoil surfaces. Although
the use of Monte Carlo simulation lessens the impact of number of design variables on
computational expense, a relatively low number of design modeshapes was employed to
preclude the formation of undesirable localized geometric features (e.g., surface “waviness”
or “bumps”).

The boundaries of the tradespace hypercube were selected so as to permit large baseline
shape modifications without allowing unphysical geometries, i.e., collapsed airfoils. No other
thickness constraints were explicitly incorporated in the problems as the emphasis in the
present investigation is on aerothermal rather than aeromechanical performance. The same
design space was explored in all three redesign cases. All optimization calculations started
from the baseline geometry, i.e., initial guess x0 = 0.

The prescribed turning constraints were 14.4◦ ≤ ϑ ≤ 14.5◦ in the deterministic case and
14.4◦ ≤ Eθ[ϑ] ≤ 14.5◦ for the probabilistic programs.

The PCA-based geometric noise model discussed in Chapters 2 and 3 was used to perturb
the baseline airfoil to simulate geometric variability during optimization. As in Chapter 3,
three levels of geometric variability were considered, a = 1, 2 and 5.

Table 4.1 summarizes the number of trials used in estimating loss and turning statistics,
as well as the number of SQP iterations and functional evaluations required to achieve
convergence. Absolute convergence tolerances of 10−5 on ∆f(x) and ‖∆x‖ were imposed
for the three redesign cases. The increase in computational expense incurred in going from

Table 4.1: Number of trials, iterations and function evaluations

Program Nopt # SQP iter # f(x) eval # MISES runs

DML - 13 151 151

MML 100 42 138 13800

MSL 100 16 56 5600

deterministic to probabilistic optimization can be seen by comparing the entries of the last
column in Table 4.1, which shows number of MISES runs required for each optimization.
Despite the large number of MISES evaluations required, the use parallel hardware greatly
reduced the total wall-clock time. As mentioned earlier parallelization of Monte Carlo
simulation trials can be readily implemented using simple shell scripts and the resulting
speed-ups increase nearly linear with the number of processors used. In addition, since
the same population of perturbed airfoils was used throughout the optimization procedure,
the resulting MISES states were saved and reused to initialize the subsequent calculations,
greatly decreasing the overall computing time.

The number of trials used during the optimization, Nopt, was selected by numerical
experiments in which the total computational expense was weighed against the degree of
improvement achieved. It was found that the number of trials required depends also on
the level of geometric variability. The sample values presented in Table 4.1 correspond to
PCA-based noise level a = 1.

The relatively small number of trials required to achieve the levels of improvement re-
ported below serve as motivation for the proposed approach to probabilistic optimization.
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During the optimization step the emphasis is not on accurately predicting loss and turning
statistics, but rather on driving the redesign in the general direction of statistical improve-
ment, as given by the gradients of the probabilistic objectives (e.g., Eq. (4.3)).

Figure 4-3 shows histograms of final Monte Carlo simulations (N = 2000) for the re-
designed IBR airfoil at baseline geometric noise level. The performance statistics are also
summarized in Table 4.2. In all final Monte Carlo simulations, the fraction of successful tri-
als (i.e., those for which MISES converged to a physically acceptable solution) was upward
of 99% of the total. Comparing the results for the baseline and deterministically redesigned
airfoils, it is observed that both nominal and mean loss coefficient have decreased by about
18%. Similarly, the loss COV decreased by about 25%.

The probabilistically redesigned airfoils exhibit lower loss coefficient variability than
either the baseline airfoil or—more appropriate for comparison—the deterministically re-
designed airfoil. The MML redesign has the same nominal and mean loss coefficient as the
DML redesign, but exhibits about 8% less variability. On the other hand, when optimizing
for reduced variability, as in the MSL case, the COV of loss coefficient has been reduced by
54% when compared with the deterministic redesign and by 65% from the baseline design;
the mean-shift for the MSL redesign is 17% lower than for the mininum loss airfoils. On the
other hand, the MSL redesign produces about 5% higher nominal and mean loss coefficient
than the DML and MML airfoils. The mean turning constraint has been satisfied by the
three redesigned airfoils and the standard deviation of turning angle is less than one-tenth
of one degree in all cases.

Table 4.2 summarizes aerodynamic performance statistics for the redesigned IBR airfoils
at geometric noise amplitudes a = 1, 2 and 5. At the noise level a = 2, where the impact of
the geometric noise scatter becomes comparable to that of the mean geometry. The shift
in mean loss from its nominal value is about 5% for both the baseline and deterministic
redesigns, but the latter produced 20% less variability in loss coefficient.

Table 4.2: Summary of performance statistics for redesigned IBR airfoils, a = 1, 2, 5

a Design $0 µ$ σ$×103 %V$ ϑ0 µϑ σϑ %Vϑ

1

Base 0.0272 0.0282 0.804 2.850 14.40 14.27 0.087 0.612
DML 0.0224 0.0230 0.490 2.130 14.50 14.40 0.074 0.515
MML 0.0224 0.0230 0.450 1.960 14.60 14.50 0.076 0.521
MSL 0.0235 0.0242 0.238 0.985 14.57 14.49 0.083 0.575

2

Base 0.0272 0.0288 1.550 5.36 14.40 14.25 0.170 1.19
DML 0.0224 0.0235 0.998 4.24 14.50 14.38 0.148 1.03
MML 0.0224 0.0235 1.020 4.35 14.58 14.46 0.150 1.04
MSL 0.0239 0.0249 0.670 2.69 14.60 14.49 0.165 1.14

5

Base 0.0272 0.0334 4.95 14.9 14.40 14.11 0.442 3.13
DML 0.0224 0.0271 3.52 13.0 14.50 14.25 0.397 2.79
MML 0.0231 0.0274 3.47 12.7 14.73 14.49 0.410 2.83
MSL 0.0243 0.0278 2.78 10.0 14.68 14.47 0.414 2.86

For a = 2, the MML redesign has roughly the same statistics as the deterministically
redesigned airfoil, with slightly larger loss COV. On the other hand, the minimum-variability
redesign, MSL, produced a 37% smaller loss COV than the deterministic redesign. The
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Figure 4-3: IBR: Deterministic vs. probabilistic optimization (a = 1, N = 2000)
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reduction in variability from the DML to MSL redesigns was accompanied by an increase
in mean loss coefficient of roughly 6%. In addition, at the a = 2 noise level there is little
difference in the turning variability among the redesigned airfoils (although in all cases it
is lower than the baseline design) and the mean turning constraints have been satisfied.

At the more realistic a = 5 noise level (see Appendix B) the trends are similar to those
at a = 2. The DML and MML exhibit similar values of nominal and mean loss coefficient
and loss COV. The reduction in loss COV between the deterministic and MSL redesigns is
30%, and the latter exhibits a 26% smaller loss mean shift. The decrease in variability can
also be appreciated graphically in Fig. 4-4 which shows histograms of loss coefficient at the
a = 5 noise level.

Figure 4-4 also shows the change in skewness incurred as the geometric noise amplitude
increased from a = 1 to a = 5. At the original noise level, the loss skewness coefficient is
0.3 for the baseline airfoil and 0.7 for the MSL redesign, while at the a = 5 level the corre-
sponding values are 1.2 and 1.5. The increase in skewness highlights the larger contribution
to loss variability of the geometric scatter as noise amplitude increases.
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Figure 4-4: IBR: Loss coefficient statistics for redesigned airfoils (a = 5, N = 2000)

Figure 4-5 compares the baseline and redesigned nominal airfoil’s geometric character-
istics for the a = 5 case. Figure 4-5(a) shows the effect of the stagger mode which acts
as a solid-body rotation of the airfoil about its trailing edge. The change in stagger for
the redesigned airfoils is about two degrees for the minimum-loss redesigns and 1

2
◦

for the
MSL airfoil. In Fig. 4-5(b), showing airfoil sections at zero stagger angle, the vertical axis
has been scaled by a factor of 10 to facilitate comparison. Figures 4-5(c) and (d) depict
mean camber and thickness respectively. A feature common to the three redesigns is an
increase in airfoil thickness, particularly on the forward half of the airfoil on the suction
side, and near the trailing edge on the pressure side. The DML and MML airfoil shapes are
qualitatively the same, with a shifting forward (toward the leading-edge) of the maximum
camber location from about 60% chord to 45% chord and a pronounced thickening on the
aft 40% of the pressure surface. The latter change is needed to meet the mean turning
constraint requirement and may be avoided by adding a trailing-edge deflection mode; it is
more pronounced on the deterministically redesigned airfoil. The minimum-loss airfoils are
in general thicker than the original one, but somewhat thinner than the MSL redesign on
the forward 20% chord and again mid-chord. Unlike the baseline and minimum-loss airfoils,
the MSL redesign shows a thickening on the forward 20% of the pressure side. The MSL
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Figure 4-5: IBR mid-span: Redesigned nominal airfoil shape (a = 5)
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maximum thickness occurs slightly behind mid-chord unlike the minimum-loss airfoils. The
MSL maximum camber occurs at about 45% chord, but has roughly the same value as the
baseline airfoil (about 5% less than the minimum-loss blades). Similar geometric trends
were observed in the redesigned airfoils at noise levels a = 1 and a = 2. The effects of these
geometric modifications on aerodynamic performance are discussed next.

Figure 4-6 shows plots of nominal and mean pressure coefficient on the surface of the
baseline, DML and MSL airfoils for the three noise levels considered. In all cases, the
minimum-loss airfoil shows a less pronounced initial flow deceleration than baseline on the
suction side, followed by a small plateau and a steep pressure recovery region near the
trailing edge. Beyond the stagnation point on the pressure side of the DML airfoil, the flow
accelerates and then experiences a steeply adverse pressure gradient until about 10% chord.
In the aft 20% of the pressure surface the flow first accelerates and then diffuses rapidly
near the trailing edge, in accordance to the pronounced airfoil thickening noted earlier. The
nominal and mean reductions in loss coefficient from the baseline case can be attributed in
part to the milder diffusion that the flow experiences because of the re-cambering toward on
the forward section of the airfoils. The corresponding pressure distributions are reminiscent
of typical “controlled diffusion” airfoils [58].

In contrast to the minimum loss airfoils, the MSL redesigns present a less adverse pres-
sure gradient along the first 20% of the pressure surface chord, as a consequence of the
local thickening and increased camber. This features is common to MSL redesigns at all
three noise levels. The effect of the milder pressure gradient is illustrated in Fig. 4-7 which
shows plots of momentum thickness (θ/c) on the suction and pressure sides (indicated in the
plots by SS and PS respectively) of the DML and MSL redesigned airfoils. The dashed and
dot-dashed lines indicate the nominal values—i.e., without geometric noise—while the solid
lines indicate the mean values from Monte Carlo simulation; the error bars correspond to a
one-standard-deviation interval centered at the mean. The deterministic redesign produces
lower nominal momentum thickness (dashed line) than the MSL airfoil, but in the presence
of geometric variability the mean-shift and variability are clearly larger for the former.

The effect of MSL redesign on performance variability is illustrated further in Fig. 4-
8, showing plots of boundary layer shape parameter H = δ∗/θ near the leading-edge of
the DML and MSL airfoils. Values of H above four indicate possible downstream flow
separation [19]. On the pressure side, the DML airfoil has considerably larger mean shape
parameter values and more variability than the MSL airfoil. Although nominal shape
parameter values on the pressure side do not exceed four, the DML mean values are as high
as 10 near x/c = 0.03 where the standard deviation is approximately nine. In contrast,
the MSL pressure side shape parameter mean values do not exceed seven with a standard
deviation of about six. It follows that the MSL airfoil is less likely to exhibit values of H
above four (indicating possible separation) on the pressure side than the DML airfoil.

Figure 4-9 compares the cumulative values of ρU 3
eC

′

d along the suction and pressure
surfaces of the redesigned airfoils. The impact of geometric variability on boundary layer
dissipation coefficient, C ′

d, and entropy generation rate was discussed previously in Chapter 3
(see Eqs. (3.6) and (3.7)). Of the four, the baseline airfoil produces the highest cumulative
nominal and mean values of ρU 3

eC
′

d at the trailing edge. By comparison, the minimum-loss
optimized airfoil produced lower final nominal loss generation rate values on the pressure
side with somewhat reduced uncertainty. The nominal value of

∫

ρU3
eC

′

ddx along on the
pressure side are similar for the three redesigned airfoils, but the MSL redesign shows the
smallest mean shift and less variability at the trailing edge.
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Figure 4-6: IBR mid-span: Baseline and mean pressure coefficient
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Figure 4-7: IBR mid-span: Momentum thickness θ/c (a = 5)

The redesigned airfoils result in a less pronounced rate of increase of E[
∫

ρU3
eC

′

ddx] than
the baseline geometry on the first 10% of the pressure surface. The MSL redesign has higher
average values of

∫

ρU3
eC

′

ddx on the suction and pressure sides, which explains in part its
higher mean total pressure loss when compared with the DML and MML airfoils.

4.2.4 DFVLR Cascade Airfoil

In redesigning the nominal shape of the DFVLR airfoil, the tradespace was selected to be
Ω = [−0.01, 0.01]n × [−0.05, 0.05] where again the mode amplitudes ak are given in chord
lengths. As in the previous case, n = 8 surface-normal and one stagger modes were used.
The prescribed turning constraints were 9◦ ≤ ϑ ≤ 9.5◦ and 9◦ ≤ Eθ[ϑ] ≤ 9.5◦ for the deter-
ministic and probabilistic problems respectively. In the latter Nopt = 100 trials were used to
compute the loss and turning statistics as well as those of their sensitivity derivatives during
the optimization procedure. The optimization algorithm’s absolute tolerances were again
10−5 on both ∆f(x) and ‖∆x‖. The noise model used to simulate geometric and inlet flow
condition variability was the same as that described in Chapter 3 in the context of assessing
the impact of geometric noise on aerodynamic performance. Three geometric modes were
considered: twist, overall section thickness change and leading edge bluntness. In addition
Mach number variability was considered. The input noise statistics were summarized in
Table 3.2 on page 47.

Table 4.3 summarizes the final loss coefficient and turning statistics for the baseline
and redesigned sections computed via Monte Carlo simulation (N = 2000). As required,
the deterministic redesign exhibits lower nominal loss than the baseline design (a 17%
decrease). Accordingly the expected value of the loss coefficient has dropped by a similar
proportion. However, the loss coefficient for the deterministically redesigned blade exhibits
14% higher COV than the baseline design. When compared with the deterministic redesign,
the probabilistic MML redesign shows similar nominal and mean loss coefficient values. In
contrast, the loss variability of the probabilistic minimum-loss redesign is 32% lower than
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Figure 4-8: IBR mid-span: Shape parameter H = δ∗/θ (a = 5)
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the deterministic redesign.

Table 4.3: DFVLR: Redesigned airfoil statistics

Design $0 µ$ σ$×103 %V$ ϑ0 µϑ σϑ %Vϑ

Baseline 0.0297 0.0315 2.07 6.56 9.26 9.27 0.94 10.1

DML 0.0246 0.026 1.94 7.47 9.498 9.43 0.96 10.1

MML 0.0249 0.0259 1.47 5.68 9.546 9.48 0.94 9.9

MSL 0.0269 0.0272 0.84 3.07 9.546 9.47 0.91 9.7

As with the IBR blade, the airfoil redesigned probabilistically for reduced variability
(MSL) shows larger nominal and mean loss coefficient than the minimum-loss redesigns
(about 5% larger in both cases). The uncertainty in loss coefficient has been decreased by
nearly 60% from the deterministic redesign and by 46% from the MML airfoil. Figure 4-
10 shows histograms of the MC results. The 17% “mean shift” and the narrowing of the
distribution are discernible, as are the higher nominal and mean loss coefficient values.

The Monte Carlo confirmation turning statistics summarized in Table 4.3 are similar for
all the redesigned airfoils, with somewhat larger nominal and mean values than the baseline
case. The mean turning constraints were satisfied by all the redesigned airfoils.

Figure 4-11 shows scatter plots of loss coefficient versus turning angle from Monte Carlo
results. The location of mean loss and turning as well as the loss coefficient 6σ (six standard
deviations) interval are also shown in the plots. The plots illustrate, in addition, the loss
coefficient response to the twist mode since, in the interval considered, turning is linearly
correlated with that mode. The rate of increase in loss away from the nominal operating
condition is greater for the minimum loss redesigns, particularly for negative incidence (lower
turning), resulting in an increased loss spread. The primary effect of the probabilistic MSL
redesign is to reduce the sensitivity to incidence variability away from the nominal operating
condition by re-centering the “loss bucket”, therefore increasing the low-loss incidence range
at the expense of mean performance.

Figure 4-12 compares baseline and redesigned nominal airfoil geometries. Figure 4-12(a)
shows the effect of the stagger changes incurred by the redesigns: −1.1, −1.4 and −1.6 de-
grees for the DML, MML and MSL cases respectively. Figure 4-12(b), depicts airfoil sections
at zero stagger angle with vertical axis scaled up by a factor of 10 to facilitate comparison.
Figures 4-12(c) and (d) depict mean camber line slope and thickness respectively. As in the
IBR case, the redesigned airfoils share in common ad change in maximum camber location,
but unlike the IBR case, not all the the redesigned airfoils are thicker than the nominal
section.

For all three redesigned sections, the maximum camber location moved forward by about
10% of the chord length and decreased by 10 to 15% in magnitude, with the higher value
corresponding to the MSL airfoil—which also has correspondingly higher incidence. The
minimum-loss redesigns have similar thickness and camber distributions, but the MML
airfoil is about 5% thicker than the deterministically optimized airfoil.

As with the IBR case, the MSL DFVLR airfoil is thicker than the minimum-loss re-
designs along the forward half of the chord; but the trend reverses somewhat for the rear
20% of the airfoil. Furthermore, the MSL airfoil is thicker than the baseline section for the
first 80% of the airfoil. The MSL airfoil also has a less pronounced mean camber line slope
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Figure 4-10: DFVLR loss coefficient for redesigned airfoils
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Figure 4-12: DFVLR cascade: Redesigned nominal airfoil shape
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than the DML or MML airfoils on the front 15% of the airfoil, and less camber for the first
70%, indicating a shifting in loading similar to that shown in the IBR MSL redesign. Fig-
ure 4-12(b) shows that the camber and thickness distribution change in the forward part of
the airfoil are more noticeable on the pressure side: as with the IBR case, the MSL redesign
shows the thickening is more pronounced on the pressure side of the airfoil.

Figure 4-13 shows plots of nominal and mean pressure coefficient for the baseline and
probabilistically redesigned MML and MSL airfoils.

0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x/c

C
p

Base
MML
MSL

(a) Cp

0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x/c

E
[C

p]

Base
MML
MSL

(b) � [Cp]

Figure 4-13: Redesigned DFVLR airfoil: Pressure coefficient

The MML pressure distribution is similar to that of typical controlled diffusion blades:
on the suction side the flow accelerates to the boundary layer transition point, the flow is
then decelerated continuously to the trailing edge without a shock forming; on the concave
side the pressure is kept nearly constant over most of the blade surface with exception
of the rear 30% of the blade where the flow is first accelerated and then diffused near
the trailing edge, again due to the modifications to the trailing edge imposed by the mean-
turning constraint. The deterministically redesigned airfoil produced a pressure distribution
nearly identical to that of the MML airfoil in agreement with their similar geometry and
performance.

As with the IBR blade, the key difference between the MML and MSL pressure distri-
butions is a qualitative change in the initial diffusion region on the pressure side. In fact,
while the MML airfoil exhibits a nearly constant pressure coefficient for the first quarter
chord, the flow on the MSL airfoil is accelerated for the first 10% chord and then expanded
gradually till mid-chord. On the suction side of the DML and MSL pressure distributions
are similar.

Figure 4-14 shows the impact of the minimum-variability redesign on suction-side mo-
mentum thickness statistics, as compared with those of the MML airfoil. Although the mean
values of θ are similar, the variability about the mean and the nominal-to-mean discrepancy
are noticeably smaller for the MSL redesign.

The effect of MSL redesign on performance variability is further illustrated in Figs. 4-15
and 4-16 showing plots of shape parameter H and entropy generation rate respectively.
On the pressure side, the MML airfoil has considerably larger nominal and mean shape
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Figure 4-14: redesigned DFVLR airfoil: Momentum thickness

parameter values with larger variability than the MSL airfoil. On the suction surface the
mean H values are similar for both airfoils. The trends of entropy generation rate per
unit span (as per Eq. (3.7)) shown in Fig. 4-16 are similar to those of the IBR airfoil: the
minimum-loss airfoil has lower nominal and mean values on the suction surface (with a less
abrupt initial rate of increase), but the pressure side exhibits both a slightly larger mean
and substantially more variability at the trailing edge.

4.2.5 Rotor 37 Mid-Span

The nominal flow conditions and performance under geometric variability of the R37 airfoil
were discussed in Sect. 3.3.3. The tradespace considered for redesigning the R37 airfoil was
Ω = [−0.006, 0.006]n with n = 8, i.e., no stagger angle changes were considered. The turning
constraints were 14.5◦ ≤ ϑ ≤ 15◦ in the deterministic case and 14.5◦ ≤ Eθ[ϑ] ≤ 15◦ for the
probabilistic programs. During the probabilistic optimization Nopt = 100 trials were used
to approximate mean and standard deviation gradients for loss and turning with respect to
the design vector x.

As with the DFVLR cascade, twist, thickness, leading-edge bluntness and Mach number
modes were used to simulate geometric and inlet flow condition variability. The input noise
statistics are summarized in Table 3.3 on page 51.

The final loss and turning statistics for the redesigned airfoils were computed via Monte
Carlo simulation with N = 2000 trials. Table 4.4 summarizes the MCS results. Both
the deterministic and probabilistic redesigns that aimed at reducing loss coefficient exhibit
similar nominal, mean and standard deviation values for loss and turning. When compared
with the original design, the DML and MML redesigns show a reduction in nominal and
mean loss coefficient of nearly 30%.

The MSL redesign resulted in a reduction of loss coefficient variability: compared with
the deterministically redesigned airfoil, the MSL redesign has a nearly 20% smaller loss
COV. Similarly, the reduction in loss coefficient COV is around 36% from the baseline
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Figure 4-15: redesigned DFVLR airfoil: Shape parameter H = δ∗/θ
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Table 4.4: Rotor 37 redesigned airfoil statistics (MCS N = 2000)

Design $0 µ$ σ$×103 %V$ ϑ0 µϑ σϑ %Vϑ

Baseline 0.0842 0.0857 9.64 11.2 14.68 14.74 0.481 3.26

DML 0.0593 0.0632 5.63 8.92 14.54 14.63 0.527 3.61

MML 0.0597 0.0631 5.64 8.94 14.52 14.60 0.510 3.49

MSL 0.0637 0.0667 4.78 7.17 14.56 14.61 0.562 3.84

design (or about 50% in standard deviation). The turning angle statistics are similar for
the three redesigned airfoils, with nominal and mean values less than 0.2 degrees lower than
baseline. All three redesigns satisfied the specified turning constraints. Figure 4-17 shows
loss coefficient histograms of Monte Carlo results for the redesigned airfoils.

The effect of the nominal geometry redesign can also be seen in Fig. 4-18 which shows
scatter plots of loss coefficient versus twist mode amplitude. Locations of mean loss coef-
ficient and a 6σ interval about it are also shown. All three redesigns reduce the nominal
value, mean and standard deviation of loss coefficient. The minimum-loss redesigns (DML,
MML) have similar pressure distributions. The MSL airfoil produces a further reduction
in loss coefficient scatter, in addition to reduced mean loss. The redesigned airfoils exhibit
reductions in nominal and mean loss coefficient of 25 to 30% from the baseline design. For
that reason further comparisons are made among the redesigned airfoils only.

Figure 4-19(a) shows the redesigned airfoil sections, with the vertical coordinate scaled
up by a factor of ten. Figures 4-19(b) and (c) show plots of mean camber and thickness with
respect to mean camber arc-length. Unlike the previous cases, the redesigned R37 airfoils
have, in general, thinner cross sections than the baseline airfoil. Thinner leading-edges in
the minimum-loss airfoils are to be expected as losses due to leading edge thickness tLE have
been shown to grow like tLEM

2
1 , that is, with the square of the inlet Mach number [71].

The MML airfoil is somewhat thicker than the deterministic redesign, especially toward the
rear of the blade. The MSL airfoil has more camber and a different thickness distribution
than the other two redesigns.

In contrast to the subsonic-inlet cases discussed previously, for which viscous dissipation
in the boundary layers and mixing of the wake were the main causes of loss, the dominant
contribution to total pressure loss in the rotor 37 blade comes from entropy generation at the
passage shock. Table 4.5 shows nominal and statistical values of viscous (subscript v) and
wave (subscript w) contributions to the total loss coefficient. The nominal and mean values
of the shock loss roughly twice as large as the viscous loss. The variability of the former,
however, is roughly twice that of the latter. Although the relative reduction in variability
(COV) is similar in both cases, the reduction in the shock loss variability dominates the
reduction in overall loss uncertainty.

One mechanism that leads to reduced loss variability can be seen by considering the
pressure distributions produced by the redesigned airfoils in Fig. 4-20. The DML and
MML airfoils have relatively flat pressure distributions on the pressure side and constant
expansion behind the passage shock, which impinges on the suction side at about mid-chord.
The distinguishing characteristics of the MSL airfoil are a pressure plateau downstream of
the shock on the suction side and the decompression at about 30% of the chord on the
pressure side. The small pressure plateau behind the shock, caused by the local change in
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Figure 4-17: Rotor 37 loss coefficient for redesigned airfoils
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Figure 4-18: Rotor 37: Scatter of Loss coefficient vs. turning angle
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Figure 4-19: Rotor 37: Redesigned nominal airfoil shape
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Table 4.5: Viscous vs. shock loss for R37 redesigned blade

Design $0
v µ$v σ$v V$v $0

w µ$w σ$w V$w

Base 0.0195 0.0198 0.0025 12.6 0.0454 0.0465 0.0077 16.6

DML 0.0160 0.0164 0.0025 15.2 0.0271 0.0302 0.0058 19.2

MML 0.0167 0.0171 0.0026 15.2 0.0259 0.0287 0.0050 17.4

MSL 0.0162 0.0166 0.0018 10.8 0.0313 0.0337 0.0049 14.5

thickness distribution, lowers the sensitivity of the the shock impingement point to geometric
variability, reducing in turn the likelihood of boundary layer separation.
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Figure 4-20: Rotor 37: Pressure Coefficient

Figures 4-21(a) and (b) show mean and standard deviation values of the boundary layer
shape parameter H on the suction side of the redesigned airfoils. The minimum-loss airfoils
exhibit lower values of mean H until about 65% chord after which the trend reverses and
the MSL airfoil shows as much as 30% lower mean H values. The variability of H, as
illustrated in Fig. 4-21(b) by the standard deviation, is consistently lower for the MSL
airfoil than for the DML and MML redesigns in the aft 40% of the suction side. At 80%
chord the variability of H for the MSL airfoil is about 40% that of the DML or MML
redesigns. Figure 4-21(c) shows plots of the standard deviation of ρu3

eC
′

d on the suction
side of the redesigned airfoils. The standard deviation of ρu3

eC
′

d is consistently lower for the
MSL airfoil (as much as 70%) on the aft 35% of the suction side. The accumulated effect
of the reduced dissipation variability on the suction side of the MSL airfoil is illustrated in
Fig.4-21(d) which shows standard deviation of the entropy generation rate. Initially (for
0 ≤ x/c ≤ 0.5) the MML airfoil exhibits lower variability in the entropy generation rate,
but in the aft 30% the DML and MML airfoils exhibit consistently higher variability than
the MSL airfoil. At x/c = 1 the MSL redesign produces about 50% lower variability than
the DML and MML airfoils.
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Figure 4-21: Rotor 37: Suction side boundary layer
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4.3 Summary

In this Chapter a probabilistic gradient-based approach to compressor blade optimization
was presented. The probabilistic objectives, constraints and their corresponding gradients
are approximated using low-fidelity Monte Carlo simulation. An external nonlinear opti-
mization driver was used to drive the probabilistic simulations. Design modes included
Chebyshev polynomials applied to the airfoil surface and solid-body rotation to optimize
stagger angle.

Three test airfoils were optimized both deterministically and probabilistically and then
subjected to simulated geometric variability to assess its impact on their performance.
The deterministic redesign objective was to minimize loss coefficient subject to turning
constraints. The probabilistic objectives were to minimize mean loss and loss variability
respectively. In all probabilistically redesigned airfoils a mean turning constraint was satis-
fied.

The IBR airfoils was optimized at three geometric noise levels to explore possible re-
design gains under different levels of uncertainty. At the baseline noise level the proba-
bilistically redesigned airfoils exhibit lower loss coefficient variability than either baseline or
deterministically redesigned airfoils. When optimizing for reduced variability the coefficient
of variability of loss was reduced by 54% from the deterministic redesign and by 65% from
the baseline airfoil; with 17% lower loss mean shift. In contrast, the minimum-variability
redesign lead to 5% higher nominal and mean loss coefficient than the deterministic or
probabilistic minimum-loss airfoils.

For a = 2 the minimum-variability redesign produced a 37% smaller loss coefficient of
variability than the deterministic redesign. The reduction in variability from the determin-
istic minimum-loss to the minimum-variability redesigns was accompanied by an increase
in mean loss coefficient of roughly 6%. At the more realistic a = 5 noise level the reduction
in loss variability between the deterministic and minimum-variability redesigns was 30%,
and the latter exhibits a 26% smaller loss mean shift.

In the DFVLR case, the deterministic redesign produced 17% lower nominal loss than
the baseline airfoil, with a similar decrease in mean loss. However, the loss variability for the
deterministically redesigned blade was 14% higher the baseline design. The loss coefficient
variability of the probabilistic minimum-loss redesign was 32% lower than the deterministic
redesign.

For the IBR and DFVLR airfoils with subsonic inlet relative Mach numbers, viscous
dissipation dominated the generation of entropy. It was found that a decrease in the rate of
diffusion on the entry region of the pressure side reduced the entropy generation variabil-
ity by lowering the likelihood of separation in the presence of geometric variability. This
mechanism was noticed at the three noise levels.

For the Rotor 37 mid-span section, the deterministic and probabilistic minimum-loss
redesigns produced a reduction in nominal and mean loss coefficient of nearly 30% from
the baseline airfoil. The minimum-variability redesign resulted in a sizable reduction of
loss coefficient variability: 20% smaller coefficient of variability than the deterministically
redesigned airfoil (36% from baseline). The statistics for turning performance are similar
for the three redesigned airfoils, with nominal and mean values less than 0.2 degrees lower
than baseline. The three redesigns satisfy-ed the specified turning constraints. For this
case, shock losses were found to be considerably larger than viscous losses. A decrease in
the rate of flow deceleration immediately downstream of the shock impingement point on
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the suction side helped reduce the loss variability due to shock-boundary layer interactions
exacerbated by geometric variability.
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Chapter 5

Effect of Geometric Variability on

Overall Compressor Performance

In this chapter, a mean-line multi-stage axial compressor model is used to estimate the
impact of geometric variability on overall compressor performance. Probabilistic models
of loss coefficient and turning angle are constructed from the aerodynamic performance of
the IBR blade discussed in previous chapters. The loss and turning models were used in
probabilistic mean-line calculations for various redesigned airfoils at three noise amplitude
levels: original, double and five-fold, the latter representing more realistic geometric levels.
At the baseline noise level the impact on compressor polytropic efficiency is small, causing
a 0.2% mean-shift and 0.04% coefficient of variability. Loss models using probabilistically
redesigned airfoils for minimum loss variability cause a decrease of 46% in standard deviation
of polytropic efficiency compared to a compressor model using deterministically redesigned
airfoils.

At a more realistic geometric noise level (five times the original), the drop from nom-
inal to mean efficiency is more than one percentage point, with an increase in efficiency
variability to 30%. In contrast, a compressor using minimum-variability loss blades exhib-
ited a 42% reduction in the discrepancy between mean and nominal polytropic efficiency
as well as 34% reduction in variability compared to the baseline airfoil. Compressors us-
ing minimum-variability airfoils exhibited reductions in mean-shift and variability of 30
and 26% respectively compared to compressors using deterministically optimized airfoils.
In contrast to single blade results, polytropic efficiency and pressure ratio variability were
found to be 30 and 70% lower, respectively, for multiple-blade compressor models.

Pressure ratio variability is found to increase linearly with the amount of geometric vari-
ability. Rotor and stator incidence variability is found to decrease with distance through the
compressor. For the same canonical airfoil design, mean stage exit Mach number increases
with noise amplitude as does its variability. As with incidence, the Mach number variability
decreases with each successive stage.

5.1 Mean-Line Compressor Model

A simple compressor stage mean-line model, in which rotors and stators are described
separately, was obtained as follows. Given rotor total pressure loss coefficient, φr, flow
turning ϑr, outlet area and upstream total temperature, relative total pressure and Mach
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number, and inlet flow angle, the rotor outlet state is described by the nonlinear system
(see Appendix D for an explanation of the nomenclature)

F := ∆TT −
ω

cp
(r2V2 sinα2 − r1V1 sinα1) = 0 (5.1)

G :=
ṁ
√

TT2

PT2A2 cosα2
−
√

γ

R

M2
(

1 + γ−1
2 M2

2

)
γ+1

2(γ−1)

= 0 (5.2)

H := V2 [sinα2 + cosα2 tan(β1 − ϑr)]− ωr2 = 0 (5.3)

where

TT2(∆TT ) := TT1 + ∆TT

V2(∆TT ,M2) := M2

(

γRTT2

1 + γ−1
2 M2

2

)
1
2

PT2(∆TT ) := PT1R

[

1− φr

1
2γM

2
1R

(1 + γ−1
2 M2

1R)
γ

γ−1

]

(

TT2

TT1R

)
γ

γ−1

Equations (5.1)–(5.3) form a nonlinear system in the variables ∆TT , M2 and α2, which can
be readily solved numerically using, for instance, a Newton-Raphson solver.

Equation (5.1) is a restatement of the Euler turbine equation for calorically perfect
gases, namely

cp(TT2 − TT1) = ω(r2v2 − r1v1),
which relates the change in total enthalpy to the change in angular momentum of a stream
tube across a rotor. Using the definition of the total pressure loss coefficient 1,

φ ≡ PT1 − PT2

1
2ρ1V 2

1

,

the rotor relative total pressure ratio may be rewritten in terms of inlet relative Mach
number and pressure coefficient in the form [81]

PT2R

PT1R

= 1− φr
ρ1V

2
1R

2PT1R

= 1− φr
γP1M

2
1R

2PT1R

= 1− φr
γM2

1R

(1 + γ−1
2 M2

1R)γ/(γ−1)
.

Equation (5.2) follows from Fligner’s formula (or mass flow parameter [81]) for quasi-
one-dimensional flow of a calorically perfect gas,

ṁ
√
TT

APT
=

√

γ

R

M
(

1 + γ−1
2 M2

)
γ+1

2(γ−1)

.

Equation (5.3) states how the absolute and relative tangential velocities are related
through the wheel speed (velocity triangles). Expressions for for the derivatives of F , G

1The loss coefficient definition used here, which differs from that of $ used in the previous chapters, is
more meaningful in the present context.
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and H with respect to ∆TT , M2 and α2,—which are used in a gradient-based algorithm to
solve the nonlinear system—are included in Appendix D.

After solving the rotor equations and using the rotor outlet state to initialize the stator
inlet, the stator exit Mach number is found from Fligner’s formula,

ṁ
√

TT3

f(M3)PT3 cosα3
−A3 = 0, (5.4)

where

f(M) =

√

γ

R

M
(

1 + γ−1
2 M2

)
γ+1

2(γ−1)

.

As with the rotor, the stator total pressure ratio may be written in terms of loss coefficient
and the upstream flow conditions,

PT3

PT2

= 1− φs
γM2

2 /2

(1 + γ−1
2 M2

2 )γ/(γ−1)
.

The calculation is marched through the compressor using the previous stage’s exit con-
ditions to calculate the next inlet state for fixed flow annulus area, i.e., T k+1

T1
← T k

T3
,

P k+1
T1
← P k

T3
, Mk+1

1 ←Mk
3 , where the superscript indicates stage number.

The deterministic mean-line model is used as part of a probabilistic simulation by pre-
scribing models of loss coefficient and turning angle variability for each blade row. These
loss and turning models are described in the next section.

The current method estimates only the impact of blade profile variability caused by
geometric noise on compressor performance. Endwall effects and radial imbalances are not
included. It follows that the results discussed below likely underestimate actual compressors
performance variability in the presence of geometric uncertainty.

5.2 Loss Coefficient and Turning Angle Models

In a mean-line sense, the effect of geometric and operating condition variability occurring
upstream of a given compressor stage translates to changes in axial Mach number, total
pressure and total temperature at the rotor inlet. These augment the performance vari-
ability caused by geometric noise in the rotor blades. The statistical impact of geometric
variability can therefore be modeled by considering changes in loss and turning statistics
based on inlet flow conditions, i.e., inlet flow angle and axial Mach number.

Conceptually, the loss coefficient and turning obtained from quasi-2D blade passage
analyses may be taken to be deterministic functions of various geometric and flow param-
eters such as inlet flow angle, inlet Mach number, etc. In particular, for fixed nominal
geometry x0, let

φ = φ(α,x), and ϑ = ϑ(α,x)

where α is inlet flow incidence, and x is a vector of parameters describing amplitudes of geo-
metric noise modes such as those described in Chapter 2 (e.g., PCA modes, thickness, twist,
leading-edge bluntness, etc). In the present application, “incidence” refers to the difference
between nominal inlet flow angle (here the minimum-loss angle) and actual incoming flow
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angle 2. Other geometric and flow parameters are assumed to be fixed and their functional
dependence not explicitly considered.

To proceed, it φ and ϑ are written in the form

φ(α,x) = φ0(α) + ∆φ(α,x), (5.5)

ϑ(α,x) = ϑ0(α) + ∆ϑ(α,x), (5.6)

where φ0(α) and ϑ0(α) are deterministic components of loss and turning depending on
incidence alone.

Next, instead of a deterministic geometric argument, an independent random vector X
is considered. For fixed α, ∆φ(α,X), let

∆µφ(α) := E
X

[∆φ(α,X)], σ2
φ(α) := Var

X
(∆φ(α,X)),

∆µϑ(α) := E
X

[∆ϑ(α,X)], σ2
ϑ(α) := Var

X
(∆ϑ(α,X)).

In general ∆µφ(α), σ2
φ(α), ∆µX(α), and σ2

X(α) cannot be written in closed form. Instead,

let ∆µ̂φ(α), σ̂2
φ(α), ∆µ̂ϑ(α) and σ̂2

ϑ(α) be models of loss “mean shift” (i.e., the difference
between φ0(α) and EX [∆φ(α,X)] for a given α) and variance, and turning mean shift and
variance, respectively. Then

E
X

[φ(α,X)] = E
X

[φ0(α) + ∆φ(α,X)] ' φ0(α) + ∆µ̂(α),

E
X

[φ(α,X)] = E
X

[φ0(α) + ∆φ(α,X)] ' φ0(α) + ∆µ̂(α),

and

Var
X

(φ(α,X)) = E
X

[(∆φ(α,X) −∆µφ(α,X))2] ' σ̂2
φ(α),

Var
X

(ϑ(α,X)) = E
X

[(∆ϑ(α,X) −∆µϑ(α,X))2] ' σ̂2
ϑ(α).

To proceed it is assumed that, for fixed incidence α, ∆φ(α,X) and ∆ϑ(α,X) are normally
distributed, that is,

∆φ(α,X) ∈ N (∆µ̂φ(α), σ̂2
φ(α)), and ∆ϑ(α,X) ∈ N (∆µ̂ϑ(α), σ̂2

ϑ(α)).

Although the Monte Carlo simulation results reported in Chapter 3 show loss distributions
that are not always normal (indeed not always symmetric), the assumption of normality
is made here for the sake of model simplicity and in lieu of a general description of loss
and turning distribution. Models ∆µ̂φ(α), σ̂2

φ(α), ∆µ̂ϑ(α), and σ̂2
ϑ(α) are obtained from

computed statistics of loss and turning at fixed values of incidence for single blade passages.
The statistics are computed via Monte Carlo simulation, as described in Chapter 3, for
discrete values of incidence in the range of adequate numerical convergence.

Figure 5-1 shows loss coefficient and turning angle results from MISES Monte Carlo
simulations of the IBR blade. The geometric noise assumed in the simulations was the
PCA-based model from Chapter 2, with noise amplitude a = 2. The output statistics

2The present definition of incidence, though more appropriate in the current context, is in contrast with
the more common one involving the difference between inlet flow angle and airfoil inlet camber angle.
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were computed for each fixed value of α via Monte Carlo simulation (N = 2000). Similar
computations were also carried out for a = 1 and a = 5 noise levels. In Fig. 5-1 the solid line
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Figure 5-1: IBR: Loss coefficient and turning angle vs. incidence, a = 2

connects the computed nominal (i.e., in the absence of geometric noise) loss coefficient and
turning; the dash-dot line connects the values computed for the average-geometry airfoil;
the dashed line indicates the mean values of the Monte Carlo trials and the error bars show
their two-standard-deviation intervals centered at the mean.

The loss coefficient plot (Fig. 5-1(a)) shows a typical “loss bucket” shape with minimum
nominal loss approximately located at zero incidence. The loss coefficient increases more
steeply for positive values of incidence. No points are plotted for α > 1 degree where numer-
ical convergence of the Monte Carlo simulations was deficient (less than 80% convergence
rate). As noted in Chapter 3, for the depicted a = 2 case the average geometry loss coeffi-
cient at zero-incidence lies approximately half-way between the nominal and mean values,
indicating that half or more of the mean-shift is due to the geometric scatter. On the other
hand, for |α| > 0.75 the geometric variability contributes more to the mean-shift than does
the average geometry. The mean-shift is largest for values of incidence above -0.5, with a
maximum of 0.004 at α = 1. The trend is similar for the turning mean-shift, with more
negative mean-shift values corresponding to positive incidence.

The standard deviation of loss coefficient has a minimum of 0.6 × 10−3 at the zero-
incidence condition. It increases from there for both positive and negative values of α; at
α = −3, σ$ ' 1.7×10−3 while σ$ ' 1.5×10−3 for α = 1. Standard deviation of turning is
roughly constant at 0.16◦ for non-positive values of incidence, increasing to 0.23◦ at α = 1.

In addition to the baseline design, Figs. 5-2 and 5-3 show loss coefficient and turning
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angle plots for the deterministic redesign (DML) and the two probabilistic redesigns (DML,
MSL) introduced and discussed in the previous chapter; all for noise amplitude a = 5.
As with the a = 2 case, the nominal loss coefficient for the baseline design is smallest near
zero-incidence and increases more rapidly for positive incidence values. The characteristics
of the redesigned airfoils at zero incidence, which were discussed in the previous chapter,
are emphasized in Fig. 5-2: The DML redesign has the lowest nominal loss value, but the
lowest mean loss corresponds to the probabilistic MSL redesign; the loss coefficient vari-
ability is lowest for the MSL design. In addition, Fig. 5-2 presents off-design aerodynamic
performance information for the redesigned airfoils. The propensity of the deterministically
redesigned airfoil to exhibit larger loss variability extends to values of incidence away from
zero, and worsens for positive incidence. The MSL design shows a less pronounced rate
of change away from α = 0, i.e., a flatter loss trough. A comparison of Figs. 5-2(c) and
(d) highlights the increased mean and nominal loss coefficient of the MSL redesign, as well
as its reduced variability. The average geometry for the baseline design contributes com-
paratively little to the overall loss variability. However, at positive incidence the average
geometry contributes nearly one-fourth of the DML airfoil mean-shift.

The computed output statistics for discrete values of α were used to construct the con-
tinuous loss and turning models which, in turn, were utilized in the probabilistic mean-line
compressor simulations reported below. The computed data points were used to construct
piecewise-cubic interpolating splines with zero-second-derivative end conditions [22]. To
avoid difficulties with extrapolation outside the incidence range for which computed data
points were available, additional points were added at higher positive incidence by linearly
extrapolating the nominal loss and turning and replicating the mean-shift and variance
values corresponding to the highest computed α (e.g., 1 or 1.5). 3 Separate models were
constructed for each geometric noise amplitude considered, as well as for each redesigned
nominal geometry.

5.3 Probabilistic Mean-Line Calculations

In this section, mean-line and probabilistic loss and turning models are used to estimate the
impact of geometric variability on the overall performance of an axial compressor. A six-
stage compressor with a base-line total pressure ratio of 11 is considered first. Next follows
a comparison of compressors using deterministically and probabilistically optimized airfoils.
Performance variability trends with geometric noise amplitude are discussed next. Lastly,
the effect on performance statistics when considering multiple blades per row is discussed.

5.3.1 Six-stage compressor model: baseline airfoil

A baseline compressor model with nominal pressure ratio of 11 was constructed according
to the procedure outlined in Appendix D. The nominal rotor and stator loss coefficients
were φr = φs = 0.03 and the nominal rotor turning was ϑr = 14.4 degrees. The result-
ing compressor total pressure ratio and polytropic efficiency were π = 10.8 and e = 0.96
respectively.

The probabilistic simulations involve solving nonlinear stage equations (5.1)–(5.3) and
(5.4), for prescribed fixed flow annulus areas and mean-line radii. The compressor inlet

3This approach errs on the low side of loss and turning variability, which in turn may under-predict
compressor performance effects.
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Figure 5-2: IBR mid-span section: Loss coefficient vs. incidence, a = 5. (Linear extrapola-
tion for α > 0.75.)
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Figure 5-3: IBR mid-span section: Turning angle vs. incidence, a = 5. (Linear extrapolation
for α > 0.75.)
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conditions are assumed to be the same for each simulation (see Appendix D). The rotor
and stator turning angle and loss coefficient values are obtained from the IBR blade models
discussed in the previous section. The nonlinear equations for each stage are solved using the
Newton-Raphson method implemented in Matlab’s Optimization Toolkit. 4 The procedure
is repeated for each stage sequentially to march through the compressor.

Upstream operating condition variability leads to variations in rotor inlet flow angle (in-
cidence) and axial Mach number, as well as in total temperature and pressure variability.
The later variabilities follow directly from upstream loss coefficient and turning pertur-
bations respectively. Since the annulus flow areas remain fixed, inlet total pressure and
temperature fluctuations translate, for a given mass flow rate, into axial Mach number and
incidence perturbations. Inlet flow condition variability is compounded by rotor and stator
loss and turning noise to produce variability in the stage exit conditions, which in turn
affect the following (downstream) stage.

The stator nominal loss and turning, as well as their mean shift and standard deviation
were taken from the IBR incidence models discussed above. The impact of geometric
variability on row performance can be expected to vary as nominal airfoil shapes change
from stage to stage. In the current calculations the same loss and turning models were used
for each blade row, as the intent is to illustrate the approach. In practical design situations,
where blade shapes for each rotor and stator are available, loss and turning models could
be readily generated for each separate blade row.

Commonly, stators are required to produce considerably higher flow turning than rotors,
e.g., in the present six-stage model ϑs =∼ 35◦, more than twice the rotor turning (see
Table D.4 in Appendix D). Therefore it can be expected that the stator passages will
exhibit higher exit flow variability (e.g., more flow deflection) than the rotor passages. As a
conservative estimate the same loss coefficient nominal, mean-shift and variance models—
as functions of incidence—were used for the stator as for the rotor. Similarly, the same
mean-shift model for the rotor was used in the probabilistic stator calculation, but with the
nominal turning being fixed (i.e., not varying with incidence). The stator turning variability
model was obtained by scaling the rotor model to the stator nominal turning—effectively
using the same COV-versus-incidence model as for the rotor.

Figure 5-4 shows polytropic efficiency and pressure ratio histograms of Monte Carlo
simulation results (N = 2000 trials) for the baseline noise level. The histograms show a
0.2% drop from nominal polytropic efficiency to the expected value, and a 0.6% decrease in
total pressure ratio. As discussed in Chapter 3, at this noise level the primary contribution
to performance comes from the average geometry rather than from the geometric variability
(cf. Figs. 3-5 and 3-6). The impact of increased noise level is reported in sub-section 5.4
below.

The geometric variability present in the IBR coordinate measurements is quite small
(cf. Chapter 3), due to the highly controlled manufacturing processes employed (i.e., flank
milling). The “small” geometric noise in the measurements translates into small loss and
turning variability, which in turn results in small compressor performance uncertainty: the
polytropic efficiency COV (ratio of standard deviation to mean) is only 0.04%, and the
pressure ratio COV is 0.2%.

4The Mathworks, Inc., Natick, MA, http://www.mathworks.com

93



0.959 0.9595 0.96 0.9605 0.961 0.9615 0.962 0.9625 0.963

e
0
=0.9626, µ

e
=0.9608, σ

e
=0.0003809

Polytropic Efficiency (e)

e
0

µ
e

(a) Polytropic efficiency

10.66 10.68 10.7 10.72 10.74 10.76 10.78 10.8 10.82 10.84

π
0
=10.79, µπ=10.73, σπ=0.02194

Pressure Ratio (π)

π
0

µ
π

(b) Pressure ratio

Figure 5-4: Monte Carlo results of Mean-line compressor model: IBR airfoils (a = 1)

5.3.2 Six-stage compressor model: redesigned airfoils

Figure 5-5 depicts the differences in compressor efficiency and pressure ratio statistics as-
sociated with the various redesigned airfoils reported in the previous chapter, for baseline
geometric noise level. Despite the small compressor performance variability predicted by
the mean-line analysis, the redesigned airfoils lead to differences in performance at the
overall compressor level. The deterministic DML and probabilistic MML blade redesigns
lead to similar mean efficiency and standard deviation: about 0.7% better nominal and
mean efficiency, and 3% higher pressure ratio. In contrast, the probabilistic MSL redesign,
with similar mean efficiency and pressure ratio as the minimum-loss redesigns, results in
a decrease of 62% in standard deviation from the compressor model based on the baseline
airfoil, and 46% when compared with the DML-based model. The enforcement of turning
angle constraints at the airfoil level led to redesigned airfoils with similar mean and standard
deviation values for pressure ratio.

5.4 Impact of Geometric Noise on Compressor Performance

Presumably, as blade geometric variability increases so does its impact on compressor per-
formance. This section attempts to quantify that trend within the limitations of the current
mean-line model. Table 5.1 summarizes the polytropic efficiency and overall pressure ratio
statistics for the three noise variability levels: a = 1, 2 and 5. The loss and turning-versus-
incidence models for the a = 5 noise level were discussed in Section 5.2. In addition to
the baseline design, loss and turning models for the deterministically and probabilistically
redesigned airfoils were considered.

For a = 2, the mean-shift in polytropic efficiency is about 0.4% for the baseline airfoil
and no more than 0.2% for the compressor models based on the redesigned airfoils. Similarly,
mean pressure ratio differs by no more than 0.7% from the nominal values. On the other
hand, the standard deviation of polytropic efficiency for the baseline design increases by
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Figure 5-5: Probabilistic mean-line results with redesigned airfoils (a = 1)
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Table 5.1: Six-stage compressor, IBR airfoil-based loss and turning models

a Design e0 µe σe × 103 π0 µπ σπ

1

Base 0.963 0.961 0.038 10.79 10.73 0.022
DML 0.969 0.968 0.027 11.09 11.04 0.021
MML 0.969 0.968 0.026 11.20 11.14 0.023
MSL 0.968 0.967 0.015 11.12 11.08 0.020

2

Base 0.963 0.959 0.083 10.79 10.71 0.043
DML 0.969 0.967 0.059 11.09 11.02 0.041
MML 0.969 0.967 0.060 11.18 11.11 0.044
MSL 0.967 0.966 0.047 11.13 11.08 0.041

5

Base 0.963 0.951 0.275 10.79 10.59 0.111
DML 0.969 0.959 0.244 11.09 10.89 0.114
MML 0.969 0.960 0.218 11.30 11.11 0.115
MSL 0.967 0.960 0.181 11.20 11.05 0.107

more than a factor of two when compared with its a = 1 counterpart. A similar increase
rate is seen in pressure ratio variability. When comparing efficiency for the DML and MSL
redesigns, the latter shows a decrease of 21% in standard deviation from the former, in
keeping with what was observed for a = 1. The pressure ratio COV decreases by about 8%
when comparing the baseline design to the MSL redesign.

At the more realistic a = 5 noise level (see Appendix B), the efficiency COV for the
baseline airfoil-based compressor model has risen to 30%, roughly a seven-fold increase from
the a = 1 case. At this level of noise, the mean-shifts in polytropic efficiency also become
noticeable: ∼1.2% drop for the baseline case, but only 0.7% for the MSL redesign (i.e.,
a 42% reduction in mean-shift from baseline and 30% from DML). At the higher noise
level the decrease in efficiency uncertainty for the MSL-based compressor model is less
drastic but still important: 34% from the baseline airfoil and 26% from the DML airfoil-
based compressor. The pressure ratio variability does not change significantly among the
redesigned airfoils, staying below 1%; the MSL pressure ratio COV is roughly 8% lower
than the corresponding baseline and DML values. The impact of geometric noise amplitude
on pressure ratio variability is nearly linear with noise level, i.e., the baseline pressure ratio
COV for a = 2 is roughly twice as large as that of the a = 1 case, and similarly the COV for
a = 5 is nearly five times higher. This agrees with the linear increase in turning variability
with respect to noise amplitude observed in Chapter 3. Lastly, the MSL pressure ratio
mean-shift is 25% lower than the corresponding baseline and DML values.

Figure 5-6 shows error-bar plots of rotor and stator inlet incidence variability at each
stage of the compressor model. Plots for geometric noise levels a = 1 and 2 are shown. The
symbols indicate the location of the average value while the error bars show a 6σ interval
centered at the mean. In all cases mean incidence is negative, indicating that, in average,
each stator and each rotor other than the first operate off-design. At the higher noise level
the reduction of rotor incidence variability due to the probabilistic airfoil redesign becomes
apparent, as is the less pronounced off-design average incidence. The second stage rotor and
stator exhibit the highest level of variability compared to the other stages; in fact incidence
variability decreases for each successive downstream stage.
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(a) a = 1: Rotor incidence
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(b) a = 1: Stator incidence
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(c) a = 2: Rotor incidence
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(d) a = 2: Stator incidence

Figure 5-6: Rotor and stator incidence variability
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Figure 5-7 shows error-bar plots of stage exit Mach number (M3) variability for each
stage of the compressor model. Figures 5-7(a), (b) and (c) compare average and 6σ intervals
for baseline and redesigned airfoil-based models at a = 1, 2 and 5 noise levels respectively.
Figure 5-7(d) compares stage exit Mach number for the baseline airfoil-based model at
the three noise levels. The mean stage exit Mach number decreases for each successive
stage as the static temperature increases due to the work done by the rotor. At the higher
noise amplitude values the effect of the probabilistic airfoil redesign becomes apparent: The
average M3 is lower for MML and MSL redesigns as is its corresponding variability. As with
incidence, the Mach number variability decreases with each successive stage. As shown in
Fig. 5-7(d), for a fixed canonical airfoil design (in this case the baseline airfoil), the average
Mach number increases with noise amplitude as does its variability.

5.5 Multiple-Blade Rows

In the calculations reported above it was assumed that, for a given bladed row, all blade
passages behaved identically, i.e., a single passage was considered for each bladed row. In
this section, multiple passages per blade row are considered. For a given blade row, loss and
turning values for each passage are sampled from the normal distribution according to inlet
incidence. Thus in each passage loss and turning values are different, but with statistics
prescribed by the loss and turning models for the specified incidence. The corresponding
system of stage equations (Eqs. (5.1)–(5.3) or (5.4)) is solved for each passage. The outlet
conditions are area-averaged to initialize the inlet conditions of the next rotor or stator and
the calculation is marched through the compressor.

Table 5.2 shows polytropic efficiency and pressure ratio statistics for the six-stage com-
pressor model reported above but with 80 blades per row (rotor or stator). Statistics for
three levels of geometric variability and each redesigned canonical blade shape are reported.
In comparing Table 5.2 to 5.1 it is seen that at the a = 1 noise level the mean shifts for the

Table 5.2: Six-stage compressor, IBR airfoil-based loss and turning models, 80 blade pas-
sages per row

a Design e0 µe σe × 103 π0 µπ σπ

1

Base 0.963 0.961 0.033 10.79 10.73 0.005
DML 0.969 0.968 0.022 11.09 11.04 0.006
MML 0.969 0.968 0.021 11.20 11.14 0.006
MSL 0.968 0.967 0.010 11.12 11.08 0.004

2

Base 0.963 0.960 0.065 10.79 10.72 0.010
DML 0.969 0.967 0.045 11.09 11.02 0.011
MML 0.969 0.967 0.044 11.18 11.11 0.011
MSL 0.967 0.966 0.028 11.13 11.08 0.008

5

Base 0.963 0.953 0.197 10.79 10.61 0.029
DML 0.969 0.961 0.163 11.09 10.90 0.033
MML 0.969 0.961 0.145 11.30 11.13 0.033
MSL 0.967 0.962 0.116 11.20 11.07 0.026
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(b) a = 2: M3 variability
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(c) a = 5: M3 variability
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Figure 5-7: Stage exit Mach number variability
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baseline multiple-blade calculation is the same as for the single-blade case. The efficiency
and pressure ratio standard deviations in the multiple-blade case are 13 and 77% lower
than in the single-blade case, respectively. At the a = 5 noise level the efficiency mean
shift is now one percentage point, in contrast with the 1.2% drop seen with the single-blade
calculation. The standard deviations of efficiency and pressure ratio have decreased by 30
and 75% from the single-blade calculations, respectively.

The reduction in efficiency and pressure ratio mean-shift can be explained in part by
considering a deterministic compressor with loss and turning given by the mean values
obtained from Monte Carlo simulation. As the number of blade passages is increased, the
mean values of efficiency and pressure ratio converges to those obtained with the mean loss
and turning models. Table 5.3 shows the resulting polytropic efficiency and pressure ratio
values for the three noise levels considered. Comparing the values in Table 5.3 to those of

Table 5.3: Six-stage compressor, mean loss and mean turning (no variability)

a = 1 a = 2 a = 5

Design e π e π e π

Base 0.961 10.73 0.960 10.71 0.954 10.62

DML 0.968 11.04 0.968 11.02 0.961 10.91

MML 0.968 11.15 0.968 11.11 0.962 11.13

MSL 0.967 11.08 0.966 11.08 0.962 11.08

mean polytropic efficiency and pressure ratio in Table 5.2, and taking into account their
reduced variability, it can be concluded that the contribution of the mean values of loss and
turning (for given incidence) dominates the mean shifts of polytropic efficiency and pressure
ratio.

5.6 Summary

In this chapter, a mean-line multi-stage axial compressor model was used to estimate the
impact of geometric variability on overall compressor performance. Canonical probabilistic
models of loss coefficient and turning angle versus incidence were constructed for an existing
compressor rotor blade using Monte Carlo simulation. In the mean-line compressor model,
upstream operating condition variability leads to variations in rotor inlet flow angle, axial
Mach number, and total temperature and pressure. The later variabilities follow directly
from upstream loss coefficient and turning perturbations. Since the annulus flow areas
remain fixed, inlet total pressure and temperature fluctuations translate to axial Mach
number and incidence perturbations. Inlet flow condition variability is compounded by
rotor and stator loss and turning noise to produce variability in the stage exit conditions,
which in turn affect the next stage.

The loss and turning models were used in probabilistic mean-line calculations for various
redesigned airfoils at three noise amplitude levels. At the original noise level the impact
on overall compressor polytropic efficiency is small (about 0.2% mean shift and 0.04%
increase in coefficient of variability). Despite the small compressor performance variability
predicted by the mean-line analysis, the effect of the redesigned airfoils can be detected at
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the compressor level. The probabilistic MSL redesign, with very similar mean efficiency
and pressure ratio as the minimum-loss redesigns, results in a decrease of 62% in standard
devation of polytropic efficiency from the baseline airfoil model, and 46% when compared
with the DML-based model.

At twice the original geometric noise level, the standard deviation of polytropic efficiency
for the baseline design increased by more than a factor of two from the original noise level.
A similar increase rate is seen in pressure ratio variability. The compressor model based
on MSL-redesigned airfoils shows a decrease of 21% in standard deviation when compared
with a model based on deterministic minimum loss. The pressure ratio COV decreases by
about 8% when comparing the baseline to the MSL redesign-based models.

At the more realistic a = 5 noise level, the efficiency COV for the baseline model went up
to 30%, a seven-fold increase from the a = 1 case. At this level of noise, the mean-shifts in
polytropic efficiency is ∼1.2% for the baseline case but only 0.7% for the MSL-based model
(i.e., a 42% reduction in mean-shift from baseline and 30% from DML). The decrease in
efficiency uncertainty for the MSL-based model is 34% from the baseline airfoil and 26%
from the DML airfoil-based model. The increase in pressure ratio COV is nearly linear
with noise level, in agreement with the linear increase in turning variability with observed
previously. Lastly, the MSL pressure ratio mean-shift is 25% lower than the corresponding
baseline and DML values. The enforcement of turning angle constraints at the airfoil level
led to redesigned airfoils with similar pressure ratio mean and standard deviation, with
advantageous implications for stall margin.

When considering multiple blade passages (80 blades in the present case), the impact
of the scatter about the mean loss and turning angle values was seen to decrease, leaving
the mean values as the dominant contributors to mean shift in polytropic efficiency and
pressure ratio. For a realistic a = 5 noise level the polytropic efficiency mean-shift was
found to be 1%.

Rotor and stator incidence variability was found to decrease for each successive down-
stream stage. For the same canonical airfoil design the average Mach number increases with
noise amplitude as does its variability. As with incidence, the Mach number variability de-
creases with each successive stage.
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Chapter 6

Summary and Recommendations

In this thesis, statistical and probabilistic techniques are used to assess the impact of geo-
metric variability on axial compressor performance. The following is a recapitulation of the
thesis.

• A statistical analysis of high-resolution compressor blade surface measurements was
performed using principal component analysis (PCA). The analysis resulted in high-
fidelity models of geometric variability suitable for use in probabilistic simulation and
optimization. The geometric noise modes were found in general not to correspond
directly to geometric parameters of known aerodynamic importance.

• The impact of manufacturing variability on blade row aerodynamic performance was
assessed using Monte Carlo simulation and a quasi-two-dimensional cascade analysis
code. Geometric variability was introduces via the aforementioned PCA-based model
derived from existing hardware measurements. Loss and turning variability were
found to grow linearly with geometric noise amplitude. Discrepancies between nominal
and mean loss coefficient of 23% were observed at five-times the baseline noise level.
Supersonic-inlet test cases exhibited higher loss variability than subsonic ones for the
same type and level of geometric variability.

• A mean-line multi-stage axial compressor model was used to estimate the impact
of geometric variability on overall compressor performance. Canonical probabilistic
models of loss coefficient and turning versus incidence were constructed for an existing
compressor rotor blade. In the mean-line compressor model inlet flow condition vari-
ability is compounded by rotor and stator loss and turning noise to produce variability
in the stage exit conditions, which in turn affect the subsequent stages. Probabilistic
loss and turning models were used in mean-line simulations of a six-stage compressor
with nominal pressure ratio of 11. At realistic levels of geometric variability the dis-
crepancy between nominal and mean polytropic efficiency was found to be around one
percentage point. Pressure ratio variability was found to vary linearly with geometric
variability amplitude. Rotor and stator incidence variability was found to decrease
with distance through the compressor. For the same canonical airfoil design the mean
exit Mach number increased with noise amplitude as did its variability. Mach number
variability was also found to decrease with distance through the compressor. When
considering multiple-blade rows it was found that the mean shifts in loss coefficient
and turning angle dominate the mean shifts in polytropic efficiency and pressure ratio.
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• A probabilistic gradient-based approach to compressor blade optimization was de-
veloped. The probabilistic objectives, constraints and their corresponding gradients
are approximated using low-fidelity Monte Carlo simulation. An external nonlinear
optimization driver was used to drive the probabilistic simulations. Design modes
included Chebyshev polynomials acting on the airfoil surface and solid-body rotation
to optimize stagger angle. The airfoils were optimized both deterministically for min-
imum loss, and probabilistically for minimum mean loss and minimum loss variability
The airfoils were then subjected to simulated geometric variability to assess its im-
pact on their performance. Reductions in mean loss coefficient of up to 25% and in
loss variability of up to 65% relative to deterministically redesigned airfoils were ob-
served. At the compressor level, simulations using airfoils optimized probabilistically
for minimum loss variability exhibited reductions of 30 to 40% in polytropic efficiency
variability and mean-shift compared simulations using deterministically-redesigned
airfoils.

• For subsonic airfoils viscous dissipation was found to dominate the rate of entropy
generation. A decrease in the rate of flow deceleration on the entry region of the
pressure side reduced the entropy generation variability for subsonic inlet airfoils.
In supersonic inlet airfoils, a decrease in the rate of flow deceleration immediately
downstream of the shock impingement location on the suction side reduced the loss
variability caused by shock-boundary layer interaction.

Recommendations For Future Work

Probabilistic turbomachinery analysis and design is a relatively new area of research. The
following is a categorized list of suggestions for further work on some of the areas touched
in this thesis.

Applications

• The techniques outlined in Chapters 2 and 3—or variants thereof—could be used
to assess the validity or relevance of current industrial manufacturing tolerancing
practices.

• It would also be of interest to build a “catalog” of common geometric modes en-
countered in specific manufacturing processes. Such catalog could be employed, for
instance, in proposing new manufacturing tolerancing schemes backed by aerodynamic
(functional) information in addition to the traditional heuristics and past experience
of current use.

• The main premise of Chapter 2—to obtain high-definition measurements of actual
production hardware and analyze the data statistically—could as well be applied to
characterizing geometric variability incurred during engine operation. Clearly, the
main obstacles to such a study are the need for large numbers of samples and the
costs involved in measuring them.

• As illustrated in Chapter 4, nominal airfoil shape modifications can contribute to the
reduction of performance variability. Further redesign features should be explored
over a wide range of airfoil types and geometric variability characteristics.
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Extensions

• As briefly discussed in Appendix A, PCA may be used to characterize and construct
three-dimensional of compressor blade variability.

• A natural extension of the investigations reported in Chapters 2 and 3 would be to
perform a “quasi-3D” probabilistic analysis of an entire blade. Such study would
involve obtaining geometric variability models and performing probabilistic analysis
of multiple blade sections along the blade span. A simple feedback loop can then
be established with the throughflow analysis code to take into account changes in
streamtube radial paths and thickness.

• The mean-line model reported in Chapter Five can be greatly improved by considering
multiple-stage quasi-2D models (i.e., with different nominal blades and probabilistic
loss and turning models per stage) augmented by end-wall correlations to account for
casing boundary layer blockage effects.

• The extended compressor model may be used in parametric studies of high-pressure
compressors in more general design spaces, e.g., to study the changes in compressor
performance variability for fixed target pressure ratio and variable number of stages,
etc.

Methodology

• The nonlinear constrained optimization algorithm used in Chapter 4 (SQP), assumes
that the program being solved is convex, i.e., minimization of a convex function over
a convex region. Although convexity can be expected to hold in a small region around
the origin (baseline design), the use of global optimization techniques (see for instance
Ref. 18) may allow for more effective tradespace explorations.

• In Chapter 4, low-resolution Monte Carlo simulations were used as a surrogate of
high-fidelity ones, the idea being that approximate probabilistic gradient information
is sufficient to drive the probabilistic airfoil optimization. Other forms of surrogate
models are also possible, e.g., polynomial fits, neural nets, etc. A way to infuse more
fidelity during probabilistic optimization may be to use combinations of surrogate
and high-fidelity evaluations. The optimal “schedules” for alternating low and high-
resolution function evaluations should be investigated.

• Additional research on the importance of deterministic sensitivity-derivative accuracy
to the effectiveness of gradient-based probabilistic optimization needs to be carried
out. In particular, trade-offs among ease of implementation (and retro-fitting), fidelity
and computational expense of various methods (e.g., finite-difference approximations,
solving sensitivity equations or implementing adjoint-based solvers) should be ad-
dressed in the context of gradient-based probabilistic optimization of turbomachinery
components.

• Throughout the thesis, simple Monte Carlo sampling was used to estimate the statis-
tics of functions of random variables. As a first step to improve computational effi-
ciency, the use of variance reduction techniques (e.g., stratified sampling) should be
evaluated.
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• The calculations reported in this thesis took advantage of the easily parallelizable
nature of Monte Carlo simulation. On the other hand, less expensive probabilistic
analysis methods may be not only desirable alternatives to Monte Carlo but per-
haps even the only feasible means to assess the impact of geometric variability on
compressor airfoil performance as higher fidelity results are sought.
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Appendix A

Principal Component Analysis

A.1 Background

The primary underlying idea in principal component analysis is the modal decomposition
of data sets (from experiments, numerical simulations, field observations, etc.) into bases
which are optimal in a statistical sense. This idea is known to various disciplines under
different names: Proper orthogonal decomposition (POD), Karhunen-Loève expansion, sin-
gular system analysis, singular value decomposition (SVD), etc. [60].

In fluid mechanics POD has been widely used in the analysis of experimental and simula-
tion data [117], particularly in turbulence [15,42,77]. PCA has found applications in random
variables [75,95], image processing [49,93,107] and other computer science applications [5,6],
and meteorology [76,100]. Computer packages implementing the Karhunen-Loève decompo-
sition to study the spatiotemporal behavior of dynamical systems have been reported [8,57].
More recently POD has been used in constructing reduced-order aerodynamic models for
applications in turbomachinery control [54, 106, 136, 137]. Häcker [52] used principal com-
ponents analysis and other statistical techniques to map simulated compressor blade shape
variability to aerodynamic performance.

According to Preisendorder [100] the origins of PCA can be traced back to the 1870s
and the work of Beltrami, Jordan and Wierstrass who laid down the foundations for what
is now known as the Singular Value Decomposition. Lumley [77] reports that in the 1940s
and 50s research in this area was independently carried out by various researchers including
Kosambi [74], Loève [75], Karhunen, Pougachev [99] and Obukhov [92]. E. N. Lorenz
suggested the technique in the context of weather prediction [76].

A.2 Basic Theory

The presentation of PCA that follows has been adapted from Refs. 100 and 67 to the
characterization of geometric variability in turbomachinery airfoils.

The nominal airfoil geometry is defined by p coordinate points w0(x) ∈ R
m, x = 1, . . . , p

where m is typically 2 or 3. We consider a set of n coordinate measurements {ŵ(t, x) ∈
R

m | t = 1, . . . , n; x = 1, . . . , p} taken, for instance, with a coordinate-measuring machine.
The integral values of x uniquely identify a specific nominal point and its measured coun-
terparts. Similarly t identifies a particular set of measured points. The discrepancies in the
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coordinate measurements can be expressed as

w′(t, x) = ŵ(t, x)−w0(x), t = 1, . . . , n; x = 1, . . . , p .

Subtracting from these error vectors their ensemble average given by

w̄(x) =
1

n

n
∑

t=1

w′(t, x), x = 1, . . . , p ,

gives a t-centered set of m-dimensional vectors, W = {w(t, x) = ŵ(t, x) − w̄(x) | t =
1, . . . , n; x = 1, . . . , p}.

Let w(t) = [wT (t, 1), . . . ,wT (t, p)]T and consider a unit vector e ∈ R
mp with sub vectors

e(x) ∈ R
m, so that e = [e(1)T , . . . , eT (p)]T . The scatter of W along e is defined to be

ψ(e) ≡
n
∑

t=1

[wT (t)e]2

= eT

(

n
∑

t=1

w(t)wT (t)

)

e

= eTSe ≥ 0

where the scatter matrix S is composed of the m×m sub matrices

S(x, y) =

n
∑

t=1

w(t, x)w(t, y)

The set W of t-centered error vectors can be written in matrix form as

X ≡ [X(1), . . . ,X(p)]

where X(x) ≡ [wT (1, x), . . . ,wT (n, x)]T . Then the scatter matrix can be more succinctly
written as

S = XT X.

The scatter matrix is related to the covariance matrix C simply by C = (n− 1)−1S.
We are interested in finding directions which minimize (or maximize) the scatter ψ.

Assume that v ∈ R
mp is one such direction. Then for a small perturbation δv

ψ(v + δv) = ψ(v) +O(|δv|2)

so that, to first order ψ(v + δv) ≈ ψ(v). On the other hand, from the definition of ψ we
have

ψ(v + δv) = (v + δv)T S(v + δv)

= vTSv + vT Sδv + δvT Sv + δvT Sδv,

since S = ST , vT Sδv = δvT Sv, to first order, ψ(v + δv) ≈ vT Sv + 2δvT Sv, which implies

δvT Sv = 0. (A.1)
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From the requirement that ‖v + δv‖2 = 1, we get

vT v + vδv + δvv + δvT δv = 1

which to first order is equivalent to
δvT v = 0, (A.2)

i.e., to first order the perturbations only alter the direction of v.
To combine Eqs. (A.1) and (A.2) we multiply the latter by λ ∈ R having the same units

as the entries of S, yielding
δvT (Sv − λv) = 0. (A.3)

Since Eq. (A.3) must hold for arbitrary perturbations satisfying Eq. (A.2), it follows that
the extrema of the scatter probe occur along directions which are nontrivial solutions of the
eigenvalue problem

Sv = λv. (A.4)

Since S is symmetric positive definite 1, it has in general mp orthonormal eigenvectors
vi ∈ R

mp, i = 1, . . . ,mp with corresponding real, non-negative eigenvalues [130], i.e., if
V = [v1, . . . ,vmp], then VTV = VVT = I and

VS = VΛ (A.5)

where Λ = diag(λi, . . . , λmp), λ1 ≥ . . . ≥ λmp ≥ 0. Equation (A.5) is a statement of the
eigenvector property of S [100].

The orthonormal columns of V span R
r where r ≤ mp is the rank of S. Therefore the

original data vectors can be represented as linear combinations of the eigenvectors of S.
From the orthogonality of V we can write the identity

X = XVVT .

Introducing the n×mp matrix of amplitudes A ≡ XV we can rewrite the above as

X = AVT . (A.6)

Equation (A.6) is called the PCA synthesis formula [100]. The entries of A have the same
dimensions as the entries of X, i.e., as the data vectors. The columns of A are the principal

component or amplitude vectors in R
n and can be thought of as the amplitudes modulating

a set of modes given by the eigenvectors of S.
From the eigenvector property of S it follows that

ATA = (XV)T (XV) = VT (XT X)V = VTSV = VT VΛ,

that is
AT A = Λ . (A.7)

This last expression is called the PCA property of the data set X.
The total scatter (or energy [8]) E of the data set W is given by

E = tr(S) = tr(XTX) = ‖X‖2F
1For any nonzero vector v, v

T
Sv = v

T
X

T
Xv = (Xv)T (Xv) = ‖Xv‖2

2 > 0
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where ‖ · ‖2F stands for the Frobenius norm. Using the fact that the Frobenius norm is
invariant under unitary multiplication [130] we can write

E = ‖AVT ‖2F = ‖A‖2F = tr(ATA) = tr(Λ) =

mp
∑

j=1

λj .

Therefore the total scatter of the data set is given by the sum of squares of the entries of the
principal component vectors or, equivalently, by the sum of the eigenvalues of the scatter
matrix S. The latter can also be seen by applying the scatter probe to each eigenvector
vj, j = 1, . . . ,mp of S,

ψ(vj) = vT
j Svj = vT

j λjvj = λj ,

by the orthogonality of V. Therefore, the scatter of the data set along a particular eigen-
vector is given by its corresponding eigenvalue.

Directly computing the eigenvalue decomposition of S (Eq. (A.5)) can become computa-
tionally expensive for large n,m, p. An alternate, less expensive computation is motivated as
follows. Define the normalized amplitude matrix U to have columns uj(t) = aj(t)/

√

λj , j =
1, . . . mp, where aj(t) ∈ R

n are the principal components of the data set. Then

A = UΣ

where Σ = diag(σ1, . . . , σmp), σj =
√

λj, j = 1, . . . ,mp. The PCA property can be
rewritten as

UTU = I

and the synthesis formula becomes

X = UΣVT . (A.8)

The above expression is a statement of the Singular Value Decomposition (SVD) of X in
reduced form [130], which is made unique by requiring that {σj}mp

j=1 be a non-increasing
sequence. Computing the SVD of X is less expensive and more numerically stable than
finding the full eigenvalue decomposition of S. Furthermore, the form of Eq. (A.8) can be
readily cast to include cases for which rank(S) ≤ n < mp.

A.3 Three-Dimensional Analysis of IBR Blade Measurements

An alternative application of PCA to the IBR measurements discussed in Chapter 2 is to
consider all 13 sections at once in a three-dimensional analysis. The 3-D analysis allows
for the possibility of section-to-section effects that were precluded by the two-dimensional
assumption made priorly.

Using the notation introduced above, the t-centered measurements are collected into
n×mp matrix X, where now n = 52, m = 3 and p = 112. As before, the eigenmodes and
eigenmodes of the scatter matrix S are obtained from the singular value decomposition of
X.

Figures A-2 and A-3 show the effect of the mean airfoil perturbation and the first five
modes. The scalar quantity plotted is the displacement in the direction normal to the
baseline blade surface (outward positive). For ease of visualization, the surface of the airfoil
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has been “unwrapped”: the suction surface of the blade corresponds to the horizontal
interval −1 ≤ x ≤ 0, while the pressure side is corresponds to 0 < x ≤ 1, with the leading
edge is located at 0. The portion of the measured span has been normalized. To facilitate
comparison of leading- and trailing-edge effects, a transformation defined by

T : x 7→
{

1
2 [1− cos π(x− 1)]− 1 −1 ≤ x < 0
1
2 (1− cos πx) 0 ≤ x ≤ 1

has been used on to the chord-wise component. In the plots, the bottom horizontal axis
corresponds to the transformed abscissa coordinate, T −1(x), while the top auxiliary hori-
zontal axis indicates the original x coordinate value. Figure A-1 shows the effect of T −1 on
a uniform grid.
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Figure A-1: Transformation T

Figures A-2 and A-3 suggest the existence of three-dimensional components of geometric
variability modes acting along the blade span and not only along its axial and tangential
directions.
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(b) Mode 1
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(c) Mode 2

Figure A-2: Three-dimensional geometric modes
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(a) Mode 3
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(b) Mode 4
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(c) Mode 5

Figure A-3: Three-dimensional geometric modes (Cont’d)
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Appendix B

Point- Vs. Flank-Milled

Compressor Blade Rows

Point milling is a well understood and widely used method for manufacturing compressor
blades. In this technique, a ball cutter removes material from a block of metal following
computer-controlled paths. The main disadvantages of point milling are the time required to
cut an entire blade surface in several passes and the resulting scalloped surface finish [138].
An alternative to point milling that is starting to become practical is flank milling, whereby
a conical tool is used to cut the entire surface of a blade from the blank material in a single
pass [138]. Flank milling poses a more challenging tool control problem than point milling,
but can potentially be more time and cost effective. Another advantage of flank milling is
that it produces a better surface finish than point milling, requiring less time for surface
polishing.

The integrally bladed rotor (IBR) discussed throughout this thesis was manufactured
via flank milling. Production hardware is likely to be manufactured using other more
common techniques like point milling. Figure B-1 shows plots of measured deviations of
two production compressor rotor blades, one manufactured with point milling and the other
with flank milling. Deviations in chord length, leading-edge thickness and trailing-edge
thickness at various spanwise locations are shown. The deviations have been scaled with
respect to the nominal spanwise average chord. Largest positive and negative deviations at
each spanwise station are indicated by dashed lines, which in turn provides a rough measure
of variability in each measured dimension. Table B.1 shows maximum deviations (per unit
chord) intervals in chord, leading and trailing-edge thickness for the measurements shown
in Fig. B-1. The point-milled IBR exhibits roughly 18 times more variability in chord

Table B.1: Spanwise maximum deviation intervals (per unit chord) for point- and flank-
milled IBR measurements.

Dimension Point (×103) Flank (×103) Ratio

Chord length 8.6 0.49 18

LE thickness 2.7 0.49 6.7

TE thickness 3.8 0.57 5.6

length than the flank-milled IBR. The variability in LE and TE thickness measurements for
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(b) Flank-milled IBR: Chord length
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(c) Point-milled IBR: LE thickness
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(d) Flank-milled IBR: LE thickness
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(e) Point-milled IB9: TE thickness
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(f) Flank-milled IBR: TE thickness

Figure B-1: Measured deviations for sample point and flank-milled IBR
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the point-milled IBR is roughly six times that of the flank-milled rotor. This comparison
provides a justification for the higher geometric variability levels considered in Chapters 3–6.
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Appendix C

Robustness Via Constrained

Probabilistic Optimization

Various definitions of robustness have been introduced in the context of design under un-
certain conditions [98, 124]. In the present context a robust blade passage design is one
that exhibits improved mean performance and reduced sensitivity to geometric and flow
parameter variability when compared to a baseline design.

A comparison of problems (4.1) and (4.2) suggests a probabilistic nonlinear program of
the form

σ∗$ = min
x∈Ω′

{

Var
θ

($(x, θ))

}
1
2

(C.1)

s.t. ϑl ≤ E
θ

[ϑ(x, θ)] ≤ ϑu,

E
θ

[$(x, θ)] = $∗ .

Assuming that, in some subset Ω′ of the design space Ω, σ∗

$ varies continuously with
$∗ and is furthermore monotonically decreasing in $∗, then an acceptable level of mean
performance degradation may be traded by a profitable reduction in output variability.

To illustrate a mean performance vs. variability study, the IBR airfoil introduced in
Chapters 2–5 was redesigned to meet the mean loss equality constraints summarized in
Table C.1. A geometric noise level a = 5 was assumed. The design variables and tradespace
were similar to those used in Sect. 4.2.3 with the exception that no stagger angle changes
were allowed. The turning constraint was relaxed to 14.4 ≤ µϑ ≤ 15.4. To ensure sufficient
resolution of the equality constraints Nopt = 200 trials were used. All optimization runs
were started from the baseline geometry.

The mean loss constraint values in Table C.1 were selected to subdivide the mean loss
interval between the values computed for the MML and MSL redesigns (see Table 4.2) into
five segments (roughly) uniformly-spaced. The problem names given in the table identify the
resulting redesigned airfoils and their performance statistics in Figs. C-1 and C-2. Figure C-
1 gives final standard deviation versus mean mean loss coefficient (computed via MCS,
N = 2000) for the four trade-off airfoils, as well as those of the MML and MSL airfoils
discussed earlier. The highest variability corresponds to the MML redesign, as does the
smallest mean loss. The largest mean loss value corresponds to the minimum standard
deviation airfoil (MSL). The four trade-off redesigns lie between the MSL and MML cases.
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Table C.1: IBR a = 5: Mean vs. variability trade-off problem constraints

Problem Eθ[$(x)]

TO1 2.78

TO2 2.83

TO3 2.91

TO4 2.98
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Figure C-1: IBR: Mean loss coefficient vs. standard deviation (a = 5)

The graph can be interpreted in two ways. As the loss coefficient constraint is eased (i.e.,
larger values are considered), the possibility to reduce loss variability increases. Conversely,
as the requirement for reduced uncertainty is reduced, minimum mean loss that can be
reduced.

Point labeled MML2 in Fig. C-1 corresponds to the mean loss and standard deviation
obtained by minimizing the mean loss starting with the TO2 trade-off design. The design
space explored was the same as in the previous programs. The fact that a design was
obtained resulting in roughly the same minimum mean loss, but with reduced uncertainty,
suggests that a useful strategy for minimizing mean loss while reducing variability is to first
minimize variability and then improving mean performance.

Figures C-2 show geometric features of the redesigned airfoils TO1 through TO4 com-
pared to the MML and MSL airfoils. The geometric trends that led to designs with reduced
variability are seen also in the TO3 and TO4 airfoils, namely a somewhat thicker leading
edge (from building up the pressure side) and a shifting of the maximum camber location
aft. However, the thickness and camber transformations among the three sections are not
linear scalings of those in the MSL airfoil. Similarly, thinner sections in the forward portion
of the airfoil and a shifting of the maximum thickness toward the rear of the airfoil are
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characteristic to the low-loss/high-variability designs (MML, TO1, TO2).
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Figure C-2: IBR (a = 5): Geometric features of “trade-off” redesigns
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Appendix D

Mean-Line Compressor Model

D.1 Nomenclature

Variables

T Temperature P Pressure
M Mach number a Speed of sound
V Velocity u Axial velocity
v Tangential velocity r Radius
ρ Density h Enthalpy
α Absolute flow angle β Relative flow angle
ω Wheel speed φ Total pressure loss coeff.
ϑ Flow turning R Gas constant
γ Ratio of specific heats cp Specific heat at const. P
ṁ Mass flow rate pi Pressure ratio
η Adiabatic efficiency e Polytropic efficiency
D Diffusion factor σ Solidity
A Area

Subscripts

T “Total” R “Relative”
r “Rotor” s “Stator”
1 Rotor inlet 2 Stator inlet
3 Stator exit

D.2 Baseline Model

For a given choice of the design parameters outlined below, a mean-line compressor design is
obtained as follows: For some initial choice of tip-to-hub ratio, the stage inlet flow annulus
area is calculated according to the formulae summarized in Sect. D.3. A new tip-to-hub ratio
is calculated from the computed area and the iteration is continued to convergence. The
procedure is repeated for the next stage, k+1, using the previous stage’s exit conditions, i.e.,
T k+1

T1
← T k

T3
, P k+1

T1
← P k

T3
, Mk+1

1 ←Mk
3 , where the superscript indicates stage number. The

design parameters are then varied as required to comply with the suggested design guidelines
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and the stage iterations repeated. The design parameters, guidelines and outputs are as
follows.

• Design parameters

– Number of stages, N

– Compressor inlet properties: T 1
T1

, P 1
T1

, M1
1 , and α1

1, for k = 1, . . . , N

– Mass flow rate and wheel speed

– Compressor inlet tip radius and casing (tip) contraction angle θcasing

– Rotor and stator total pressure loss coefficients, φk
r , φ

k
s

– Nominal rotor turning angle ϑk
r

– Rotor and stators axial velocity ratios AVRr, AVRs

– Stage solidity, σk

• Design guidelines (as suggested in Ref. 81)

– Stage loading coefficient ψ = ∆hT /(ωr)
2 ∼ 0.3

– Flow coefficient Φ = u1/(ωr) ∼ 0.5

– Diffusion factors Dr, Ds < 0.6

– Degree of reaction oR = ∆hrotor/∆hstage ∼ 0.5.

– Axial stage exit flow (no residual swirl)

• Design outputs

– Flow annulus areas: Ak
1, A

k
2 , A

k
3 , k = 1, . . . , N

– Stator turning: ϑk
s , k = 1, . . . , N

– Baseline compressor pressure ratio π

– Adiabatic and polytropic efficiencies, η, e

The six-stage compressor model parameters and stage settings for the baseline design
used in Chapter 5 are summarized in Tables D.1 and D.2. In addition, the nominal rotor

Table D.1: Baseline compressor model parameters

T 1
T1

(K) P 1
T1

(kpa) M 1
1 ṁ (kg/s) ω (rad/s) α1

1 (deg) r1
tip (m) θcasing (deg)

380 300 0.6 70 1400 0 0.30 1.3

and stator loss coefficients taken from the IBR airfoil calculations summarized in Chapter 3
were φr = φs = 0.03. The nominal rotor turning, also corresponding to the nominal
IBR airfoil was ϑr = 14.4 deg. The resulting nominal compressor total pressure ratio,
total temperature ratio, and adiabatic and polytropic efficiencies were π = 10.8, τ = 2.03,
η = 0.95 and e = 0.96 respectively. Figure D-1 shows the a schematic representation of the
compressor stages and the mean-line path. Table D.3 shows the pressure and temperature
ratios, diffusion factors, stage loading, flow coefficient, and degree of reaction for each stage
of the nominal mean-line model. Similarly D.4 shows exit total temperatures, pressures
and Mach number, as well as stator inlet area, stator inlet absolute flow angle and nominal
stator turning.
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Table D.2: Baseline compressor model stage settings

Stage 1 2 3 4 5 6

α3 0 0 0 0 0 0

AVRr 1 1 1 1 1 1

AVRs 1 1 1 1 1 1

σ 1 1 1.2 1.4 1.6 1.7

AR 1.6 1.6 1.6 1.7 1.8 1.8

θstagger 30 30 35 35 40 45

0 0.05 0.1 0.15 0.2 0.25

0.22

0.24

0.26

0.28

0.3

R1

S1 R2
S2 R3

S3 R4 S4 R5 S5R6S6

Figure D-1: Compressor model stages

D.3 Stage formulae
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Table D.3: Baseline six-stage compressor model (1)

Stage η π Dr Ds ψ Φ ◦R

1 0.964 1.655 0.440 0.478 0.429 0.599 0.785

2 0.962 1.573 0.454 0.483 0.421 0.582 0.789

3 0.960 1.504 0.432 0.438 0.418 0.573 0.791

4 0.959 1.447 0.415 0.405 0.416 0.567 0.792

5 0.958 1.400 0.402 0.381 0.415 0.563 0.792

6 0.957 1.360 0.397 0.372 0.415 0.560 0.793

Table D.4: Baseline six-stage compressor model (2)

Stage TT3 (K) PT3 (kpa) M3 A2 (m2) α2 (deg) ϑs (deg)

1 441.0 496.5 0.554 0.12112 35.6 -35.6

2 504.4 781.1 0.516 0.08588 35.8 -35.8

3 569.4 1175.0 0.484 0.06322 36.1 -36.1

4 635.5 1700.2 0.457 0.04801 36.2 -36.2

5 702.4 2379.8 0.434 0.03743 36.4 -36.4

6 769.9 3237.7 0.414 0.02982 36.5 -36.5

u2 = AVRru1, TT2R
= TT1R

, β2 = β1 − ϑr

∆TT =
ω

cp
(r1u1 tan β1 − r2u2 tanβ2), TT2 = TT1 + ∆TT

v2R = u2 tan β2, V2R =
√

u2
2 + v2

2R,

v2 = ωr2 − v2R, α2 = arctan(v2/u2), V2 =
√

u2
2 + v2

2
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V 2

2
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u3 = AVRsu1

PT3 = PT2

(

PT3
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)

φs

, P3 = PT3

(
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TT3

)γ/(γ−1)
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u3 = V3 cosα3, v3 = V3 sinα3
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D.4 Rotor System Jacobian

The following are the entries of the Jacobian corresponding to the nonlinear system 5.1–5.3.
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