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Abstract

An efficient procedure to compute strict upper and lower bounds for the exact collapse multiplier
in limit analysis is presented. The approach consists of two main steps. First, the continuous
problem, under the form of the static principle of limit analysis, is discretized twice (one per bound)
using particularly chosen finite element spaces for the stresses and velocities that guarantee the
attainment of an upper or a lower bound. The second step consists of solving the resulting discrete
nonlinear optimization problems. Towards this end, they are reformulated as second-order cone
programs, which allows for the use of primal-dual interior point methods that optimally exploit the
convexity and duality properties of the limit analysis model. To benefit from the fact that collapse
mechanisms are typically highly localized, a novel method for adaptive meshing is introduced based
on decomposing the total bound gap as the sum of positive elemental contributions from each
element in the mesh. Additionally, stand-alone computational certificates that allow the bounds to
be verified independently, without recourse to the original computer program, are also provided.
The efficiency of the methodology is illustrated with applications in plane stress and plane strain,
demonstrating that it can be used in complex, realistic problems.

Introduction

Limit analysis is relevant in many practical engineering areas such as the design of
mechanical structures or the analysis of soil mechanics. Assuming a rigid, perfectly-
plastic solid subject to a static load distribution, the problem of limit analysis consists
of finding the minimum multiple of this load distribution that will cause the body to
collapse. This collapse multiplier results from solving an infinite dimensional saddle
point problem, where the internal work rate is maximized over an admissible convex
set of stresses -defined by a yield condition- and minimized over the linear space of
kinematically admissible velocities for which the external work rate equals the unity.
This saddle point problem embeds the well-known convex (and equivalent) static and
kinematic principles of limit analysis (Christiansen, 1981). The presence of the yield
condition introduces nonlinearity in the problem, which represents an added difficulty.

Traditionally, the way to overcome this difficulty was to linearize the convex yield
condition. With this linearization, first introduced in (Maier, 1970), the resulting
problem reduces to a classical linear program (LP). Initially, the LP was solved using
the Simplex method (Anderheggen and Knöpfel, 1972; Capurso, 1971; Christiansen,
1981) and, more recently, using Interior Point Methods (IPM) (Andersen and Chris-
tiansen, 1995; Christiansen and Kortanek, 1991). The first successful attempts to
solve for the exact convex yield condition on fine grids were reported in (Andersen
et al., 1998), where the kinematic principle was discretized and then formulated as
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a Minimization of Sum of Norms (MSN) subject to a linear constraint. Finally, the
discrete problem was solved extending the ideas of IPMs for LP to the MSN. The ap-
proach, however, required the use of very cumbersome divergence-free elements when
dealing with incompressible problems. This was overcome in (Christiansen and An-
dersen, 1999), by simultaneously approximating the static and kinematic principles
with a discrete duality problem that was solved using the method reported in (Ander-
sen and Christiansen, 1998). This work was further improved in (Christiansen and
Pedersen, 2001), by introducing automatic mesh refinement and using the primal-dual
IPM developed in (Andersen et al., 2000). Unfortunately, the refinement strategy did
not rely on rigorous local error measures but in heuristic estimates, thereby limiting
its performance. A common feature of the above-mentioned works, (Andersen et al.,
1998; Christiansen and Andersen, 1999; Christiansen and Pedersen, 2001), is that
they only provide approximations to the collapse multiplier, but do not yield strict
bounds. In (Lyamin and Sloan, 2002a; Lyamin and Sloan, 2002b), on the other hand,
lower and upper bounds of the collapse multiplier are computed for soil mechanics
problems on uniform meshes, using linear finite elements and a nonlinear two-stage,
quasi-Newton optimization algorithm. The method does not require the linearization
of the yield condition, but can only handle smooth yield surfaces. A new approach to
obtain lower bounds is presented in (Krabbenhoft and Damkilde, 2003). It uses an
IPM that exploits convexity and duality, and no particular finite element discretiza-
tion or yield criterion is required. However, no measure of the error is available, since
only lower bounds are obtained.

The main objective of the present work is to devise an efficient and robust method
to compute upper and lower bounds, for the exact convex yield condition. Towards
this end, the convex nature of the limit analysis problem is exploited by solving the
resulting optimization problems using standard conic programming (primal-dual) in-
terior point algorithms. Additionally, mesh adaptive procedures, based on local error
measures, are incorporated. Finally, the method provides stand-alone certificates
that document the computational results and can be used a posteriori to prove its
correctness.

The Limit Analysis Problem. Duality and Exact Bounds

Let Ω denote the domain of study, over which u = u(x), with x ∈ Ω, represents a
plastic velocity or flow field that belongs to a space Y of kinematically admissible
velocity fields. Likewise, let σ = σ(x) be a stress field belonging to an appropriate
space of symmetric stress tensorsX (see (Christiansen, 1996) for the mathematical re-
quirements on Y and X). If the bilinear form a(σ,u) and the linear form F (u) denote
the well-known internal and external work rates, respectively, then the equilibrium
equation can be expressed by the principle of virtual work, as follows:

a(σ,u) = F (u), ∀u ∈ Y. (1)

Furthermore, the yield condition is forced by imposing the stress tensor σ to belong
to a convex set, B, of admissible stresses for the material:

σ(x) ∈ B, ∀x ∈ Ω. (2)
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Our computational treatment of the limit analysis problem exploits the convexity
properties of B and requires, also, that B can be written in the generic form:

B = {σ ∈ X |
∑

k

f2
k (σij) ≤ f2

0 (σij , q)}, (3)

where fk and f0 are affine functions of their arguments and q is a constant depending
on the material properties. For example, the von Mises yield condition in two and
three dimensions, as well as the Mohr-Coulomb and the Tresca yield criteria in plane
strain, can be expressed in the form (3).

Now, defining C = {u ∈ Y |F (u) = 1}, the exact collapse multiplier, λ∗, results from
solving any of the following problems:

λ∗ = supλ

s.t.
{ ∃σ ∈ B

a(σ,u) = λF (u),∀u ∈ Y (4)

= sup
σ∈B

inf
u∈C

a(σ,u) (5)

= inf
u∈C

sup
σ∈B

a(σ,u) (6)

= inf
u∈C

D(u). (7)

Problem (4) is the so-called static principle of limit analysis, whereas (7) is known
as the kinematic principle of limit analysis. The equality between (5) and (6) follows
from strong duality, which is proved in detail in (Christiansen, 1996). Moreover,
(Christiansen, 1996) also shows that collapse fields u∗ and σ∗ exist and are a saddle
point of a(σ,u). Indeed, if σ∗ and u∗ are the exact solutions to the static and
kinematic principles (4) and (7) respectively, then the following inequalities hold:

a(σ,u∗) ≤ λ∗ = a(σ∗,u∗) ≤ a(σ∗,u) ∀σ ∈ B, ∀u ∈ C. (8)

Rigorous lower bounds for the multiplier λ∗ can be obtained by exactly satisfying the
equilibrium and membership constraints in the static principle (4), which is equivalent
to exactly computing the inner infimum in (5). Analogously, upper bounds arise when
the inner supremum in (6) is exactly performed or, equivalently, when D(u) is exactly
computed in the kinematic principle (7). These conditions, sufficient to guarantee the
attainment of bounds, will be referred to as bound conditions.

Now, let us consider a discretization of Ω and choose finite element function spaces
Xh for σ and Yh for u. Then, the discretized version of the variational continuous
limit analysis problem (4-7) reads as follows:

λ∗
h = max

s.t.

{
∃σh ∈ Bh
a(σh,uh) = λF (uh),∀uh ∈ Yh

λ = max
σh∈Bh

min
uh∈Ch

a(σh,uh)

= min
uh∈Ch

max
σh∈Bh

a(σh,uh) = min
uh∈Ch

Dh(uh). (9)

The above discrete duality holds for all practical discretizations (see proof in (Chris-
tiansen, 1996)). In general, for a given choice of Xh×Yh, λ

∗
h is only an approximation

to λ∗, but not a bound. However, when the discrete problem (9) is solved using par-
ticular combinations of appropriately-chosen interpolation spaces Xh ×Yh, then λ∗

h is
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guaranteed to be either a lower bound (λ∗LB
h ≤ λ∗) or an upper bound (λ∗ ≤ λ∗UB

h )
of the true collapse multiplier, λ∗. These are the spaces of interest to obtain bounds.
From now onwards, those combination of spaces that allow for the attainment of
lower bounds will be named purely static spaces and denoted by XLB

h × Y LB
h . Anal-

ogously, XUB
h × Y UB

h will denote those spaces that yield upper bounds and will be
named purely kinematic spaces. The reason why these spaces yield rigorous bounds
is because their use allow for the satisfaction of the bound conditions.

Methodology and Implementation

A brief summary of the methodology and implementation to obtain bounds in prac-
tice, for the two-dimensional limit analysis problem, is given next. For brevity, all
the mathematical details and proofs, as well as many additional explanations and de-
scriptions have been omitted in this section, but can be found in (Ciria, 2004 (May)).
Both the plane stress and the plane strain models are addressed. Regarding the yield
condition, the von Mises model has been considered. Its restriction to plane stress
(B1) and plane strain (B2) reads as follows:

B1 = {σ ∈ X | (σ11 −σ22)2 +σ2
11 +σ2

22 +6σ2
12 ≤ 2σ2

y}, B2 = {σ ∈ X | (σ11 −σ22)2 +4σ2
12 ≤ 4

3
σ2

y},
(10)

where σy represents the yield stress in simple tension. Notice that both B1 and B2

agree with (3). For all the problems considered, only triangular meshes are used.

Lower Bound Problem

To obtain a lower bound, the use of purely static spaces, XLB
h × Y LB

h , is required.
For both the plane stress and the plane strain cases, one can show that a possible
purely static formulation is the following: use of piecewise discontinuous stresses with
linear interpolations within the elements, and approximation of the velocity field by
constants on each element together with additional linear interpolations along the
inter-element boundaries. After using these spaces to discretize the static principle
(4) and introducing some reformulations, the following lower bound problem emerges:

λ∗LB
h ≡ maxλ

s.t.




9×E + 1 + 3n×E︷ ︸︸ ︷


Aeq1
... F eq1

h

... 0

Aeq2
... F eq2

h

... 0

Asoc

δ

... 0
... I

δ





 σh

λ
xsoc

δ


 =


 0

0
bsoc
δ







m1 = 2 × E

m2 = 4 × (|EO| + |EN |)

m3 = 3n × E

σh free, λ ≥0, x soc
δ ∈ K

(11)

where n = 5 for δ = 1 (plane stress) and n = 3 for δ = 2 (plane strain), |EO| and |EN |
are the total number of internal and Neumann edges in the mesh, respectively, and
E is the number of triangular elements. Moreover, σh is a vector collecting all the
nodal stress components, whereas xsoc

δ is a vector of additional variables introduced
to impose the yield condition. Furthermore, K = Ln × · · · × Ln is a cartesian prod-
uct of 3× E Lorentz (or second-order) cones (see (Ben-Tal and Nemirovski, 2001)).
The first submatrix equation in (11) imposes elemental equilibrium whereas the sec-
ond equation forces inter-element equilibrium and compatibility with the Neumann
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boundary conditions. Finally, the last equation imposes the yield condition. Thanks
to the use of a purely static formulation, the above equations guarantee that both
equilibrium and membership to the yield set are satisfied over the whole domain.

Upper Bound Problem

The upper bound problem also results from discretizing the static principle of limit
analysis (4). However, in this case, purely kinematic spaces, XUB

h × Y UB
h , are used.

Unlike the lower bound problem, different spaces are chosen here to deal with the
plane stress and the plane strain models. For the plane stress case, a kinematic
formulation is obtained by using constant stresses on each element combined with
continuous piecewise linear velocities. For plane strain, on the other hand, the veloci-
ties are interpolated using piecewise discontinuous linear spaces, whereas the stresses
are approximated with constants on each element and additional linear tractions along
the inter-element boundaries. In this last formulation, the introduction of disconti-
nuities in the flow is motivated to permit incompressibility, which is required in the
plane strain case. However, to guarantee a kinematically admissible velocity field,
the jump in the normal component of the velocities along the element edges must be
forced to vanish. Moreover, the contribution of the inter-element discontinuities to
the internal work rate must also be explicitly considered. Finally, introducing these
spaces into (4), the upper bound problems can be cast as follows:

λ∗UB
h ≡ maxλ

s.t.




3×E + 1 + 5×E︷ ︸︸ ︷
 Aeq

... −F eq
h

... 0

Ã
soc

1

... 0
... Ĩ

1





 σ̃h

λ
x̃soc

1


 =

(
0

b̃
soc

1

)}
m1 = 2 × (N − ND)

m2 = 5 × E

σ̃h free, λ ≥0, x̃ soc
1 ∈ K̃

(12)

for plane stress and

λ∗UB
h ≡ maxλ

s.t.




3×E + 4×|EO| + 1 + 4×|EO| + 3×E︷ ︸︸ ︷


Ã
eq1 ... Ã

eq2 ... −F̃
eq

h

... 0
... 0

Ã
soc

2

... 0
... 0

... 0
... Ĩ

2

0
... At

... 0
... It

... 0







σ̃h

th
λ
s

x̃soc
2


 =


 0

b̃
soc

2

bt







r1 = 6 × E − 4 × |ED|

r2 = 3 × E

r3 = 4 × |EO|

σ̃h free, th free, λ ≥0, s ≥0, x̃ soc
2 ∈ K̃

(13)

for plane strain. Here, K̃ =

E︷ ︸︸ ︷
Ln × · · · × Ln (again, n = 5 for plane stress and n = 3

for plane strain), ND is the total number of Dirichlet nodes and |EN |, the number of
Dirichlet edges. Moreover, σ̃h collects the elemental components of the stresses, th is
a vector of nodal inter-element tractions, and x̃soc

1 , x̃soc
2 and s are vectors of additional

variables used to impose the yield conditions on the elemental stresses and the internal
tractions. For both problems, the first equation approximately forces equilibrium,
whereas the remainder ones follow from imposing the von Mises condition.
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Solution of the Bound Problems

The above problems present the canonical form of a Conic Program and, in particular,
their level of complexity is that of a Second-order Cone Program (SOCP) (see (Ben-
Tal and Nemirovski, 2001) for a complete presentation of Conic Programming). This
is important mainly for two reasons. First, it allows for the use of state of the
art primal-dual interior point algorithms that have been particularly developed for
SOCP and that guarantee global convergence and efficiency in the solution process.
Moreover, with these algorithms, not only the above discrete static bound problems
are solved, but also their duals, which are discrete versions of the kinematic principle.
In this way, collapse fields for the stresses and velocities are simultaneously obtained.
Second, the bound problems can be solved using any conic programming optimization
package. In particular, the generic conic solvers SeDuMi (Sturm, 2001) and SDPT3
(Tütüncü et al., 2001) are the ones used here. In practice, it is possible to introduce a
change of coordinates that substantially reduces the dimensions of the above problems
while, at the same time, transforming them into pure SOCPs (Ciria, 2004 (May)).

Certificates

Thanks to the structure of the bound methods presented here, a certificate for a
lower or an upper bound only requires the following data: 1) information about
the computational mesh (nodal coordinates and connectivities); 2) feasible values
of the variables involved in the bound problem solved. With this information, one
can directly obtain or verify bounds without the need for solving any optimization
problem. This is so because any purely static or purely kinematic feasible solution to
the limit analysis problem results in a lower or an upper bound, respectively.

Mesh Adaptivity

The underlying idea of mesh adaptivity is to efficiently refine the computational mesh,
Th, by only dividing the elements that contribute more to the numerical error. In
this case, the numerical error is measured by the bound gap, ∆h = λ∗UB

h − λ∗LB
h . It

turns out that it is possible to identify the contribution of each element, e, in the
mesh to the total bound gap. For both the plane stress and the plane strain cases,
this contribution, named elemental bound gap, is given by

∆e
h =

∫
Ωe

σyεeq(ue
UB)︸ ︷︷ ︸

De(ue
UB)

−
(∫

Ωe

(−∇ · σe
LB) · ue

UB dV +
∫

∂Ωe

(nξe · σe
LB) · ue

UB dS

)
︸ ︷︷ ︸

F e(ue
UB)

, (14)

where σe
LB is the linear elemental stress tensor computed in the lower bound problem

(11) and ue
UB are the linear velocities, restricted to the element Ω

e, obtained when the
upper bound problem (12) or (13) is solved. Moreover, nξe is the unit outward normal
vector acting on the edge ξe of a particular element and εeq is a scalar deformation
known as the effective strain rate. Notice that ∆e

h is obtained as the difference between
the total elemental energy dissipation rate, De(ue

UB), and the elemental external work
rate, F e(ue

UB), both for the upper bound elemental velocity, u
e
UB. Very conveniently,

∆e
h inherits the following two important properties: 1) It is always positive, i.e.,
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Figure 1: Geometry and loads for the cantilever problem in plane stress

∆e
h ≥ 0, ∀e ∈ Th. 2) For plane stress, its sum over all the elements equals the total

bound gap, i.e.,
∑

e∈Th
∆e

h = ∆h. For plane strain, the total bound gap is decomposed

into two positive terms, namely, ∆h = ∆
O
h +∆̄h; where ∆

O
h comes from the continuum

(interior of the elements) and ∆̄h comes from the inter-element boundaries and is
found, in practice, to converge to zero as the mesh is refined, i.e., ∆̄h → 0 when
h → 0. Then, with the above definition of ∆e

h, the sum of all the elemental bound
gaps adds up to the total contribution from the continuum, i.e.,

∑
e∈Th

∆e
h = ∆

O
h .

Such ∆e
h is an optimal indicator of the elemental contribution to the numerical error,

and refining only the elements with higher ∆e
h is a reasonable strategy to refine the

mesh. This is the approach used here.

Numerical Examples

Example 1. Asymmetrical Cantilever in Plane Stress

In this example, an end-loaded wide tapered cantilever, whose geometry and load dis-
tribution are shown in Figure 1, is studied for the plane stress model. Moreover, the
performance of the adaptive meshing strategy is compared to the uniform meshing
approach. For different computational meshes, the numerical results obtained under
each of the two meshing techniques are summarized in Table 11. Notice that, with
only 2450 elements, the adaptive meshing yields a maximum relative error of 0.238%,
practically the same as the one obtained with 8704 elements when the uniform mesh-
ing is used. Moreover, with 5506 elements, the error yielded by the adaptive meshing
reduces to 0.066%, which can be considered negligible in practice. Figure 2 illustrates
the deformed geometry for different meshes. From a qualitative point of view, the
adaptive meshing seems to capture very accurately the collapse mechanism. Indeed,
one can observe that the finest elements are aligned in four slip-lines that converge
in a plastic-hinge and that divide the cantilever in four regions. The region in the
left-hand side remains fixed, whereas the right-hand side one turns as a solid rigid
around the plastic-hinge. This collapse mechanism coincide with the one predicted
by the slip-line theory in (Lubliner, 1990) for symmetrical cantilevers.

1To compute the relative errors in the table, the exact value λ∗ has been assumed to be 0.68504,
which is the average of the upper and lower bounds obtained in the last adaptive mesh refinement.
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Uniform Meshing
Number Number Low. Bound Upp. Bound Bound Low. Bound Upp. Bound
of refin. of elem. λ∗LB

h λ∗UB
h Gap ∆h Error (%) Error (%)

0 34 0.52186 0.75759 0.23573 23.821 10.591
1 136 0.65432 0.71936 0.06503 4.484 5.010
2 544 0.68079 0.69704 0.01624 0.620 1.752
3 2176 0.68349 0.68983 0.00634 0.226 0.699
4 8704 0.68440 0.68662 0.00223 0.093 0.231

Adaptive Meshing
Number Number Low. Bound Upp. Bound Bound Low. Bound Upp. Bound
of refin. of elem. λ∗LB

h λ∗UB
h Gap ∆h Error (%) Error (%)

0 34 0.52186 0.75759 0.23573 23.821 10.591
1 90 0.65782 0.71951 0.06169 3.973 5.032
2 300 0.68079 0.69704 0.01625 0.620 1.752
3 882 0.68349 0.68989 0.00640 0.226 0.708
4 2450 0.68440 0.68667 0.00227 0.093 0.238
5 5506 0.68459 0.68549 0.00090 0.066 0.066

Table 1: Numerical results for the cantilever problem in plane stress

Figure 3 shows graphically the bounds obtained for each uniform refinement and, also,
the rate of convergence for the bound errors and for the bound gap. Notice that the
upper bound error presents a rate of convergence clearly higher than linear. On the
other hand, the lower bound error converges linearly in the asymptotic range, despite
the initial super-linear convergence. Finally, in Figure 4, the upper and lower bounds
computed for each adaptive refinement are plotted, together with a comparison of
the performance of the adaptive versus the uniform meshing procedure. Clearly, the
adaptive meshing outperforms the uniform refinement, making it possible to obtain
more accurate results at a lower computational cost.

Example 2. Beam Section in Plane Strain

The collapse of a symmetrical beam section subject to uniform tension is analyzed
here assuming plane strain. Figure 5 illustrates the problem, for which no analytical
solution is known. The numerical results obtained for both the uniform and the
adaptive refinements are given in Table 2. The last column in the table corresponds
to the maximum relative error, eh, associated with the predictor (the average of the
upper and lower bounds). Notice that when adaptive meshing is considered, the
results improve substantially. For instance, with 4788 elements (after 5 adaptive
refinements), eh = 0.464%, which is less than half of the error incurred in the finest
uniform mesh, consisting of 6912 elements. Figure 6 shows the deformation of the
body at collapse. Recall that, in plane strain, the velocities are interpolated using
piecewise discontinuous linear spaces, but are explicitly forced to be kinematically
admissible. This can be observed in the figure. Notice also that the adaptive meshes,
especially the finest one, indicate that the main plastic deformations are concentrated
within a thin region around a 45o inclined line, with origin in the lower right corner
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Initial mesh After 2 refinements After 4 refinements

Initial mesh After 3 refinements After 5 refinements

Figure 2: Cantilever problem - Deformed geometry using uniform and adaptive mesh-
ing
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Figure 3: Cantilever problem - Convergence using uniform meshing
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Figure 4: Cantilever problem - Bounds using adaptive meshing and comparison of
adaptive versus uniform meshing
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Figure 5: Geometry and loads for the beam section problem in plane strain

Uniform meshing
Number of Number of Lower Bound Upper Bound Bound Gap Max. Rel.
refinements elements λ∗LB

h λ∗UB
h ∆h Error, eh (%)

0 108 1.2913 1.4151 0.12379 4.574
1 432 1.3195 1.3837 0.06419 2.375
2 1728 1.3215 1.3631 0.04163 1.551
3 6912 1.3219 1.3490 0.02703 1.012

Adaptive meshing
Number of Number of Lower Bound Upper Bound Bound Gap Max. Rel.
refinements elements λ∗LB

h λ∗UB
h ∆h Error, eh (%)

0 108 1.2913 1.4151 0.12379 4.574
1 251 1.3128 1.3837 0.07088 2.628
2 645 1.3208 1.3632 0.04246 1.582
3 1354 1.3216 1.3493 0.02762 1.034
4 2444 1.3218 1.3402 0.01844 0.693
5 4788 1.3219 1.3342 0.01232 0.464

Table 2: Numerical results for the beam section problem in plane strain
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Initial mesh After 3 refinements

Initial mesh After 3 refinements After 5 refinements

Figure 6: Beam section problem - Deformed geometry using uniform and adaptive
meshing
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Figure 7: Beam section problem - Convergence using uniform and adaptive meshing

of the interior hole. This plastified region acts as a slip-line over which the upper
part of the body flows. Also, some plastic deformations can be encountered in the
thin region located over the hole. The adaptive mesh procedure captures very well
the plastified regions and concentrates the refinement in those areas.

Finally, Figure 7 illustrates the upper and lower bounds obtained for both the uniform
and the adaptive meshings and compares, also, the performance of both approaches.
For instance, one can observe that the bound gap resulting from the third adaptive
mesh is of the same order as that obtained with the finest uniform mesh. However, in
the adaptive case, the mesh has only 1354 elements, much less than the 6912 elements
of the uniform mesh. Thus, in the adaptive case, with only 19.6% of the elements,
the same accuracy is obtained.
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Lower Bound Problem Upper Bound Problem
Example Meshing # elem. # eq. # var. SeDuMi SDPT3 # eq. # var. SeDuMi

Ex. 1 unif. 8704 122176 130561 1:57 4:18 52384 69633 0:21
Cantilever adap. 5506 77252 82591 1:07 1:27 33120 44049 0:14
Ex. 2 unif. 6912 76432 82945 2:35 10:26 102864 123201 1:31
Section adap. 4788 52858 57457 1:51 7:05 71538 85713 0:53

Table 3: Computational cost of solving the bound problems for the finest meshes

Computational Cost of Previous Examples

An indication of the computational cost required to solve the bound problems, for
the finest uniform and adaptive meshes used in the two previous examples, is given
in Table 3. To solve the problems, the free software SeDuMi 1.05R5 and SDPT3-

3.02 was used in Matlab 6.5.1 on a Pentium�4 2.53GHz desktop PC. Notice that
although SDPT3 is typically slower than SeDuMi, it is also more robust. In (Ciria,
2004 (May)), one can observe that while SDPT3 is always successful at solving the
lower bound problem, SeDuMi fails for some examples due to numerical problems.

Conclusions

To the authors’ knowledge, the approach presented in this thesis is the first work that
provides a unified framework for computing upper and lower bounds using an efficient
formulation and solution process. The efficiency of the methodology mainly derives
from the use of IPMs to solve the nonlinear optimization bound problems and, also,
from the adaptive meshing technique that is found to capture very accurately the
collapse mechanisms. As a consequence, the treatment of rigid-plastic limit analysis
(with numerical reliability guaranteed by the obtention of certificates) is ready to be
used in real, complex problems as a supplement to other models.
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