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Abstract

The dynamic user-equilibrium problem has attracted much attention in recent years. Its
application to traffic management and in particular, its connection to Intelligent Transporta-
tion Systems (ITS) makes the study of this problem particularly relevant. An important aspect
involves the calculation of travel times. In this paper, we propose a new approach for calculat-
ing travel times through a path-based simulation model that predicts the evolution of traffic
flows. The model we consider describes accurately the dynamics of the residence time of the
vehicles in the network and does not require a-priori knowledge of the functional form of the
link travel times in the network. Furthermore, we combine the travel time simulation model
with a dynamic user-equilibrium model. To achieve this we consider a variational inequality
formulation that incorporates the path travel times obtained from the simulation model. We
introduce several variations of the Frank-Wolfe method for solving this variational inequality
formulation. Finally, we present some numerical results that illustrate the performance of the

proposed methods.
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1 Introduction

User-equilibrium problems arise in a wide variety of application areas as diverse as urban trans-
portation planning and management, routing messages in communication networks, mechanical
systems, electric power systems and equilibrium problems in economics. Studying these problems
is particularly important in the area of transportation due to traffic congestion which has become
an increasingly acute phenomenon in urban and highway transportation systems.

In many settings the nature of traffic is inherently dynamic. One can just notice that time-of-
the-day plays a major role in how transportation systems are utilized. For example, traffic flow
patterns during rush hour are typically different from traffic flow patterns during other times of the
day. Such phenomena cannot be easily modeled within the framework of static user-equilibrium
models. On the other hand, dynamic user-equilibrium models are particularly useful in modeling
these phenomena. Furthermore, the development of Intelligent Transportation Systems (ITS) has
further strengthened the need for studying dynamic user-equilibrium problems.

There are two main categories of models in the literature for modeling the dynamic nature of
traffic flow and travel times: macroscopic and microscopic models. Macroscopic models take an
analytical approach. Lighthill and Whitham (1955) and independently Richards (1956) developed
the first analytical model. This was extended by Payne (1971) and Whitham (1974). Furthermore,
Papageorgiou (1998) and Heidemann (1999) and the references therein have studied macroscopic
models further. This approach enables study of the analytical properties of the problem. However,
some critics argue that it does not allow one to model as effectively some of the realism and
underlying complexities of the problem in an accurate and detailed way. As a result, one can
claim that it takes away some of the realism of the model. Nevertheless, from a theoretical
perspective, it provides a deeper understanding of the properties of the model. Furthermore,
this approach allows one to incorporate the underlying traffic flow dynamics within a variational
inequality framework (see for example, Friesz et al. (1993), Ran and Boyce (1994), Ran et al.
(1996), Perakis (2000)) and design solution algorithms.

The second category of models consists of microscopic (or called car-following) models. Such
models have the ability to describe, at a level of detail, the network geometry, the traffic flow and

its kinematics as well as the traffic control logic. Reuschell (1950) proposed the first car-following



model. Pipes (1953) and Herman et al. (1959) extended this model. Gerlough and Huber (1975),
Bekey, Burnham and Seo (1977), Papageorgiou (1983), Papageorgiou, Blosseville and Haj-Salem
(1989) and references therein provide an extensive analysis of these models.

Finally, there is a hybrid class of models (see for example, Daganzo (1994, 1995a, 1995b, 1995c¢),
and Smith (1993)). Using this latter approach one handles the constraints describing the traffic
flow dynamics separately from the equilibrium model describing the traffic assignment part of the
problem. As a result, one solves the optimization model iteratively with updated travel times that
arise from an independent simulation module (see Jayakrishnan et al. (1995)). As pointed out in
Jayakrishnan et al. (1995), this class of simulation-based models can incorporate traffic control
strategies easily and capture the traffic flow dynamics better through an independent traffic flow
simulation model.

The literature in transportation takes on two approaches when modeling travel times. The
first and more traditional approach assumes a predetermined functional form that describes the
relationship between travel times and flow rates. This is typically determined through a statistical
analysis. Practitioners in the transportation community have been using several functional forms
to describe travel times. These include the BPR function (Bureau of Public Roads, 1964) which is
used to estimate travel times at priority intersections, and is a polynomial function. Akcelik (1988)
proposed a polynomial-type travel time function for links at signalized intersections. Meneguzzer
et al. (1990) also proposed an exponential travel time function for all-way-stop intersections.
Although these functions were developed in the context of static user-equilibrium problems, their
dynamic analogues have also been used in a dynamic context. Nevertheless, considering a specific
link travel time function in advance has some drawbacks. For instance, those functions often
assume that the delay depends on the current traffic volume, the traffic inflow and outflow rate
at a link. As a result, these travel time functions may not describe accurately peak period traffic
dynamics especially since there are dramatic changes in traffic conditions in a short period of time.
Travel times in a dynamic transportation network depend both on prevailing traffic conditions
and future traffic conditions relative to the departure time. As a result, this approach can lead
to controversial results (see Daganzo, (1994)). Recently, a second approach for modelling travel

times considers travel time functions as an output rather than an input in the model (see Perakis



(2000) and Kachani and Perakis (2001a, b, ¢)). This approach determines the functional forms
for travel times through an analytical method which solves the hydrodynamic model of Lighthill
and Witham (1955). Kuwahara and Akamatsu (2001) also derived an analytical function of the
instantaneous travel time in order to solve the dynamic user equilibrium. However, the travel time
they derived does not represent the actual (or experienced) travel time, unless traffic conditions
remain constant).

In this paper, we propose a framework which takes a hybrid approach and determines travel
times which are also an output. This framework combines a simulation together with a variational
inequality model. In particular, we consider a path-based simulation model which describes the
traffic low dynamics and as a result, allows us to determine path travel times. This simula-
tion model consists of a system of equations which solution gives rise to path travel times for
vehicles under a given traffic assignment. Furthermore, in order to study the overall dynamic
user-equilibrium problem, we consider a variational inequality formulation using the travel times
determined through the simulation module. Finally, we study two variations of the Frank-Wolfe
method for solving the variational inequality formulation.

Our contributions in this paper are the following;:

1. We propose a framework that integrates a variational inequality formulation for determining
a dynamic user-equilibrium assignment together with a path-based simulation model for

determining travel times in dynamic transportation networks.

2. We propose a path-based simulation model that consists of a set of equations describing the
path flow dynamics. These equations are part of the overall framework rather than assuming
their solution in advance. In particular, the simulation model we propose describes the
vehicles’ residence time through a system of partial differential equations. As a result, this

simulation model determines actual path travel times.

3. We propose methods for solving the overall dynamic user-equilibrium problem and study

their convergence properties numerically.

The remainder of the paper is organized as follows: In Section 2, we propose a dynamic route-

choice user-equilibrium model through a variational inequality (VI) formulation in terms of path



flow departure rates. In Section 3, we introduce a path-based simulation model for determining
path travel times. In Section 4, we discuss the integration of the variational inequality formulation
and the simulation model as well as consider solution methods of the models. In Section 5, we

present some numerical results to verify the validity of the overall framework.

2 A Dynamic User-Equilibrium Model — Notation and Problem

Definition

The route choice user-equilibrium problem in the static case was first proposed by Wardrop
(1952). A traffic user-equilibrium traffic flow has the property that once established, no traveler
can decrease his/her travel cost by making a unilateral decision to change his/her route. This
principle also extends to describe the dynamic user-equilibrium problem as follows. Friesz et
al. (1993) were among the first to formulate the dynamic user-equilibrium problem and study
existence of solution.

Dynamic User-Equilibrium (DUE): For every time instant, the experienced path travel times
on used routes connecting an origin-destination (O-D) pair are equal and minimal.

Consider a transportation network represented via a directed network G = (N, ), where N
is the set of nodes and € is the set of directed links. Let &k = (o0,d) be an O-D pair with origin
node o and destination node d, where o,d € N. Set O denotes the set of all O-D pairs, and Py
the set of available routes between O-D pair k. Dy (t) denotes the traffic demand rate for O-D
pair k at time ¢, and D (¢) the demand for path p. f;,(¢) denotes the path flow departure rate
corresponding to path p at time ¢ (in this case, path p € P;). Vector f(¢) denotes the vector of
path flow departure rates f ,(t), for all paths at time ¢, and f represents path flow departure
rates over the entire time horizon. The time horizon is the interval [0,T]. hyp(t) denotes the
(experienced) path travel time at time ¢ for path p. The value of hy ,(t) is affected by the initial
traffic conditions and traffic assignment flow f over time horizon [0,7]. Since different path flow
assignments have different effects on path travel times, we write hy ,(t) as a function of f and

time ¢, that is, hyp(f,t). Furthermore, we denote the feasible region of path flow rates f as K.



Any flow rate vector f € K satisfies the following feasibility conditions:

ZpEPk fk’p(t) = Dk(t) Vk € O,t € [O,T];
frep(t) >0 Vk € O,p € Pt €[0,T).

As a result, the dynamic user-equilibrium problem can be written as follows:

DUE formulation: For ¢ € [0, 7], given a traffic demand rate Dg(t), find f € K satisfying

Tep()[hip(f,t) —mi(t)] =0 Vk € O,p e Py, t€[0,T]; (2)

me(t) = min{he,(£.1)}  VkeO.1€[0.7] (3)

These conditions imply that if fj ,(¢) > 0, kg p(f,t) = m(t), and if path p is used, the travel time
to traverse it is equal to the minimal path travel time for O-D pair k£ at time ¢. Furthermore, if
hip(f,t) —my(t) > 0 then f ,(t) = 0. This implies that if at time ¢, a path travel time is bigger
than the minimal path travel time, then there is no traffic on this path at time ¢. Notice that
these constraints are consistent with the definition of the dynamic user-equilibrium problem.

The path travel time hy ,(f, ) is no longer a function of a static link flow rate but depends
on dynamic flow rates over the entire time horizon. Furthermore, notice that no assumption is
made on the symmetry of the Jacobian matrix of hy p(f,t). This lack of symmetry adds a further
degree of difficulty in the solution of the dynamic traffic user-equilibrium problem, since there is
no underlying optimization problem.

Nevertheless, by considering travel times that arise from an independent simulation model,
we are able to eliminate some of the difficulties caused by traffic flow relationships. Furthermore,
we incorporate these travel times in the following equivalent variational inequality formulation:
VI formulation of DUE: Find f* € K satisfying

U5 S b, Ol kp0) — Fip (Ot >0, forany £ € K. @)

0 keoper,

We denote by f*, the flow of a traffic assignment satisfying the DUE conditions. The proof
of the equivalence between this VI formulation and the DUE conditions (2) can be found in Ran
and Boyce (1994).

In this paper, the path travel time hy ,(f,%), for any time instant ¢, depends on the traffic

assignment f over the entire time horizon. This is different from other approaches which assume



that the travel time is determined only by the prevailing traffic conditions at that time. In reality,
path travel times depend not only on the prevailing traffic conditions but also on future traffic
conditions, especially on traffic inputs on other parts of the network.

In what follows, we consider a discrete version of the problem. To achieve this we discretize
the time horizon in the VI formulation at Equation (4). Denote ﬁg,p as the discrete path travel
time on path p at the nth time interval. Similarly, f,ﬁp is the discrete path flow departure rate on
path p, at the nth time interval. Vector f denotes the vector of discrete traffic flows on the entire
time horizon. There is a total of N time intervals. The discretized feasible region K satisfies the
following feasibility conditions:

Zf]?,p:bg VEeO;n=1...N (5)
PEP;

fi,>0 VkeO,pePyn=1...N (6)

We are now able to formulate the following discretized variational inequality problem.

Discretized VI formulation: Find f* € £ satisfying

N
SNTN R (R, — i) =0, forany f e K. (7)

n=1keO pEPk
This formulation will be particularly useful in proposing methods for solving the dynamic

user-equilibrium problem.

3 Evaluation of Path Travel Times via Simulation

In this section, we discuss a path-based continuum flow model describing traffic and its numerical

solution. Based on this model an approach for extracting path travel times is presented.
3.1 A path-based simulation model for traffic flows

3.1.1 Model for a single link

Let us consider a link joining two nodes of a transportation network. Following the hydrodynamic
theory of traffic flows of Lighthill and Whitham (1955), and Richards (1956), we define the car

density p(z,t) as the number of cars per unit length of road. This car density is a function



of the position z, measured along the link, and the time ¢. Let u(z,t) denote the average car
velocity, also at position z and time ¢. Then, the flow rate, or flux F(z,t), will be given by

F(z,t) = p(z, t)u(z,t) and the differential equation expressing car conservation is written as

op OF _
E—F%— . (8)

This equation can be integrated in time for the unknown p, provided the velocity is either given
or expressed as a function of the car density. In practice, it is customary to express the velocity
as a function of the density. This functional dependence can be linear or nonlinear. Although
linear velocity-density relationships have some well-known deficiencies (see TRB, 1997), they are
sufficient for our purpose of introducing our path-based simulation model. In this paper we use

the Greenshields linear velocity-density relationship, which is given by,

z,t

u(e,t) = wmes(1 — L&Dy 9)
pmaw

In this equation the parameters p™** and u™?* are the maximum density and velocity, respectively.

This relation shows a linear variation of the velocity with the density between the maximum
velocity, at zero density, and a zero velocity, at maximum density. When expression (9) is inserted
into (8), the flux becomes a function of the car density and we obtain a non-linear conservation
law. It is well known that the solution of this equation may contain discontinuities, or shocks,
even if the initial and boundary conditions are continuous. Despite its simplicity this model is able
to capture many of the qualitative features observed in real traffic. Although analytical solutions
for this equation can be found for simple initial and boundary data, our approach will be to solve
this equation numerically so that general situations can be handled. In addition, the numerical
solution can be easily extended to more complex non-linear velocity-density relations.

The link under consideration is discretized into a number of equal intervals of length Az. The
time interval [0, T is also discretized into N intervals of size At. A standard explicit finite volume

algorithm (LeVeque (1990)) for equation (8) reads,
j,m j,m At j n j— n
it = pim E(Fﬁl/z’ — FiT2my (10)

Here, p?" is an approximation to p(z7, t"), and the F7+1/2" is an approximation to F(p(z711/2 ")),
where 27 = jAz and t" = nAt. The choice of the approximate flux function completely deter-

mines the numerical scheme. In this paper we have chosen a simple first order Godunov method.



More sophisticated and accurate schemes could also be implemented but we have not found it to
be necessary at this point. In Godunov’s method, the flux function, F/11/2" is a function of p/"

and p/Th" only, and is given by,

Fj+1/2’n = min F(p), if pj’n < /}H—l’n (11)
PE[PJ’naPH'l’n]

Fj+1/27n = max F(p)’ if pj,'n > p‘j+1’n . (12)
pE[pi>m,piThm]

The details can be found in LeVeque (1990). It is worth reinforcing the fact that this flux can
always be written as F/t1/2" = F(p*), where p*, is a value of the car density in the interval
[P, pITIn]. Tt is easy to verify that depending on the values of p/T1™ and p/™, p* can only
be pm, pP"t1 or p™a /2. The scheme (10) with flux functions given by (11) or (12) is stable
provided At < u™%" /Ax.

3.1.2 Link shared by multiple paths

In general, a given link will be used by more than one path and we will be interested in tracking
the densities of the cars corresponding to the different paths. Let P be the set of paths that share
a given link. If p,(z,t) denotes the density of cars on that link following path p, then clearly,

plat) = 3 pplat) (13)

pEP

In order to be able to time advance each of the densities, p,(z,t), individually, we write a conser-

vation equation for each p € P,
9pp + OF, _

5 p 0. (14)

Given condition (13), it is clear that we want to choose the fluxes F}, , so that,
Flp)= Y Fp . (15)
peP
This is easily accomplished if we realize that, at a given location, the velocity for all the cars must
be the same regardless of the path they are following. In addition, this velocity will be a function

of the total car density. Thus, we write,

Fy = ppu(p) - (16)



In order to solve numerically the system of equations (14) we write for each p € P, a discrete

equation of the form,

p]n—H pg) A (F]+1/2n Fg_l/Q’n) ) (17)

The choice of the numerical flux approximations is now less obvious because here, we are dealing
with a system of equations rather than a scalar equation. Qur design criterion is that the discrete
evolution equations should be such that when added over all the paths sharing the same link,
the resulting equation should be consistent with equation (10) for the total density. In order to
accomplish that, we proceed as follows. With the value of the total car density at p/" and p/+1:",

use expressions (11) and (12) to determine p*. That is,

p'=arg min_ F(p), if p"<ptn (18)
pElpim,p+in]

p*=arg max  F(p), if p">ptn (19)
pE[p?m,pI 1]

Evaluate n = ;%’%, such that

p*t=np"" + (1 —n)ptt" (20)

J+1/2,n

and finally compute Fj , for each p € P, as

Fg+l/2’" _ (npg;,n +(1- )p;%—l Mu(p*) = (UP% +(1— n)p;+1,n)umaw(1 — prfa:c) . (21)

3.1.3 Traffic lights

The modeling of a traffic light controlled intersection is straightforward. At the location of the
traffic light, we set the flux equal to zero when the light is red. Although realistic intersections

occupy some length of space, we treat intersections as being concentrated at a point.

3.1.4 Variable link parameters

In the two previous sections, we have implicitly assumed that the parameters that determine the

maxr maxr

road capacity p™**, and maximum velocity 4", are constant along the link. In some cases, it
will be necessary to be able to handle situations in which these properties change. In particular,

this feature will be exploited to model link intersection without traffic lights. Our objective here

10



is to determine how to extend the flux functions (11) and (12), to the situation in which the link
parameters before the interface, i.e. point j, are (p™% u™%) whereas the link parameters after
the interface , i.e. point j + 1, are (p7**,u**). In this case, the decision on whether to use
the value of the flux determined by the state before or after the interface needs to be based on
the local slope of the characteristic curves (see for instance LeVeque (1990)). This is given by
the value of a(p) = dF(p)/dp. Using Greenshields linear velocity-density relationship, it follows
that, a_ = u™*(1—2p_/p™**) and a4 = uT*(1 —2p/p7*"). The procedure for evaluating the

numerical flux F™ = FJ+1/27 at the interface becomes

[ Fn if a® >0, a" >0
Fn if a® <0, a® <0
=y 7t ST (22)
min(F™, F7) if a” >0>a"
| min(Z=52 T i gn <0<

It is straightforward to verify that when the link parameters are constant the above expressions

are equivalent to (11) and (12).

3.1.5 Link boundary conditions

Boundary conditions on each link are specified by determining the fluxes at the beginning and at
the end of each link. When several paths share the same link, the fluxes for each of the paths
need to be specified. It is clear that at the network nodes, where the links intersect, we must
have car conservation. That is, the sum of all the fluxes into the node must equal the sum of
all the fluxes out of the node. In addition, this must be true for each path separately. There
are several ways in which link intersections can be modeled. One option, as discussed above, is
with traffic lights which cycle between green and red at prescribed intervals. Alternatively, we
can have uncontrolled intersections. Here also, cars coming from one link, or following a specific
path, can be given priority over other cars. If this is the case, this should be reflected in the way
intersections are modeled. In our model, we have followed a simple approach which assumes that
no car is given a preferential treatment. If a link is shared by several paths, we assume that the

i

road capacity p™?*. is shared by each of the paths in an amount which is proportional to the
p

corresponding path car density p,, at that point. That is, the road capacity allocated to path

11



p, is given by p*" = ppp™4 [p . This is done for both, the inflow and the outflow links. For

each path, say exiting link ¢, and going into link #’, we compute the flux F), using expressions (22)

and the corresponding parameters for links ¢ and ¢'. That is, for link ¢ we set u™%* = u["**, and
P79 — (,)i(p™%);/ (p);, whereas for link i/, we set w9 = uffa®, and p79% = (p,); (6™ /(p)s-

The corresponding flux for each link is obtained by adding up the fluxes of all the paths sharing
that link.

At the departure points, we calculate the maximum capacity flux by setting p_ in (22), equal

maxr max

to pZ™" = plf

maxr

,and u = w7, If the demand flux is less than the maximum capacity flux we
set the flux equal to the demand flux. If the demand flux is higher than the maximum flux then,
the demand can not be satisfied, and in this case we set the flux equal to the computed maximum
flux.
At the outflow destination points we calculate flux by setting p4 = 0, and p'** = p™*, and
mazx maz

ul'% = ™% and using expressions (22).

3.2 Extracting travel times from the simulation results

In the literature, it is common to use the term travel time to refer to two different concepts.
One of them is the time experienced by the traveler and takes into account the changing travel
conditions which may occur after its departure. Sometimes this travel time is called the actual path
travel time. Alternatively, the travel time may denote the travel time that would be experience
by the traveler if the traffic conditions at the time of departure were to remain unchanged until
the traveler reaches the destination point. This later travel time may also be referred to as the
instantaneous path travel time. In our simulation model we employ the actual path travel time.

Our approach to computing travel times consists of solving simultaneously for the car densities,
p(z,t), as shown in the previous section, and for the residence time 7(z,t). The residence time is
defined at each point in space and time, as the time the traveler has been on the road since the
time of departure. The differential equation satisfied by 7(x,t) is

DTt
=1 2
Dt ’ (23)

which simply states that the clock of the traveler will increase by one unit every unit of time. Here,

we have used a material derivative to indicate that 7 “moves” with the cars. The corresponding

12



partial differential equation is therefore

or or
e + u(m,t)% =1. (24)

In order to solve numerically the hyperbolic PDE for the travel time 7, we use a simple upwind

scheme here. The discretized equation is written as,

At ulm

n+1 Jyn
T —
Az

ek (r9m — 7Ibmy + At (25)

This numerical scheme has the attractive property that will produce solutions for the travel
time which are monotonically increasing in space, as expected. This can be easily seen if we write

the difference between equation (25) evaluated at two successive spatial nodes,
pintl _ pgj=lntl o ogm_ pj=1n cin(rimn — TJ—L") + Cj—l,n(TJ—l,n _ 7.]—2,n)

= (1 —CI™)(rIm — pI=bn) 4 gi=bn(pi=bn _ 7i=2ny

where C9" = Atu?"/ Az is the Courant number. Assuming that the travel time at time level
n is monotonically increasing, and that 0 < C?™ < 1, as required for stability, for any j, then
il _ pi=Intl > 0 for all j.

In our simulation we may have several paths sharing the same link. In this case we write for

each path p € P, an equation of the form

% + u(x,t)% =1. (26)
which is solved with the scheme (25) for each p.

Boundary conditions for this equation are very simple. At the beginning of each link the values
of 7, is the same as that at the end of the previous link, and at the path origin 7, is equal to
zero. The initial conditions are normally set to the time it will take for a car to arrive at position
z starting at the origin and traveling, say, at the maximum speed. It turns out that the initial
condition has no effect on the solution after the time in which the first car in the path reaches its
destination.

If L, is the length of the path p, then the travel time will be simply 7(Ly, t). In our optimization

model however, we will be interested in knowing the travel time as a function of the departure time

13



rather than the actual time. If £; denotes the departure time, at time ¢ the following relationship

will be satisfied
t=tq+ 1p(z,1) (27)

So we know that for vehicles on path p, if they arrive at the destination at time ¢, their travel

time is represented by 7,(Ly,,t), these vehicles’ departure time is computed by ¢ — 7,(Lp, t).

4 Solving the DUE Model using Travel Times from a Simulation
Module

In this section we propose a method for solving the combined dynamic travel time and dynamic
user-equilibrium model (DUE). This approach integrates the simulation module discussed in the
previous section with the variational inequality formulation (4).

The key idea is in combining iteratively the evaluation of path travel times through the
simulation module together with the solution of the discretized variational inequality problem
(7) that determines a dynamic user-equilibrium flow pattern. As a result, the traffic flow on each
path serves as input to the simulation module while the path travel times corresponding to this
traffic flow are the output. Furthermore, at each iteration in the variational inequality component
of the method, the path travel times that arise from the simulation module serve as input while
the output is the new traffic assignment (that is, the path flow departure rates). This in turn
becomes the new input to the simulation module.

We solve the variational inequality formulation (4) through a dynamic version of the Frank-
Wolfe (FW) method. This method is known to converge to a user-equilibrium solution for sym-
metric static traffic assignment problems (see Frank and Wolfe (1956)). Furthermore, under some
additional assumptions on the degree of asymmetry of the problem, the Frank-Wolfe method also
converges for asymmetric problems (see Magnanti and Perakis (1998)).

We consider several variations of the Frank-Wolfe method for solving the dynamic user-
equilibrium problem. We illustrate the convergence of these methods through a numerical study.
Nevertheless, it may be noted that their theoretical convergence remains an open issue for asym-

metric dynamic traffic equilibrium problems.
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First we note that vector £ denotes the solution of the dynamic user-equilibrium problem at
the ith iteration. The procedure of a Frank-Wolfe method for solving the dynamic user-equilibrium

problem is as follows:

Step 0: Find an initial feasible path flow departure rate £0, (Note that it is easy to find such
a vector through an all-or-nothing assignment at every O-D pair or if over-saturation flow

appears by splitting the flow into several routes). Set iteration count 7 as i := 1.

Step 1: At iteration %, using fi-l as input, run the simulation module until all the vehicles arrive
at their destinations. The simulation module outputs a path travel time ﬁ, the vector of

path travel time Bz,p
Step 2: Using the path travel time from Step 1, solve the following linear programming problem.
mfin 2on 2k 2p My fip
st.  Y,fr,=Dp VkeOmn=1...N

Ity 20, VkeO,pe Pi;n=1...N.
We denote an optimal solution for this problem as £*.

Step 3: Perform a line search in the segment [f*~' f*] through the solution of the following

one-dimensional variational inequality problem:

Find o* € [0, 1] satisfying
Z Zzhk,p N(fEp(@) = fip(a®)) 2 0,Va € [0,1],
where f(a) = of ™! + (1 — a)f*. Set £ := f(a*).
Step 4: Convergence verification. We define C' = }°;, cx, where ¢y, is

Ck = ZZ hn,p fk,p

If C < ¢, stop. Otherwise, set 7 := 4 + 1, and repeat from Step 1.

Some remarks:

15



1. In the line search procedure in Step 3, there is no need of the explicit form of the travel
time function ﬁg,p(f'). We use an iterative procedure to perform the line search without

a-priori knowledge of the functional form by using the results of the simulation module.

2. In our numerical analysis we consider further two variations of the Frank-Wolfe method.
These methods attempt to resolve some practical issues on the speed of convergence of the
Frank-Wolfe method. The two variations considered are: (i) an Affine-Scaling version of the
Frank-Wolfe method (see Perakis and Zaretsky (2002)), this method restricts at each step
the feasible region of the optimization problem we solve in order to compute the descent
direction at Step 2. In particular, we consider in the optimization problem an ellipsoid that
depends on the current iterate and which always contained in the original feasible region.
The purpose of this modification is to reduce the zigzagging behavior of the method. Here

is the additional constraint imposed:
I(F )l <7

where d = f — 1, F'"1 is the diagonal matrix of vector 1, r is a constant. (i) a
hybrid method which combines the Affine-Scaling together with the Frank-Wolfe method.
This hybrid method takes advantage of the insights gained from the Frank-Wolfe method
and the Affine-Scaling version of the method by using the Frank-Wolfe method for the first
several iterations and subsequently in the later iterations (since close to the solution the

Frank-Wolfe method tends to be slow) switching to the Affine-Scaling method.

5 Numerical Results

In this section, we present some numerical results for the path travel time calculation by simu-
lation and the framework which combines the simulation module with the variational inequality
formulation.

5.1 Computational Results for the Simulation Model

We test the simulation model with two network examples. In the first example, the network has

traffic-light controls while in the second example the network has no traffic-light controls. For
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both networks, we calculate the path travel times.

Figure 1 illustrates network 1. In this example, there is one intersection controlled by a traffic
light at node D. The traffic light is controlled by setting at every period equal green time for the
three connecting in-links. The length of links 1, 2, and 3 is 1 unit, respectively. The length of
link 4 is 3 units. There are three paths in network 1 namely, (links 1 and 4), (links 2 and 4) and
(links 3 and 4). The traffic light at intersection D is controlled in the following way: every link
has a two-unit green time. The inflow in paths 1, 2 and 3 is 0.2 units respectively. The maximum
velocity is set to be 1 unit, while the maximum density is also set to be 1 unit.

Figure 2 shows the calculated path travel times corresponding to different departure times.
The results in these figures indicate that the path travel times are discontinuous. This is consistent
with what happens in reality in networks with traffic light-controlled intersections. Moreover, the
gap between the maximum path travel time and the minimum path travel time is about the same
as the red light time. This time is four units in this example.

In the second example, we consider a more complex network. Network 2 is shown in Figure
3.1t is taken from Xu et al. (1999), and so are the relevant parameters. Table 1 shows all the O-D
pairs with nonzero demands and all the paths in the network. The paths are grouped according
to O-D pairs.

In network 2, we assume that all the links have the same maximum density and maximum

velocity. Nevertheless, we allow different values for the two parameters. The maximum density

maxr max

P is 40 miles/hour. Suppose the

is 200 vehicles/mile while the maximum velocity u
simulation time period is from 0 to 7. The traffic demand for path k is defined through the

following function:

O (AT ATy g << T
Dy(t) = t(r i) 0<is (28)
0 t>T,

where k = 1,...,14. Notice that f™%* denotes the maximum flow rate, calculated as f™%* =
0.25 p™e* ™% The coeflicient 0 and the length of each link are shown in Table 2.
Figure 4 and 5 shows the path travel times calculated. The calculated path travel times

demonstrate dynamic features and are consistent with the intuition that the maximum travel
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Table 1: O-D pairs and paths

O-D pair Path

(a,i) 1:(1,2,6,10)
2:(1,5,7,10)
3:(1,5,9,12)
4:(3,4,7,10)
5:(3,4,9,12)
6:(3,8,11,12)
(ae) 7:(1,5)
8:(3,4)
(e,i) 9:(7,10)
0:(9,12)
(a,c) 11:(3,8)
(c,i) 12:(11,12)
(a.,g) 13:(1,2)
(&) 14:(6,10)
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Table 2: Parameters for the paths in Network 2

path 6 link j length (miles)
1 0.10 || 1 2.0
2 0.15 || 2 2.0
3 0.18 || 3 1.5
4 0.20 || 4 1.8
5 0.10 || 5 1.5
6 0.12 || 6 2.1
7 0.20 | 7 1.7
8 0.10 || 8 1.8
9 0.15 | 9 2.0
10 0.15 || 10 2.3
11 0.12 || 11 2.2
12 0.10 || 12 2.5
13 0.10

14 0.35
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time occurs when the path departure flow rates are maximum. In this case, the maximum path
departure flow rates occur at time t = % The plot of path travel times with different departure
times is also given in Xu et al. (1999). However, in that paper, link cost functions are an input
in the calculation of path travel times. As a result, only a qualitative comparison with the results
in Xu et al. (1999) is meaningful.

We also compare our results with those obtained from the Cell Transmission Model (see
Daganzo 1994, 1995a). The network used is a single link network. The length of the link is
4 miles, with Upe, = 40 miles/hour, ppa; = 200 vehicles/mile. The function describing the

demand rate is given by the expression
d(t) = 1600 — 6400 x (t — 0.5)?, (29)

where the simulation time ¢ lasts from 0 to 1 hour. The plot of cumulative link departure/arrival
vehicle number is shown in Figure 6. The dotted line represents the results from our model while
the solid line illustrates the results from the Cell Transmission Model (CT model). The latter
results are produced using a software program developed by Daganzo called NETCELL. The link
travel time can be derived from the plots by calculating the time gap between the corresponding
two points on any arrival/departure pair of curves with the same cumulative number. The results
are comparable for the two models. This further demonstrates the effectiveness of the path-based

simulation model introduced in this paper.

5.2 Numerical results for the variational inequality formulation

In this subsection, we show some numerical results from the solution of the variational inequality
formulation. As discussed in Section 4, we consider three additional methods that are variations
of the Frank-Wolfe method. This allows us to compare the convergence of these methods and use

their results to establish the relative merit of each of these methods.
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5.2.1 Equilibrium Solutions

The same transportation network shown in Figure 3 is used here. The traffic demands for O-D

pair is decided by the following formula:

0, (32t — 3242) 0<t<T
Dy (t) = ot mt) 0sts

Ll

(30)
0 t>T,

where 6, ; is an O-D pair (r,s) relevant parameter. In this experiment, we use each O-D pair’s
first path’s 6) parameter as the value of 0, 5, using the same values from Table 2. From Table 2,
we know that the 6,; = 0.1. For this calculation, T' = 2, the step size in time At = 0.016, step
size in space Az = 0.02, and U4, = 0.8, Prmar = 50. In this experiment, we only present the
results for one O-D pair: (a,i), by ignoring other O-D pairs’ results. We decide whether the traffic
assignments are equilibrium satisfying by checking each O-D pair independently. So it is sufficient
for us to examine the solution property by using only one O-D pair. The Frank-Wolfe method is
used for this calculation. Figure 7 illustrates the demand curve for O-D pair (a,%). Notice there
are six different paths connecting this O-D pair. Figure 8 shows the initial traffic assignment for
O-D pair (a,). Figure 9 is the plot of path travel times under the traffic assignment pattern in
Figure 8. The traffic assignment pattern in Figure 8 is not equilibrium satisfying since only Path
2 has traffic, but there are other paths (for example, Path 4) with smaller path travel time than
Path 2. Figure 10 shows the path travel times corresponding to the six paths of the O-D pair
(a,i) after twenty Frank-Wolfe iterations. Figure 11 shows the traffic assignment on the six paths
given the O-D pair demand shown in Figure 7. This is a near equilibrium-satisfying solution
since from Figure 10, Path 2 and 4 have smaller path travel times when compared with the other
paths. This leads to the conclusion that no path other than Path 2 and 4 should be used. Figure
11 verifies this observation, since only Path 2 and 4 have nonzero traffic flow. Furthermore, for
the departure time period from 0.8 to 1.4, Path 2 and 4 have equal and minimal path travel
times. Figure 11 shows that in this time period, only Path 2 and 4 have nonzero traffic flows.
For other periods, Path 4 has the smallest path travel time and all the flow is assigned to Path
4. The solution is consistent with the definition of the dynamic user-equilibrium (DUE) problem
discussed in Section 2. We have also tested this behavior for different initial traffic assignments

(results not shown). All the examples considered produce near user-equilibrium solutions after
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20 Frank-Wolfe iterations. This suggests that the Frank-Wolfe method for solving the dynamic
user-equilibrium problem that uses travel times from simulation produces reasonable solutions

only after a few iterations.

5.2.2 Comparison of the convergence between the three different methods

In this subsection we compare the performance of the three methods considered. Figure 12 shows
the convergence plot of these three methods. We consider 20 iterations of these methods and
examine the convergence behavior of each. The error in the figure is the convergence factor C.
That is:
Error =335 "(hR, — ) fiy
n k p

Notice that as we approach a user-equilibrium solution the Error tends towards zero. The
results show that the Frank-Wolfe (FW) method converges fast in the first several iterations.
Nevertheless, the method demonstrates some zigzagging when near an equilibrium solution. The
Affine-Scaling version of the FW method always converges in the descent direction. Nevertheless,
the convergence speed is very slow. Figure 13 further illustrates the convergence speed of the
Affine-Scaling version of the FW method. The hybrid method that combines the Frank-Wolfe
with the Affine-Scaling method performs better than the Frank-Wolfe method in the last several

iterations.

6 Conclusions

In this paper, we studied the dynamic user-equilibrium problem by proposing a framework which
integrates a simulation module for determining travel times together with a variational inequality
formulation for determining the user-equilibrium flow assignment. In particular,

(i) We proposed a path-based simulation model for determining travel times in dynamic trans-
portation networks. One of the characteristics of the model is the conservation of path flows.
This is different from other results in the literature which only address the dynamics of link flows.
The simulation model can be a powerful tool for providing path related information such as path

travel times and path flow rates. Furthermore, the simulation model in this paper incorporates
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path-based traffic controls. This is lacking in most simulation models in the literature.
(ii) We proposed a model for describing the dynamics of the residence time of the vehicles trav-
eling in the network. The model solves a hyperbolic partial differential equation (PDE). Using
the path-based simulation model for traffic flows, one is able to describe the link and path travel
time in an accurate way. As a result, we believe that this approach may be a better choice for
determining travel times than conventional methods.
(iii) To determine a dynamic user-equilibrium solution, we also incorporated a variational inequal-
ity formulation in the overall framework. This formulation determines a dynamic route-choice
user-equilibrium solution, in which the path travel time information is obtained from the path-
based simulation model.
(iv) We proposed three methods for solving this variational inequality formulation. These meth-
ods are variations of the Frank-Wolfe method.
(v) Furthermore, we tested the integrated simulation and variational inequality framework and
the methods proposed for solving it through a numerical study. The results indicate that these
methods indeed compute a dynamic route-choice user-equilibrium solution.

We believe that the overall framework proposed and studied in this paper could have an impact
in several application areas and in particular, to transportation as it could play a significant role

in the development of intelligent route guidance systems.
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Figure 1: Network 1, a simple example network
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Figure 2: Path travel times by using hyperbolic PDE method, network 1
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Figure 3: Network 2, a more complex example network
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Figure 12: Convergence plot for three different solution methods
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