
An Immersed Interface Method for the
Incompressible Navier-Stokes Equations

Duc-Vinh Le
�
, Boo Cheong Khoo

���
, Jaime Peraire

����
Singapore-MIT Alliance�

Department of Mechanical Engineering, National University of Singapore�
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

Abstract— We present an immersed interface algorithm for
the incompressible Navier Stokes equations. The interface is
represented by cubic splines which are interpolated through a
set of Lagrangian control points. The position of the control
points is implicitly updated using the fluid velocity. The forces
that the interface exerts on the fluid are computed from the
constitutive relation of the interface and are applied to the fluid
through jumps in the pressure and jumps in the derivatives
of pressure and velocity. A projection method is used to time
advance the Navier-Stokes equations on a uniform cartesian
mesh. The Poisson-like equations required for the implicit so-
lution of the diffusive and pressure terms are solved using a
fast Fourier transform algorithm. The position of the interface is
updated implicitly using a quasi-Newton method (BFGS) within
each timestep. Several examples are presented to illustrate the
flexibility of the presented approach.

I. INTRODUCTION

We consider an incompressible fluid in a 2-dimensional
domain � that contains a material interface � (t). The Navier-
Stokes equations are written as,�	��
������������
������������
�! (1)�"�#���$ (2)

with boundary and initial conditions,��% &�'(��*) (3)�+�-,/.0$1�2��23 (4)

where �4�5�76�8�.06:9�� , is the fluid velocity, � , is the pressure,
and � , is the viscosity of the fluid. Here, we assume that the
density, ;=<?> , and the viscosity, � , are constant. The effect
of a material interface � ��@A� immersed in the fluid results in a
singular force ! which has the form!=�-,/.A@A�2�CBEDGF �7HJI �LK1.A@A�NMG�-,(OQP4�-K1.0@A�A�NRSK�. (5)

where, K is the arc-length, P4�-K1.0@A� is the arc-length parameter-
ization of � ��@A� , ,��T��UV.AWJ� is the spatial position, and I �LKX.0@A�
is the force strength. Here, MG��,2� is the two-dimensional Dirac
function. Since we are dealing with a material interface, we
have YY @ P4�LK1.A@A�2�� �-PZ.0@A� (6)

The singular force ! along � �7@A� results in solutions which
may be non-smooth across the interface, i.e. there may be

jumps in pressure and in the derivatives of both pressure
and velocity. These jumps in the solution and its derivatives
can be related to the applied singular forces. The basic idea
of the IIM is to discretize the Navier-Stokes equations on
a uniform Cartesian grid and to account for the singular
forces by explicitly incorporating the jumps into the difference
equations. The main advantage of the IIM is that the solution
of the Navier-Stokes equations on a uniform mesh can be
obtained very efficiently with the use of fast solvers, and at
the same time, complex geometrical changes can be handled
in a rather seamless manner. The IIM is motivated by Peskin’s
original immersed boundary method (IB) [7]. Peskin’s IB
method has proven to be a very useful method for modelling
fluid-structure interaction involving large geometry variations.
The IB method uses a set of control points to represent the
interface. The force densities are computed at these points and
spread to the Cartesian grid points by a discrete representation
of the delta function. The Navier-Stokes equations with the
forcing terms are then solved for pressure and velocity at the
Cartesian grid points. The velocity field is used to find the
control points’ velocity which is used to advance the position
of the interface. Since the IB method uses the discrete delta
function approach, it smears out sharp interfaces to a thickness
of the order of the mesh width and it is only first-order accurate
for problems with non-smooth solutions. In contrast, the IIM
can avoid this smearing and maintains second-order accuracy
by incorporating the known jumps at the interface into the
finite difference scheme. The IIM was originally proposed
by LeVeque and Li [3] for solving elliptic equations, and
later extended to Stokes flows [4]. The method was developed
further for the Navier-Stokes equations in [5] and [6]. In [5],
the level set method is used to represent the interface. This has
the advantage of simplifying the algorithm but does not appear
to be adequate to represent certain types of interfaces such as
elastic membranes. In [6], the interface is tracked explicitly
in a Lagrangian manner, but the singular force ! is split
into components tangential and normal to the interface. The
normal component is then incorporated into jump conditions
for pressure across the interface. The tangential component is
spread to the nearby Cartesian grid points using the discrete
delta function, as in the IB method. Our implementation of the
IIM is based on that presented in [5] and [6], but uses a set
of control points to represent the interface and incorporates
the entire singular force into jump conditions for pressure

and the derivatives of pressure and velocity. The rest of the
paper is organized as follows. In section II, we present the
relations that must be satisfied along the interface between the
singular force, ! , and the jumps in the solution. In section III,
we describe the generalized finite difference approximations
which incorporate function jumps. In section IV, we describe
the details of the numerical algorithm and in section V, we
present some numerical examples.

II. JUMP CONDITIONS ACROSS THE INTERFACE

We have already mentioned that when singular forces are
applied on a material interface, the solutions of the Navier-
Stokes equations may be non-smooth. Let [and \ be the
unit outward normal and tangential vectors to the interface,
respectively. The normal,] 8^� I �LKX.0@A�_� [, and tangential,] 9^� I �-K1.A@A��� \ , components of the force density, can be
related to the jump conditions for pressure and velocity as
follows (see [4]–[6] for details),` �bac�edV. ` �f�2g#af�ZO] 9 \ . ` �*h�ac�ed (7)

` �iac�] 8 . ` �jgkac� Y] 9Y K . ` �jh�a�� Y] 8Y Kml (8)

The jump,
` �Na , denotes the difference between the value

of its argument outside and inside the interface, and ��nG.AoJ�
are the coordinates associated with the directions of [and\ , respectively. In order to construct the appropriate finite
difference stencils we will also require the jumps in the second
derivatives of velocity and pressure. These, can be obtained by
differentiating the above expressions to obtain,` �f�*h#h�ac�ep] 9 \ . ` �f�2g0h�af�4O Y] 9Y o \ O�p] 9 [.` �f�2g0g#a+��O ` �f�	h#hqaG
 ` �jgka [
 ` �jhqa \
 ` �2gras��� [. (9)

` � h#h ac� Y 9] 8Y o 9 O�p ` � g aL. ` � gth ac� Y 9] 9Y o 9
up ` � h av.` �ig0g#aw�QO ` �T�E�7�����x�/�vajO ` �jh#h�a l (10)

Here, p is the signed valued of the curvature of the interface
(i.e. we assume that [=yw\ �ez < constant, so that [can point
either towards, or outwards, the center of curvature). From
expressions (7)–(10) the values of the jumps of the first and
second derivatives of velocity and pressure with respect to the�7UV.0WJ� coordinates are easily obtained by a simple coordinate
transformation. For instance, we write,` �|{�a}� ` � g a�~�82
 ` � h a���8` �*�#��a}� ` �*gAgka�~ 99
�� ` �2g0hqas~ 9 � 9
 ` �2gth�a�� 99 .
where [���7~�8q.0~�9�� and \ ������8�.A�r9�� are the Cartesian com-
ponents of the normal and tangential vectors to the interface
at the point considered.

III. GENERALIZED FINITE DIFFERENCE FORMULAS

From Taylor series expansions, it is possible to show that if
the interface cuts a grid line between two grid points at U��� ,Uj�+�C���eU:����8 , then, the following approximations hold for
a piecewise twice differentiable function � �7U:� :
� { �7U � �2� � ����8 O � ���f8�1� O >�1� 9��/� 3 �L�

� � ���� ` � F � H a�
����L� 9 � (11)

� {j�7Uj�s��8��2� � ����9 O � ��X� O >�X� 9��|� 3 �-�
� � ���� ` � F � H a�
����L� 9 � (12)

� {�{ ��U � ��� � �s��8/O�� � �:
 � ���f8� 9 O >� 9 9��/� 3 �-�
� � ���� ` � F � H a
����L�j� (13)

� {�{j�7U:����8���� � ����9+OQ� � ����82
 � �� 9
 >� 9 9��/� 3 �L�
� � ���� ` � F � H a
����-�:� (14)

where � F � H , denotes the � -th derivative of � , � � � � ��U � � ,� � ��Uj�s��8�O�� , � � �Uj�SO�� , and � , is the mesh width in theU direction. The jumps in � and its derivatives are defined as` � F � H a7�������s {�¡ �E¢ � F � H �7Uc�bO£���s {�¡ �J¤ � F � H (15)

in short,
` �Nac� ` �Aa7� , and � F 3tH � � .

Note that the sign convention for the jump used in the above
expressions is different from that in the previous section. This
will need to be taken into account when these expressions are
used to discretize the Navier-Stokes equations.

The above expressions can be generalized [8] for the case
in which we have two interface crossings between U ���f8 andUj�s��8 . In such cases we need to consider two possibilities:

a) when U:�7��8_�¥�¦8��^Uj�b�¥��9���U:����8 we have

� { �7U � �2� � �s��8 O � �7��8�X� O >�X� 9��/� 3 �-�
�8 � � ` � F � H a7�E§���

O >�X� 9��/� 3 �-�
�9 � � ` � F � H a �X¨���
����-� 9 � (16)

� {�{ ��U � �2� � �s��8 O�� � �
 � ���f8� 9
 >� 9 9��|� 3 �-�
�8 � � ` � F � H a©�S§���

O >� 9 9��|� 3 �-�
�9 � � ` � F � H a7� ¨���
u���L�j� (17)

where � � 8 ��U � O=� 8 , � �8 �U ���f8 O�� 8 , � �9 ��U ����8 O�� 9 , and� �9 ��U � O�� 9 .

b) when U � �ª� 8 �ª� 9 �«U ����8 , � � 8 �mU ����8 O�� 8 , � �8 �U � OQ� 8 , � �9 ��U �s��8 OQ� 9 , and � �9 �U � OQ� 9 , we have

� { �7U � �	� � ����8 O � �7��8�X� O >�1� 9��/� 3 �L�
� 8 � � ` � F � H a©�S§���

O >�1� 9��/� 3 �L�
�9 � � ` � F � H a©� ¨���
����-� 9 � (18)

� { �7U ����8 �	� � ����9 O � ��X� O >�1� 9��/� 3 �L�
�8 � � ` � F � H a©�S§���

O >�1� 9��/� 3 �L�
�9 � � ` � F � H a©� ¨���
����-� 9 � (19)

� {�{ �7U � �2� � �s��8 O�� � �
 � �7��8� 9 O >� 9 9��/� 3 �-�
� 8 � � ` � F � H a7�E§���

O >� 9 9��/� 3 �-�
�9 � � ` � F � H a7� ¨���
����-�:� (20)

� {�{J��Uj�s��8��2� � �s��9 O�� � �s��8
 � �� 9
 >� 9 9��|� 3 �-�
�8 � � ` � F � H a©�S§���

 >� 9 9��/� 3 �-�
�9 � � ` � F � H a©� ¨���
u���L�j� (21)

Expressions involving three or more interface crossings could
also be derived but we have not found it necessary for the
examples considered. Finally, we will also require centered
and backwards approximations for � ��U ����8A¬t9 � . Thus we have,
a) when Uj�	���u�uU �s��80¬t9 , with � � �Uj�fOQ�
� �7U �s��80¬t9 �	� >� � � �
 � �s��8 �#
 >� 8��/� 3 �-� � � � ` �

F � H a�
���L� 9 � (22)

b) when U �s��80¬t9 �^�u�uU ����8 , with � � �¥U �s��8 O��
� �7U �s��80¬t9 �	� >� � � �
 � �s��8 ��O >� 8��/� 3 �-� � � � ` �

F � H av
x���-� 9 � (23)

and,
a) when Uj���f8®���u�uUj� with � � ��U:�fO�� ,

� �7U �s��80¬t9 �	�?¯� � � O >� � ���f8 O >� 8��/� 3 �-� � � � ` �
F � H av
x���-� 9 � (24)

b) when Uj�2�^���^U �s��80¬t9 with °� � ��U ��� §¨ O�� ,

� �7U �s��80¬t9 �	� ¯� � � O >� � ���f8
 8��/� 3 � °� � � � ` �
F � H a�
����-� 9 � l (25)

IV. THE NUMERICAL ALGORITHM

A. Projection method

We employ a non-staggered pressure-increment projection
algorithm for the discretization of the Navier-Stokes equations.
Several variants of projection methods have been proposed. We
choose the particular form presented in [1] which is second
order accurate for both velocities and pressure. Given the
velocity at time level ~ , �*± , and the pressure at time level~wO >�² � , �:± �f80¬t9 , we compute the velocity, �*± ��8 , and pressure,�j± ��8A¬t9 , in three steps:

Step 1: Compute an intermediate velocity field �´³ by
solving �/³|O��*±��@ �4O �������x�|� ± ��80¬09 O ��� ± ��8A¬t9
µ� � 9 � ± ��80¬09
Q¶ 8 ` �	�La7�X· (26)

� ³ % &�' �¥� ± ��8)
where the advective term is extrapolated using the formula,�7�����x�/� ± ��80¬t9 � ¯ � �7������¸1�*� ± O >� �������¹¸X�|� ± �f8
 ¶G9 ` �����x�ba � ·�
uº=8 (27)

the pressure term is approximated simply as,��� ± ��8A¬t9 ��� ¸ � ± �f80¬t9
Q¶G» ` ���Ja � ·�
�¼|9 (28)

and the diffusion term is given implicitly as,� 9 � ± ��8A¬t9 � >� �-� 9 ¸ � ³
u� 9¸ � ± ��
�¶E½ ` � 9 �2a7�X·V
�º » (29)

Step 2: Compute a pressure update ¾ ± ��8 by solving the
Poisson equation� 9 ¸ ¾ ± ��8 � � ¸ �#� ³��@
�¼ ½ . [��� ¾ ± ��8 % &�'(��$ (30)

Step 3: Update pressure and velocity field according to,� ± ��8 � � ³ O�¿x@A��¸ ¾ ± ��8
uº�À (31)� ± ��8A¬t9 � � ± ��8A¬t9
 ¾ ± ��8 O � � �v� ¸ �r� ³ �V
�¼|Á (32)

Here, � ± ��8A¬t9 �µ�j± ��8A¬t9
¹¶ » ` �Ja7�1· , and
` �Aa7�X· denotes a jump in

time which is only non zero when the interface crosses the grid
point over the time interval considered. The coefficients ¶ � .AÂ��> . lrl�l .AÃ , corresponding to the first order corrections in time,
are determined from expressions (11), (12) and (22)–(25). At
the interface,

` �Aa7�1·	�eÄ ` �Na7� , where
` �Na7� denotes spatial jump

and the sign depends on the motion of the interface. Also, by
differentiating

` �ba��Åd , we obtain
` �*�La��ÆO ` ��S�x�2a . Note

that in equation (26) we have used the fact that the velocity
is continuous and therefore

` �2a � ·	�d . The operators � ¸ and� 9 ¸ are the standard three point central difference operators
and º��A.0Â_� > . l�lrl .tÇ , are the spatial correction terms which
are non-zero at the points which are near the interface. In step
2 we need an approximation to �e�t�w³ at the boundary points
of the rectangular domain. Following [5] we extrapolate the

value of �È�E� ³ at the boundaries. For example, at the left
vertical boundary we use�u�L� ³ ��$i.LÉS�2� ¯ � ¸ �L� ³ � > .vÉS�GO ¯ � ¸ �-� ³ �-�J.LÉS�1
=� ¸ �-� ³ � ¯ .LÉS� l

In our projection method, we need to solve two Helmholtz
equations for �w³ in (26) and one Poisson equation for ¾ ± ��8
in (30). Since the correction terms º 8 and ¼ ½ only affect the
right-hand side of the discrete systems for the Helmholtz and
Poisson equations, we can use the fast Fourier transform solver
(e.g. [2]).

B. Correction terms for spatial derivatives

In this section, we will show how to evaluate the correction
terms º��A.AÂ � > . l�lrl .tÇ in expressions (27)-(32). Let ¼xÊ �iË
denote the correction term for a quantity � , for example, from
(11) we can write¼xÊ � {J��Uj��� Ë �4O >�X��Ì ` � aG
�� � ` � {qaJ
 �L� � � 9� ` � {�{�asÍ (33)

Then the correction terms º 8 - ¼|Á in (26)-(32) are evaluated
as follows:º 8 � ¯ � ¼xÊS�7�����x�/� ± Ë O >� ¼xÊE�-�����x�|� ± �f8 Ë (34)¼ 9 ��¼xÊ���� ± �f80¬09 Ë (35)º�»+� >�=Î ¼xÊ�� 9¸ � ³ Ë
�¼xÊ�� 9¸ � ± Ë�Ï (36)

¼*½Ð� ¼xÊ��T�r� ³ Ë��@
u¼xÊq� 9 � ± � §¨ Ë OQ¼xÊq� 9 � ± � §¨ Ë
+¶S» ` � 9 �Ja � · (37)º�À+�TO���@	Ñr¼xÊq��� ± � §¨ Ë OQ¼xÊq��� ± � §¨ Ë�Ò
u¿x@v¶ » ` ���Ja7�X· (38)¼|Á��4O � � ¼xÊ��T�r� ³ Ë (39)

All the correction terms are included at least to first order ac-
curacy. As explained in [3], the overall second order accuracy
of the scheme is maintained provided only the singular points
are treated with a first order scheme. This can be intuitively
understood by realizing that when the mesh is refined, the area
of the domain represented by these points is reduced.

C. Implicit scheme for moving interface

In [4], it was found that when the position of the interface
is advanced using an explicit method, the size of the timestep
required for stability is very small. For this reason they
recommend the use of an implicit scheme. Following [4],
we update the position of the control points according to,P ± ��8 �P ±
 >� ¿x@ Î � �LP ± �V
µ� Î P ± ��8 Ï�Ï (40)

This equation is implicit and couples the motion of the
interface with the solution at all grid points. Therefore, at each
time step we need to solve a non-linear system of equations for

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X

U(x,y) at t = 10

Y

Z

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Velocity field at t = 10

X

Y

(b)

Fig. 1. Velocity field at time t = 10 with a 64 Ó:Ô�Õ grid, Ö_×�Ø�Ù ØkÚ , Û�Ü�×�Ø ,Û�Ý¦× ÞAØ�Ö . 1(a) Plot of the x component of velocity field at time t = 10. 1(b)
Plot of velocity field at time t = 10.

the position of the control points of the form ß Î P ± ��8 Ï ��$,
whereß �LP�2�PàO�P ± O >� ��@f�©�(�-P ± �V
�� �LP�A� (41)

Since the computation of the exact linearization of ß �-P�
would be very expensive, we have implemented a quasi-
Newton method in which the jacobian matrix is updated using
a BFGS method. In practice, this approach requires only a few
iterations as the solution at the previous timestep provides a
very good initial guess for the iteration.

V. NUMERICAL RESULTS

In order to illustrate the capabilities of the method
described, we present some numerical results for two test
problems which involve immersed boundaries.

A. Circular Flow

In this example, we consider a fixed interface problem with
non-smooth velocity [5]. The interface is a circle, á � 89 , at
the center of the computational domain

` O > . > a y ` O > . > a .
The normal and tangential stress are] 8 �â$ and] 9 � > $�� ,
respectively, and the viscosity is �ã��$ l $1� . The initial velocity
and pressure are taken to be zero on the square domain. Since] 8(�ä$ and] 9 is constant, the pressure and its derivatives
are continuous across the interface. On the other hand, the
normal derivative of the tangential component of the velocity
is discontinuous. This can be observed from figures 1(a) and 2.
Figure 1(b) shows the steady state solution which corresponds
to a rigid body motion inside the interface.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

X

Pressure field at t = 10

Y

Z

Fig. 2. Pressure distribution at steady state. Note that the pressure and its
derivatives are continuous.

B. Membrane with surface tension

In this example, we consider a deformable interface problem
with surface tension [4]. The initial interface is an ellipse with
major and minor axes a = 0.75, b = 0.5, respectively. The force
density is now given by

I �LK1.A@A�2��¶ Y 9Y K 9 P4�-K1.0@A�®. (42)

which can be seen to be, at all points, normal to the interface.
The initial velocity and pressure are set to zero. The compu-
tational domain is [O 3, 3] y [O 3, 3], and we set ; � > and�Q�4$ l > throughout the domain. In our test, we take ¶�� > $
and ��% &�' ��d . In figure 5, we plot the location of the interface
at different times with a 160 by 160 grid and 50 control points.
The interface oscillates as it settles down to the equilibrium
state. The evolution of the major and minor axes is shown in
figure 3. Figure 4 shows the evolution of the major and minor
axes of the ellipse when �µ� > and ¶µ� > . In this case, the
Reynolds number is smaller and the interface relaxes gradually
to the equilibrium state without oscillations. In the equilibrium
state, the interface is a circle, the velocity is zero everywhere
and the pressure has two different constant values inside and
outside the interface, as show in figure 6.

0 1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

time

m
aj

or
 a

nd
 m

in
or

 a
xe

s

r
x

r
y

Fig. 3. The time evolution of the ellipse axes å�æ and å0ç with Ö�×�Ø�ÙèÞ andé ×(ÞAØ . The interface oscillates as it converges to the equilibrium state

0 1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

time

m
aj

or
 a

nd
 m

in
or

 a
xe

s

r
x

r
y

Fig. 4. The time evolution of the ellipse axes å�æ and å0ç with Öµ×âÞ
and é ×uÞ . The interface relaxes gradually to the equilibrium state without
oscilaltion.

VI. CONCLUSION

We have presented a formally second order accurate im-
mersed interface method for the solution of the incompressible
Navier-Stokes equations with moving interfaces. The imple-
mentation has been tested with two simple examples involving
rotational flow and a moving interface with surface tension.
The method gives a very good resolution of the flow near the
discontinuity. The work presented here represents a modest
extension of that presented in [4] and [5], but currently
work is underway to further extend the current approach. In
particular, we plan to extend the current method to handle
rigid boundaries and to deal with fluids of different density
and viscosity. Future work will extend this approach to three
dimensions.

REFERENCES

[1] D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods
for the incompressible Navier-Stokes equations, J. Comput. Phys. 168,
464 (2001).

[2] J. Adams, P. Swarztrauber and R. Sweet, FISHPACK: Efficient FOR-
TRAN Subprograms for the Solution of Separable Eliptic Partial Dif-
ferential Equations, National Center for Athmospheric Research, 1999,
http://www.scd.ucar.edu/css/software/fishpack/.

[3] R. J. LeVeque and Z. Li, The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources, SIAM
J. Numer. Anal. 31, 1019 (1994).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t = 0

X

Y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t = 0.093

X

Y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t = 0.161

X

Y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t = 0.312

X

Y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t = 0.560

X

Y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t = 6.032

X

Y

Fig. 5. Location of the interface at different times for Ö_×�Ø�ÙèÞ and é ×(ÞAØ .

−1.5−1−0.500.511.5

−1
0

1

−10

−5

0

5

10

15

20

25

X

Pressure field at t = 0

Y

Z

−1.5−1−0.500.511.5

−1
0

1

−5

0

5

10

15

20

X

Pressure field at t = 0.093

Y

Z

−1.5−1−0.500.511.5

−1
0

1

−2

0

2

4

6

8

10

12

14

16

18

X

Pressure field at t = 0.161

Y

Z

−1.5−1−0.500.511.5

−1
0

1

−5

0

5

10

15

20

X

Pressure field at t = 0.312

Y

Z

−1.5−1−0.500.511.5

−1
0

1

−2

0

2

4

6

8

10

12

14

16

18

X

Pressure field at t = 0.560

Y

Z

−1.5−1−0.500.511.5

−1
0

1

−2

0

2

4

6

8

10

12

14

16

18

X

Pressure field at t = 6.032

Y

Z

Fig. 6. Pressure distribution at different times for Ö_×�Ø�ÙèÞ and é ×(ÞAØ .
[4] R. J. LeVeque and Z. Li, Immersed interface method for Stokes flow

with elastic boundaries or surface tension, SIAM J. Sci. Comput. 18, 709
(1997).

[5] Z. Li and M. C. Lai, The immersed interface method for the Navier-
Stokes equations with singular forces, J. Comput. Phys. 171, 822 (2001).

[6] L. Lee, An immersed interface method for the incompressible Navier-
Stokes equations, Ph.D. thesis (University of Washington, 2002).

[7] C. S. Peskin, The immersed boundary method, Acta Numerica (2002),
pp. 479-517.

[8] A. Wiegmann and K. P. Bube, The explicit-jump immersed interface
method: Finite difference methods for PDEs with piecewise smooth
solutions, SIAM J. Numer. Anal. 37, No. 3, 827 (1997).

[9] Z. Li, Immersed interface methods for moving interface problems,

Numer. Algorithms 14, 269 (1997).

