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Abstract— We present an a-posteriori method for computing
rigorous upper and lower bounds of the J-integral in two
dimensional linear elasticity. The J-integral, which is typically
expressed as a contour integral, is recast as a surface integral
which yields a quadratic continuous functional of the displace-
ment. By expanding the quadratic output about an approximate
finite element solution, the output is expressed as a known
computable quantity plus linear and quadratic functionals of
the solution error. The quadratic component is bounded by the
energy norm of the error scaled by a continuity constant, which
is determined explicitly. The linear component is expressed as an
inner product of the errors in the displacement and in a computed
adjoint solution, and bounded using standard a-posteriori error
estimation techniques. The method is illustrated with two fracture
problems in plane strain elasticity.

I. INTRODUCTION

The accurate prediction of stress intensity factors in crack
tips is essential for assessing the strength and life of structures
using linear fracture mechanics theories. A crack is assumed
to be stable when the magnitude of the stress concentration
at its tip is below a critical material dependent value. Stress
intensity factors derived from linearly elastic solutions are
widely used in the study of brittle fracture, fatigue, stress
corrosion cracking, and to some extend for creep crack growth.
Since the analytical methods for solving the equations of
elasticity are limited to very simple cases, the finite element
method is commonly used as the alternative to treat the more
complicated cases. The methods for extracting stress intensity
factors from computed displacement solutions fall into two
categories: displacement matching methods, and the energy
based methods. In the first case, the form of the local solution
is assumed, and the value of the displacement near crack tip
is used to determine the magnitude of the coefficients in the
asymmptotic expansion. In the second case, the strength of
the singular stress field is related to the energy released rate,
i.e. the sensitivity of the total potential energy to the crack
position. An expression for calculating the energy release
rate in two dimensional cracks was given in [13] and is
known as the J-integral. The J-integral is a path independent
contour integral involving the projection of the material force

derived from Eshelby’s [3] energy momentum tensor along the
direction of the possible crack extension. An alternative form
of the J-integral in which the contour integral is transformed
into a domain integral involving a suitably defined weighting
function is given in [6]. The expression for the energy release
rate given in [6] appears to be very versatile and has an easier
and more convenient generalization to three dimensions than
the original form [13].

Regardless of the method chosen to evaluate the stress inten-
sity factor, a good approximation to the solution of the linear
elasticity equations is required. Unfortunately, the problems
of interest involve singularities and this makes the task of
computing accurate solutions much harder. For instance, it is
well known [16] that the convergence rate of energy norm of a
standard finite element solution for a linear elasticity problem
involving a ���	��
 reentrant corner is no higher than ��
���������� ,
where � is the typical mesh size. This problem was soon
realized and as a consequence a number of mesh adaptive
algorithms have been proposed [4], [5], [7], [8], [14] which,
in general, improve the situation considerably. In some cases
[7], [8], the adaptivity is driven by errors in the energy norm
of the solution, whereas in some others [4], [5], [14], a more
sophisticated goal-oriented approach based on a linearized
form of the output is used.

In this paper we present a method for computing strict
upper and lower bounds for the value of the J-integral in
two dimensional linear fracture mechanics. The J-integral is
written as a bounded quadratic functional of the displacement
and expanded into computable quantities plus additional linear
and quadratic terms in the error. The linear terms are bounded
using our previous work for linear functional outputs [9], [11],
[12] and the quadratic term is bounded with the energy norm
of the error scaled by a suitably chosen continuity constant,
which can be determined a priori. The bounds produced are
strict with respect to the solution that would be obtained
on a conservatively refined reference mesh. This restriction
however can be eliminated if the more rigorous techniques for
bounding the outputs of the exact weak solutions are employed
[10], [15]. Also, not exploited here, but of clear practical



interest, is the fact that the bound gap can be decomposed
into a sum of positive elemental contributions thus naturally
leading to an adaptive mesh adaptive approach [12]. We think
that the algorithm presented is an attractive alternative to the
existing methods as it guarantees the certainty of the computed
bounds. This is particularly important in critical problems
relating to structural failure. The method is illustrated for an
open mode and a mixed mode crack examples.

II. PROBLEM FORMULATION

We consider a linear elastic body occupying a region ���� � � . The boundary of � , ��� , is assumed to be piecewise
smooth, and composed of a Dirichlet portion �! , and a
Neumann portion �#" , i.e. �$�&%'�( *)+�(" . We assume that
a traction ,.-/
��10 �2�2� 
��("3�2� � is applied on the Neumann
boundary and that the Dirichlet boundary conditions are ho-
mogeneous. The displacement field 45%6
87 ��9 7 � �:-<;>=?A@ %B
8C �D9 C � �E-F
G�H�I
J�K�����ML @ %ONQPSRQ�  3T satisfies the
following weak form of the elasticity equationsU 
84 9 @ �V%W
JX 9 @ �ZY\[], 9 @Z^ 96_ @ -`; 9 (1)

in which 
aX 9 @ �b% ced XHf @�g � 9[], 9 @Z^ % c�hSi ,`f @1g � 9
where XQ-j
��10 � 
G�K�2� � is the body force. The bi-linear formU 
�k 9 @ �mlD;onp;rq � �

is given by,U 
8k 9 @ �s% ctdvu 
8k`�mlSwx
 @ � g �zy (2)

Here, w�
 @ � denotes the second order deformation tensor which
is defined as the symmetric part of the gradient tensor { @ .
That is, wx
 @ �V%�
a{ @ Yj
a{ @ ��|#��}D~ . The stress

u 
 @ � is related
to the deformation tensor through a linear constitutive relation
of the form u 
 @ �s%\�rl	w�
 @ � (3)

where � is the constant fourth-order elasticity tensor. We
define the total potential energy functional ��
 @ ��l#;�q � �
as ��
 @ �s% �~ U 
 @ 9 @ �#��
JX 9 @ �!�M[�, 9 @(^ (4)

It is straightforward to see that the solution, 4 , to the problem
(1) minimizes the total potential energy, and that��
84��V%�� �~ U 
�4 9 4��s%�� �~ L�L�L 43L�L�L � y (5)

Where L�L�L�f�L�L�L	% U 
�f 9 f�� ����� denotes energy norm associated with
the coercive bilinear form U 
�f 9 f � .

In fracture mechanics we are often interested in determining
the strength of the crack tip stress fields. A common way to
do that is to relate the so called stress intensity factors to
the energy released per unit length of crack advancement (see
figure 1). If the total potential energy defined by (5), decreases
by an amount �I��
�4�� when the crack advances by a distance

��� in its plane, we are interested in determining the energy
release rate, �s
84m� , such that,�I��
84m�s%W���s
84b������y
For a two-dimensional linear elastic body the energy release
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Fig. 1. Crack geometry showing coordinate axes and the J-integral contour
and domain of integration.

rate, ��
�4m� , can be calculated as a path independent line
integral known as the � -integral [13]. If we consider the
geometry shown in figure 1, the � -integral has the following
expression, �s
84b�V% ceh�������� � �H��f �x4�x� �t� g � 9 (6)

where � is any path beginning at the bottom crack face
and ending at the top crack face,

� � %B
 u l�we��}D~ is the
strain energy density, � is the traction given as ��% u� 

,
and

  %¡
 � �D9 � � � is the outward unit normal to � . An
alternative expression for ��
�4m� was proposed in [6], where the
contour integral is transformed to the following area integral
expression,�s
�4b�V% c¢d¤£p� 
J{H¥!� | f u �¤4�¤� � � ��� �x¥�x� � � g �3y (7)

Here, the weighting function ¥ is any function in � � 
G��¦¤� that
is equal to one at the crack tip and vanishes on � .

For a given ¥ , we observe that �s
�4m� is a bounded quadratic
functional of 4 . For our bounding procedure it is convenient
to make the quadratic dependence of the output on the solu-
tion more explicit. To this end, we define the bilinear form§¨ 
8k 9 @ ��lD;on`;©q � �

as,§¨ 
�k 9 @ �s% ctd £ 
J{H¥!� | f u 
8kp� � @�¤� � g �� ctd¤£ �~ u 
8k`��l	w�
 @ � �x¥�¤� � g � 9 (8)

and its symmetric part ¨ 
8k 9 @ �mlD;on`;©q � �
,¨ 
�k 9 @ �s% �~ 
 §¨ 
8k 9 @ �ZY §¨ 
 @ 9 kp����y (9)

It is clear from these definitions that,�s
84b�b% ¨ 
84 9 4�� 9 (10)



and that there exists ª`«­¬ such that,¨ 
 @ 9 @ �m®Mª¯L�L�L @ L�L�L � 9 _ @ -`;+y (11)

III. BOUNDING PROCEDURE

Our objective is to compute upper and lower bounds, for��
�4m� , where 4 satisfies problem (1). Let us consider a finite
element approximation 4�°�-`;�° satisfyingU 
84m° 9 @ �s%W
aX 9 @ �¯YQ[�, 9 @Z^ 96_ @ -`;�°±y (12)

Here, ;�°/�'; is a finite dimensional subspace of ; . For
simplicity, we shall assume that ;�° is the space of piecewise
linear continuous functions defined over a triangulation, ²¤° ,
of � which satisfies the Dirichlet boundary conditions. An
approximation to �s
84�� , ��° , can be obtained as�S°³% ¨ 
84V° 9 4m°3� 9
where, for convenience, ¥ in (7) is chosen to be piecewise
linear over the elements ´¯°�-µ²t° . Exploiting the bi-linearity
of ¨ 
8k 9 @ � , we can write�s
84��!�j��°% ¨ 
84 9 4b�!� ¨ 
84m° 9 4b°¶�% ¨ 
841��4V° 9 41�E4V°3�(Yj~ ¨ 
84 9 4V°��!��~ ¨ 
84V° 9 4m°¶�% ¨ 
�· 9 ·��ZY*~ ¨ 
�· 9 4V°�� 9 (13)

where ·+%�4*�E4m° is the error in the approximation 4m° . It
is clear that if we are able to compute bounds ¸ and ¹Kº for
the quadratic and linear error terms,L ¨ 
�· 9 ·��»L¢®M¸
and ¹ 0 ® ¨ 
�· 9 4V°���®*¹b¼ 9
then, the bounds for �s
84�� , �(º , follow as,� 0 =�� ° �:¸�Yj~	¹ 0 ®Q�s
84���®Q� ° Y*¸­Y*~D¹b¼E=��¯¼³y
A. Linear term

In order to derive upper an lower bounds for the linear
term ¨ 
�· 9 4V°�� , we introduce the following adjoint problem:
find ½¾-µ; such thatU 
 @ 9 ½��s% ¨ 
 @ 9 4 ° � 96_ @ -`; 9 (14)

and the corresponding finite element approximation, ½ ° -; ° �j; , such thatU 
 @ 9 ½ ° �s% ¨ 
 @ 9 4 ° � 96_ @ -µ; ° y (15)

From (1) and (12), it follows that U 
G· 9 @ �b%�� for all
@ -µ; ° .

In particular, U 
G· 9 ½ ° ��%<� . This, combined with the above
equations (14) and (15) gives the following representation for
the linear error term,¨ 
�· 9 4 ° �s% U 
�· 92¿ � 9 (16)

where ¿ %Q½��H½ ° is the error in the adjoint solution. Now,
using the parallelogram identity, we have that for all À:- � � ,U 
G· 92¿ �s% �ÁbL�L�L À�·ÂY �À ¿ L�L�L � � �ÁbL�L�L ÀÃ·Ã� �À ¿ L�L�L � 9 (17)

and therefore,� �ÁbL�L�L À�·�� �À ¿ L�L�L � ® ¨ 
�· 9 4 ° �m® �Á�L�L�L À�·ÂY �À ¿ L�L�L � y (18)

B. Quadratic term

In the appendix we show that for two dimensional linear
elasticity, a suitable value for the continuity constant in ex-
pression (11) is given byª	¦�%ÅÄ�ÆIÇ|IÈVÉSÊ�È 
GËSÌ�Y Á	Í �AL {Î¥mL �Á¤Ï 
�Ë�Ì�Y Í � � Ë ÍÎÐ¶Ñ ¦Ñ�Ò�ÓDÔ � YQ
GËSÌ�Y Á	Í � ÐÕÑ ¦Ñ�Ò�Ö	Ô � � 9

(19)
where

Í %Q×�}¢
G~�
���YµØ���� is the elastic shear modulus, Ì is the
elastic bulk modulus which is given by ÌÙ%�×Ã}t
��	Y�~	Ø¢��}t
�Ë¤
��e�Ø � ��� for plane stress, and ÌÙ%�×Ã}t
�Ë¤
��s�+~SØ¢��� for plain strain.
In these expressions, × is Young’s elastic modulus and Ø is
the Poisson’s ratio. Therefore, we write¨ 
�· 9 ·��m®Mª ¦ L�L�L ·(L�L�L � y
The computation of a bound for ¨ 
�· 9 ·�� is straightforward
once a bound for the error in the energy norm L�L�L ·ZL�L�L has been
obtained.

IV. BOUNDS FOR ENERGY NORM OF THE ERROR

An essential ingredient for the computation of the bounds
for our output of interest, �s
84m� , is the calculation of upper
bounds for the energy norm of · , and À#·`Ú ¿ }DÀ . There is
an extensive body of literature on this subject (see [1], [11]),
and a number of methods an approaches have been proposed
which, in principle, would be applicable here. These methods
typically compute an upper bound of the energy norm of
the error measured with respect to a reference solution. This
reference solution can be a finite element solution obtained
on a very fine mesh or a solution obtained using a high
degree interpolation polynomial. More recently, a method was
proposed in [15] for Poisson’s equation which is based on
the use of the complementary energy principle and gives
bounds for the error relative to the exact weak solution. The
method has been since generalized to the linear elasticity
equations in [10]. Here, we will use essentially the method
proposed in [2] for Poisson’s equation, extended to the linear
elasticity problem. This approach is easy to implement but
has the disadvantage that the error in the solution is measured
with respect to the finite element solution obtained on a
conservatively refined mesh. Future work will incorporate the
more rigorous bounding procedures described in [10].

We start by combining equations (1) and (12) to write an
equation for the error,U 
�· 9 @ �s%&
JX 9 @ �¯YQ[�, 9 @Z^ � U 
84b° 9 @ �s=�ÛÎ
 @ � 9Ü_ @ -`;

(20)
where ÛÎ
 @ �mlD;Ýq � �

is the residual. Next, we introduce the
“broken” space Þ;ß�*; , supported by the triangulation ²�° ,Þ;Ý% ?�@ L @ -E
G� � 
�´$°¶��� � 9#_ ´$°³-�²t° 9 @ %\N on �  3T 9 (21)



where ´$° denotes a typical triangle of ²¢° with boundary�¤´$° . We can then extend the bi-linear form U 
8k 9 @ � and
the residual ÛÎ
 @ � to admit functions which are discontinuous
across triangles. We defineU |IÈ 
�k 9 @ �s% c | È u 
8k`�ml�w¤
 @ � g � (22)Û |IÈ 
 @ �s% c |�È XHf @vg ��Y c Ñ |IÈ!à h i ,µf @vg �� U |�È 
84m° 9 @ ��y (23)

and write, U 
�k 9 @ �s% á| È ÉSÊ È U |IÈ 
8k 9 @ � (24)ÛÎ
 @ �s% á|IÈVÉSÊAÈ Û | È 
 @ �vy (25)

Substituting 4j%Q·VYÙ4 ° on element ´ ° into the governing
equations, �¶{rf u 
�4m��%WX , we find that, on ´ ° , the error ·
satisfies the differential equation�¶{©f u 
�·¤�s%âXµY*{rf u 
�4b°��ãy (26)

Multiplying both sides of the local error equation (26) by@ -ÅÞ; , and performing integration by parts using Green’s
formula leads to the weak form of the error residual differential
equation over a triangleU |IÈ 
G· 9 @ �s%�Û |IÈ 
 @ �ZY\[ u 
87$�!f   |IÈ 9 @Z^ Ñ | È àeäæå 9�_ @ -5Þ;1y

(27)
Here, ç¢è is the set of all edges in the triangulation ²¢°
excluding those on � " , and

  |IÈ is the outward unit normal
to �x´ ° .

By approximating the normal traction
u 
84��mf   | È by the

traction computed by averaging the traction
u 
�4 ° � on the two

neighboring elements [1], that is,u 
84��!f   |IÈjé §u 
84V°��!f   |IÈ% �~ Ð u 
�4b°��»L ¼Ñ | È Y u 
�4b°��»L 0Ñ | È Ô f   |�È 9
we can write the following problem for the approximate local
error Þ·p-5Þ; over each element ´¯° ,U | È 
 Þ· 9 @ �s%­Û | È 
 @ �$Y­[ §u 
84 ° �!f   | È 9 @Z^ Ñ |IÈ#àeä å 9m_ @ -oÞ;1y

(28)
In general, the above local problems are not solvable. A
common way to fix this problem is to solve instead the
modified local problems [2],U |�È 
 Þ· 9 @ �s%�Û |�È 
 @ �µê$° @ �Y\[ §u 
�4 ° �!f   | È 9 @ �µê ° @Z^ Ñ |IÈ#àeä å 9�_ @ -oÞ;�ë 9

(29)

in which ê ° 
 @ �Âl1Þ;ìq Þ; ° denotes the nodal interpolation
operator. Thus, we have that if

@ -íÞ; , then, ê ° @ -îÞ; ° ,
and if

@ - , then, Þ; ° , ê ° @ % @ . Problem (29) is local over
each element but is still infinite dimensional. In practice, we
discretize (29) over a conservatively fine mesh and compute an
approximation, Þ· ë , to Þ· (see [1], [2], or [11] for details). We

shall assume here that the discretization is sufficiently rich so
that the difference between U 
 Þ· ë 9 Þ· ë � and U 
 Þ· 9 Þ·�� is negligible.

Summing the elemental equations (29) over all the elements
in ²t° , and letting

@ %Q· leads to,U 
 Þ· 9 ·��s%ÕÛÎ
G·¤�#�HÛÎ
ïê ° ·��Y á| È ÉSÊ È [ §u 
84m°3��f   |�È 9 ·Ã�µê$°�· ^ Ñ | È àeä»å y (30)

Since ê¯°¶·µ-`;�° , ÛÎ
ïê$°�·��b%�� , and§u 
84b°��!f   |IÈ %W� §u 
84V°��!f   |xðÈ (31)

on the common edge �x´ ° %'�¤´¶ñ° -�ç è of the two neighbor
elements, the last term in the right hand side is also zero. This
yields, U 
 Þ· 9 ·��s%�ÛÎ
�·��b% U 
�· 9 ·¢�ãy (32)

The last equality follows from (20) with
@ %�· . Finally sinceU 
�·3� Þ· 9 ·3� Þ·¢�mò­� , from the above expression, it follows the

desired result,U 
�· 9 ·¢��® U 
 Þ· 9 Þ·¢� 9 or L�L�L ·(L�L�Le®�L�L�L Þ·ZL�L�L$y (33)

If we now start with the adjoint error equation,U 
 @ 9�¿ �V% ¨ 
 @ 9 4b°3�!� U 
 @ 9 ½ ° �b=MÛ`óS
 @ � 9 (34)

and repeat the same process outlined above, we can determine
a reconstructed adjoint error Þ¿ satisfying,U 
 ¿e92¿ �K® U 
 Þ¿t9 Þ¿ � 9 or L�L�L ¿ L�L�L¢®âL�L�L Þ¿ L�L�LZy (35)

Finally, we note that due to the symmetry of U 
�f 9 f�� , equations
(20) and (34) can be combined into the following equation,U 
�À#·�Ú �À ¿e9 @ �b%�ÀZÛÎ
 @ �ZÚ �À Û ó 
�Ce� 9 (36)

and an upper bound for the norm of the combined error is
thus,L�L�L À(·�Ú �À ¿ L�L�Lt®*À � L�L�L Þ·(L�L�LAÚ*~ U 
 Þ· 9 Þ¿ �ZY �À � L�L�L Þ¿ L�L�L$y (37)

Since À in equation (18) is arbitrary we choose À � %L�L�L Þ¿ L�L�L }¢L�L�L Þ·ZL�L�L to obtain,~ U 
 Þ· 9 Þ¿ �A�3~¤L�L�L Þ·(L�L�L»L�L�L Þ¿ L�L�Lt® ¨ 
G· 9 4 ° ��®­~ U 
 Þ· 9 Þ¿ �ãYÂ~�L�L�L Þ·ZL�L�L»L�L�L Þ¿ L�L�LSy
(38)

V. SUMMARY OF THE BOUNDS PROCEDURE

We summarize here the steps involved in the implementation
of the bounds procedure.
STEP 1: Solve a global problem for the approximate displace-
ment field 4 ° : find 4 ° -p; ° such thatU 
�4V° 9 @ �V%W
JX 9 @ �ZY\[], 9 @Z^ 9�_ @ -`;�° 9
and determine ��°³%��s
84b°�� .
STEP 2: Solve a global problem for the approximate adjoint
solution ½ ° : find ½ ° -p;�° such thatU 
 @ 9 ½ ° �s% ¨ 
 @ 9 4V°�� 9�_ @ -`;�°<y



STEP 3: Solve for each element ´¯°.-*²t° a local problem
for the reconstructed displacement Þ· : find Þ· ë -5Þ; ë such thatU |IÈ 
 Þ· ë 9 @ �V%­Û |�È 
 @ �µê$° @ �Y\[ §u 
�4 ° �!f   | È 9 @ �µê ° @Z^ Ñ |IÈ(àeä å 9�_ @ -ßÞ;�ë+y
STEP 4: Solve for each element ´¯°.-*²t° a local problem
for the reconstructed adjoint error Þ¿ : find Þ¿ ë -5Þ; ë such thatU | È 
 @ 9 Þ¿ ë��s%�Û ó| È 
 @ �µê ° @ �Y\[ §u 
�½ ° ��f   | È 9 @ �µê ° @Z^ Ñ |�È!àeä å 9�_ @ -ßÞ;�ë�y
STEP 5: Calculate L�L�L Þ·¤ë¤L�L�L�% ô U 
 Þ·�ë 9 Þ·�ë��aõ ����� , L�L�L Þ¿ ë¤L�L�L�%ô U 
 Þ¿ ë 9 Þ¿ ë��aõ �2�2� , and U 
 Þ·�ë 9 Þ¿ ë�� , and determine � ¼ and �!0 as,�¯¼�%��S°*Y:ª¯L�L�L · ë L�L�L � Y U 
 Þ· ë 9 Þ¿ ë �¯Y³L�L�L Þ· ë L�L�L»L�L�L Þ¿ ë L�L�L (39)� 0 %��S°���ª¯L�L�L · ë L�L�L � Y U 
 Þ· ë 9 Þ¿ ë �!��L�L�L Þ· ë L�L�LAL�L�L Þ¿ ë L�L�L¯y (40)

VI. EXAMPLES

In the first example we consider a plate with two edge cracks
subjected to a uniformly distributed tensile stress as shown in
figure 2. The plate is assumed to be in plane strain. The value
of the tensile force acting on the two ends of the plate isö %5� and the dimension of the crack is U %r÷ . The non-
dimensionalized Young’s modulus is �	y � and the Poisson’s
ratio is ��y Ë . The analytical value of the mode-I normalized
stress intensity factor ø�ù for the problem has been determined
in [7] to be ø3ù�}t
 ö�ú û¯U �s%��Sy���üS~SýDþ . Therefore, the exact value
of the J-integral is obtained as � � Ò�ÿ���� % 
��Â�\Ø � ��ø �ù }I×O%�Aþ¢y ËS~�ýI� .
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Fig. 2. Geometry of a double edge-cracked plate subjected to a uniform
tensile stress.

Due to the symmetry of the problem, we only use one
quarter of the plate for the finite element analysis. We use
a 5 by 5 square area surrounding the crack tip as the support,� ¦ , of the weighting function ¥ (see figure 3). Figure 4
shows three of the linear triangular meshes used for the global
computations together with an illustration of the broken mesh
used for the local Neumman problems. For all the calculations
the reference mesh is taken to be a ËS~ refinement of the
original coarse mesh ² ° . The value of the output on the
reference mesh is �Aþ�y Á ~ Á ü which still has a relative error with
respect to the exact solution of about �¢y�÷ � .

Table I shows the results for the output �e° , the norms of
the reconstructed errors, and the computed upper and lower
bounds, �(º , for � . The observed convergence rate of the
bound gap is somewhat higher than the expected value of � .
We note that in the table I, all the results shown have been
multiplied by two since, due to symmetry, only half of the
domain is considered.
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Wc

Fig. 3. Support of weighting function � for the evaluation of the J-integral.

TABLE I
BOUND RESULTS

Coarse mesh size � ���
	 ����� ���

 ����������
15.3666 17.4156 18.4982 19.0412 19.2982�������������
� 17.8458 5.6043 1.6175 0.4904 0.1325����� �� ����� 8.9780 5.0312 2.7029 1.4882 0.7736����� �� ����� 2.9814 2.2908 1.5467 0.9435 0.5286�! 

-22.3265 2.3256 13.3991 17.3846 18.8259�#"
66.8985 36.5854 24.9949 21.1736 19.9087

In the second example we consider a plate with an inclined
crack subjected to a uniformly distributed tensile stress as
shown in figure 5. The plate is assumed to be in plane strain.
The value of the tensile force acting on the two ends of the
plate is ö %ì� . The non-dimensionalized Young’s modulus
is �	y � and the Poisson’s ratio is �¢y Ë . The analytical value of
the mode-I and node-II normalized stress intensity factors,ø3ù and ø3ù8ù , for the problem have been determined in [7]
to be ø3ù�}t
 ö�ú û¯U �­% �¢y ü	ü��	� and ø3ù8ù�}¢
 ö�ú û¯U ��% ��y ÷	ü�ý Á ,
respectively. Therefore, the exact value of the J-integral is
obtained as � � Ò�ÿ���� %&
��K�1Ø � �æ
8ø �ù Y:ø �ù8ù ��}I×W%\ü¢y Ë¢�A�SË .



(a) (b) (c) (d)

Fig. 4. Finite element meshes used for open crack problem: (a) coarse mesh $ � , (b) medium mesh $ �&%(' , (c) fine mesh $ �&%*),+ , and (d) illustration of
broken mesh used for local problem solution associated to coarse mesh $ � (actual mesh is twice as fine e.g. ���
-*	 ).

We use a 3 by 3 square area surrounding the crack tip as
the support, �K¦ , of the weighting function ¥ (see figure 6).
Figure 7 shows three of the linear triangular meshes used for
the global computations together with an illustration of the
broken mesh used for the local Neumman problems. For all the
calculations the reference mesh is taken to be a ËS~ refinement
of the original coarse mesh ²¢° . The value of the output on
the reference mesh is ü¢y�~DËS�¢� which has a relative error with
respect to the exact solution of about �	y Á � .

Table II shows the results for the output � ° , the norms of
the reconstructed errors, and the computed upper and lower
bounds, �Zº , for � .

TABLE II
BOUND RESULTS

Coarse mesh size � ���
	 ����� ���

 �.��������
4.1722 5.3889 5.9313 6.1325 6.2034�������������
� 10.7902 3.4107 0.8012 0.1829 0.0411����� �� ����� 6.4310 3.6156 1.7524 0.8373 0.3971����� �� ����� 2.3234 1.8924 1.2509 0.7153 0.3738�  

-16.8051 -3.3567 3.3228 5.4447 6.0829�#"
34.6587 17.1489 9.3096 7.0083 6.4621

APPENDIX

We prove here the expression (11) and provide an upper
bound for the value of the constant ª . For the two dimensional
case of interest here, the stress and deformation tensors only
have three independent components. Therefore, if we define

the vectors
u % ?�/ ��� 9 / ��� 9 / ��� T | and w % ?�0 �2� 9 0 ��� 9 ~ 0 ��� T | ,

then, we have that u %21:w 9
where 1 is the matrix of elastic coefficients1o% 34 Ì�Y657 Í Ì�� �7 Í �Ì�� �7 Í ÌÃY857 Í �� � Í 9:
where

Í
is the shear modulus and Ì is the bulk modulus as

defined in section III. Let@ ; %=< �¤C ��x� � 9 �¤C ��x� � 9 �¤C ��x� � 9 �¤C ��x� �?> | 9
then, for a given displacement field

@ -p; , we havew % 34 �î� �¡��>� � �� � �í� 9: @ ; 9u % 34 Ì�Y857 Í � � Ì�� �7 ÍÌ�� �7 Í � � Ì�Y657 Í� Í Í � 9: @ ; 9 (41)

and ��� % �~ u | fAw % �~ @ |;A@1 @ ; y (42)

Here,
@1 is given by@1o% 3BB4 Ì�Y 5 7 Í � � Ì�� �7 Í� Í Í �� Í Í �Ì�� � 7 Í � � Ì�Y857 Í

9DCC: y



(a) (b) (c) (d)

Fig. 7. Finite element meshes used for open crack problem: (a) coarse mesh $ � , (b) medium mesh $ �&%(' , (c) fine mesh $ �&%*),+ , and (d) illustration of
broken mesh used for local problem solution associated to coarse mesh $ � (actual mesh is twice as fine e.g. ���
-*	 ).
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Fig. 5. Geometry of plate with an inclined crack subjected to a uniform
tensile stress.

The quadratic terms in (7) can now be expressed as
�{Î¥#� | f u 
 @ � � @�x� � % �~ @ |;FE @ ; 9
whereE % 3BBB4 ~¢
GÌ�Y 5 7 Í � Ñ ¦ÑAÒ 
GÌ�Y �7 Í � Ñ ¦Ñ�G Í Ñ ¦Ñ�G 
GÌ�� �7 Í � Ñ ¦Ñ�Ò
GÌ�Y �7 Í � Ñ ¦Ñ�G ~ ÍÕÑ ¦Ñ�Ò ÍÕÑ ¦Ñ�Ò 
GÌ�Y 5 7 Í � Ñ ¦Ñ�GÍ Ñ ¦Ñ�G Í Ñ ¦Ñ�Ò � �
GÌ�� � 7 Í � Ñ ¦Ñ�Ò 
GÌ�Y 5 7 Í � Ñ ¦Ñ�G � �

9DCCC: 9
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Fig. 6. Support of weighting function � for the evaluation of the J-integral.

and ��� �x¥�x� � % �~ @ |; < �x¥�¤� � @1 > @ ; y
Then, ¨ 
 @ 9 @ � can be written as¨ 
 @ 9 @ �V% �~ c d¤£ @ |;6H E � �x¥�x� � @1JI @ ;�g � 9
and L�L�L @ L�L�L � , is given byU 
 @ 9 @ �s% ced @ |;K@1 @ ;bg �³ò ced¤£ @ |;A@1 @ ;mg �&y
If we consider now the symmetric generalized eigenvalue
problem, � E � �x¥�¤� � @1/�1~ML @1 � @ ; %\N 9 (43)

it is clear that if we choose ª�%QÄ�ÆIÇ ? L ��9 L �S9 L 7 9 L 5 T then,¨ 
 @ 9 @ �m®*ª U 
 @ 9 @ � 9 (44)



as required. The eigenvalues of (43) can be found explicitly
with the help of a symbolic manipulation program and the final
expression for ª is given in (19). We note that the value of ª
thus computed depends on {Î¥ . In our context, ¥ is chosen
to be piecewise linear on ²¢° , in which case {H¥ is piecewise
constant. In order to determine the appropriate value for ª we
simply take the maximum over all the elements in ² ° .
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