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Abstract. We present a cost effective method for computing quantitative upper and lower
bounds on linear functional outputs of exact weak solutions to the advection-diffusion-reaction equa-
tion and we demonstrate a simple adaptive strategy by which such outputs can be computed to a
prescribed precision. The bounds are computed from independent local subproblems resulting from
a standard finite element approximation to the problem. At the heart of the method lies a local dual
problem by which we transform an infinite dimensional minimization problem into a finite dimen-
sional feasibility problem. The bounds hold for all levels of refinement on polygonal domains with
piecewise polynomial forcing, and the bound gap converges at twice the rate of the H1-norm of the
error in the finite element solution.
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1. Introduction. Using simulation results to support important decisions re-
quires a high degree of confidence in their accuracy. Three essential questions must
be answered before a simulation result can be trusted. Do the mathematical equa-
tions model the relevant phenomena? Does the software actually solve the discretized
mathematical model? Does the simulation result contain sufficient precision to be
considered a solution of the mathematical model?

Recently, we introduced a rigorous method for computing guaranteed upper and
lower bounds on linear functional outputs from Poisson’s equation [16] which de-
scended from ealier work done by Patera, Paraschivoiu, and Peraire [13, 14, 15] on
two-level residual based techniques for computing output bounds. The method can
answer the third question by certifying the precision of integrated outputs from finite
element simulations for any level of mesh refinement. The method can help answer the
second question because it has easily checkable preconditions to help verify correct-
ness of the simulation software. Furthermore, the quantification of numerical error
removes uncertainty about the fidelity of the discretization and aides the practitioner
in distinguishing modelling error from numerical error when validating the simulation
and thus can aid in answering the first question. Error estimates that do not have
the guarantee of one-sidedness, or that approach exactness but only in the asymp-
totic limit, cannot certify the precision of simulations posed on arbitrary meshes and
require additional work to compute a bound on the error in the error.

As the method appeals to the dual of a minimization reformulation of the original
problem, it can be viewed as an extension of complementary energy techniques for er-
ror estimation, first proposed by Fraeijs de Veubeke [9] and later pursued by Ladevèze
and Leguillon [12, 11], and others [10, 8], to more relevant error measures and to prob-
lems without intrinsic minimization principles such as the advection-diffusion-reaction
equation. Similarly, as the method solves equilibrated elemental residual subproblems,
it can be viewed as an extension of the work of Bank and Weiser [3], Ainsworth and
Oden [2, 1], and others [7], which does not require exact minimums of infinite di-
mensional subproblems to guarantee bounds. Like Becker and Rannacher [5, 4], we
are interested in the precision of integrated output quantities and focus the adap-
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tive refinement process on improving the precision of the desired output quantity in
particular and not the solution in isolation.

In this paper we generalize our method in a variety of ways while extending it
to the advection-diffusion-reaction equation. Beginning with the description of the
model problem in §2 and continued throughout the paper, we give a more general pre-
sentation of the method which explicitly considers non-homogeneous boundary data.
Section 3 launches the construction of the method with a constrained minimization
reformulation of the model problem which we localize to obtain independent local
subproblems. Section 4 gives a derivation of the local dual subproblem that includes
the reaction term and gives a more detailed description of the local subproblems. Sec-
tion 5 summarizes the products of the previous sections by laying out the complete
procedure. Finally, §6 closes the paper with numerical examples which demonstrate
the potential for the method to deliver simulation results of guaranteed prescribed
precision through adaptive mesh refinement in addition to certifying the precision of
non-adaptive results. The paper presents the method in a manner which allows the
convergence results developed in the context of Poisson’s equation [16] to be easily
extended to the advection-diffusion-equation so we do not reproduce them here, but
focus instead on the new ingredients for the advection-diffusion-reaction equation.

2. Model Problem. We will consider the steady scalar diffusion dominated
advection-diffusion-reaction equation posed on a polygonal domain Ω in d spacial
dimensions with boundary Γ composed of complementary regions ΓD and ΓN. The
problem is written in weak form as: find u ∈ U such that

a(u, v) = `(v), ∀v ∈ V, (2.1)

with the assumed to be continuous and coercive, but nonsymmetric, bilinear form

a(w, v) =
∫

Ω

ν∇w · ∇v + µwv + (α · ∇w) v dΩ, (2.2)

for a strictly positive real coefficient ν ∈ L∞(Ω), a nonnegative real coefficient µ ∈
L∞(Ω), and a prescribed vector field α ∈ H(div; Ω) which is assumed for simplicity
to be incompressible, ∇ ·α = 0. The set of admissible functions is defined as U(Ω) ≡
{ v ∈ H1(Ω) | v|ΓD = uD }, with Dirichlet boundary data uD ∈ H 1

2 (ΓD), and the space
of test functions is defined as V(Ω) ≡ { v ∈ H1(Ω) | v|ΓD = 0 }. Additionally, we
require the prescription of the solution field on inflow boundaries, that is Γ− ⊂ ΓD ⊂ Γ
for Γ− = {x ∈ Γ |α · n(x) ≤ 0}. The linear forcing functional

`(v) =
∫

Ω

fv dΩ +
∫

ΓN
gv dΓ, (2.3)

includes both interior f ∈ H−1(Ω) and Neumann boundary g ∈ H− 1
2 (ΓN) contribu-

tions.
We are not directly interested in the field solution u, however, but in bounded

linear functional outputs from it, s = `O(u). In particular, we will develop upper and
lower bounds on the outputs produced by linear functionals such as

`O(w) =
∫

ΩO
fOw dΩ +

∫
ΓO

gOw dΓ, (2.4)

for fO ∈ H−1(ΩO) and gO ∈ H− 1
2 (ΓO).
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In order to guarantee bounds for any level of refinement, the method presented in
this paper requires that the coefficients ν, µ, and α, and forcing data f , fO, g and gO

are all piecewise polynomial. In addition, we will consider only constant coefficients
ν and µ for simplicity.

3. Constrained Minimization Reformulation. In the context of our previ-
ous exposition of the method for the Poisson problem [16], we reformulated the model
problem as a constrained minimization with weakly enforced continuity in order to
localize the bounds computations and to obtain bounds on more informative output
quantities than the abstract energy. In the present context of a nonsymmetric op-
erator, the reformulation also provides the means by which we can treat problems
without an intrinsic minimization principle.

3.1. Weak Continuity. We begin by introducing a triangulation of the domain,
Th, into non-overlapping open subdomains, T , called elements, for which

⋃
T∈Th

T =
Ω̄. We denote by ∂T the edges constituting the boundary of a single element T , and
by ∂Th the network of all edges in the mesh. On this triangulation, we introduce the
broken space

V̂ ≡
{
v ∈ L2 v|T ∈ H1(T ), ∀T ∈ Th

}
. (3.1)

in which the continuity of V̂ is broken across the mesh edges, ∂Th. Note that the bro-
ken space relaxes the Dirichlet boundaries in addition to the inter-element continuity
so that we have V ⊂ V̂ and U ⊂ V̂.

We enforce continuity between the elemental subdomains weakly through the
bilinear form b : V̂ × Λ → R

b(ŵ, λ) =
∑
T∈Th

∫
∂T

σT ŵλdΓ,

where, for TN ∈ Th and an arbitrary ordering of the elements, T < TN,

σT (x) =

{
−1 x ∈ T ∩ TN, T < TN

+1 otherwise
(3.2)

is a constant on each edge, and the edge functions λ are members of the dual trace
space Λ =

∏
T∈Th

H− 1
2 (∂T ).

In addition to weak enforcement of interelement continuity, the Dirichlet data
will also be enforced weakly in our reformulation through the forcing provided by the
linear functional `D : Λ → R

`D(λ) =
∑
T∈Th

∫
ΓD

T

σTuDλ dΓ, (3.3)

so that b(ŵ, λ) = `D(λ) for all ŵ ∈ U and λ ∈ Λ.

3.2. Operator Decomposition. A nonsymmetric operator can be split into
symmetric, as(w, v) = as(v, w), and antisymmetric, ass(w, v) = −ass(v, w), contribu-
tions

as(w, v) =
1
2

[a(w, v) + a?(v, w)] , ass(w, v) =
1
2

[a(w, v)− a?(v, w)] , (3.4)
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where a?(v, w) is the formal adjoint of a(w, v) for w ∈ U and v ∈ V. Integration by
parts yields a(u,w) = a?(w, u) + C?, from which we note that ass(w,w) = 1

2C
? and

thus a(w,w) = as(w,w) + 1
2C

?. Additionally, we note from the above that a(v, w) =
as(v, w)+ass(v, w) = as(w, v)−ass(w, v). It is easily shown for the advection-diffusion-
reaction equation that

a?(v, w) =
∫

Ω

ν∇v · ∇w + µvw − (α · ∇v)w dΩ +
∫

ΓN
v (α · n)w dΓ,

C? =
∫

ΓD
(α · n)u2

D dΓ,
(3.5)

and therefore

as(w, v) =
∫

Ω

ν∇w · ∇v + µwv dΩ +
1
2

∫
ΓN
w (α · n) v dΓ,

ass(w, v) =
∫

Ω

(α · ∇w) v dΩ− 1
2

∫
ΓN
w (α · n) v dΓ.

(3.6)

3.3. Constrained Minimization Statement. Using the above definitions we
can write the following energy-like functional ε : V̂ → R

ε(ŵ) = as(ŵ, ŵ) +
1
2
C? − `(ŵ) + `(ū)− a(ŵ, ū), (3.7)

where ū is a member of U . This functional has two essential properties. First, it is
coercive on the space V̂ for µ > 0 and for µ = 0 is coercive on the quotient space
V̂ \ P̂0, where P̂0 is the space of constants over each element. Second, it produces the
exact output when ŵ = u.

The weakly continuous constrained minimization problem for the nonsymmetric
model problem can now be written as

∓s = inf
ŵ±∈V̂

∓ `O(ŵ±) +
κ

2
ε(ŵ±)

s.t. a(ŵ±, ψ) = `(ψ), ∀ψ ∈ V,
b(ŵ±, λ) = `D(λ), ∀λ ∈ Λ,

(3.8)

where κ is a strictly positive real scaling parameter which provides dimensional con-
sistency as well as an additionally degree of freedom which we will later use to tighten
the bounds. This apparently trivial constrained minimization reformulation, first
introduced in [13, 14] and whose constraints also arise in the context hybrid finite
element methods [6], serves as the launching point for developing our method.

3.4. Localization by Lagrangian Relaxation. The above constrained mini-
mization (3.8) has the Lagrangian: L± : V̂ × V × Λ → R

L±(ŵ±; ψ̃±, λ̃±) =∓ `O(ŵ±)

+
κ

2

{
as(ŵ±, ŵ±) +

1
2
C? − `(ŵ±) + `(ū)− a(ŵ±, ū)

}
+ `(ψ̃±)− a(ŵ±, ψ̃±) + `D(λ̃±)− b(ŵ±, λ̃±),

(3.9)

for given candidate Lagrange multipliers ψ̃± ∈ V and λ̃± ∈ Λ. The Lagrangian saddle
point property for the constrained minimization reformulation engenders the following
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relationships for all (ψ̃±, λ̃±) ∈ V × Λ

inf
ŵ±∈V̂

L±(ŵ±; ψ̃±, λ̃±) ≤ sup
ψ±∈V
λ±∈Λ

inf
ŵ±∈V̂

L±(ŵ±;ψ±, λ±) = ∓s, (3.10)

which we will exploit for developing inexpensive local subproblems for computing
bounds. Equality on the right of (3.10) results from the strong duality of convex
minimizations, but the bound property would still hold with weak duality.

3.4.1. Lagrange Multiplier Approximation. We compute approximate La-
grange multipliers using the finite element method by first choosing ψ̃± = ±ψh,
λ̃± = −κ

2λ
u
h ± λψh , and ū = uh, where uh and ψh are members of the usual piecewise

polynomial finite element approximation set Uh ≡ {w ∈ U | w|T ∈ Pp(T ), ∀T ∈ Th }
and space Vh ≡ { v ∈ V | v|T ∈ Pp(T ), ∀T ∈ Th }, and both λuh and λψh are members
of the piecewise polynomial space Λh ≡ {λ ∈ Λ | λ|γ ∈ Pp(γ), ∀γ ∈ ∂T }. We have
used the notation Pp(T ) for the space of polynomials on element T (in d spacial di-
mensions) with degree less than or equal to p, and Pp(γ) for the space of polynomials
on edges γ (in d− 1 spacial dimensions) with degree less than or equal to p.

By approximating u, the optimizer of the constrained minimization (3.8), with
uh and noting from (3.4) that a(v, uh) = as(uh, v) − ass(uh, v), we can write an
approximate gradient condition

κ

2
{−`(v̂) + a(v̂, uh) + b(v̂, λuh)}

± {−`O(v̂)− a(v̂, ψh)− b(v̂, λψh )} = 0, ∀v̂ ∈ V̂h, (3.11)

with V̂h ≡ { v̂ ∈ L2 | v̂|T ∈ Pp(T ), ∀T ∈ Th }. We can compute approximate Lagrange
multipliers from (3.11) by solving the discrete problems:

1. Find uh ∈ Uh such that

a(uh, v) = `(v), ∀v ∈ Vh, (3.12)

2. Find ψh ∈ Vh such that

a(v, ψh) = −`O(v), ∀v ∈ Vh, (3.13)

3. Find λuh ∈ Λh such that

b(v̂, λuh) = `(v̂)− a(uh, v̂), ∀v̂ ∈ V̂h, (3.14)

4. Find λψh ∈ Λh such that

b(v̂, λψh ) = −`O(v̂)− a(v̂, ψh), ∀v̂ ∈ V̂h. (3.15)

The first two problems are standard finite element approximation problems and the
second two problems are equilibration problems which can be solved with an asymp-
totic complexity that is linear in the number of vertices in the triangulation using
Ladevèze’s procedure [12].

Lemma 3.1. If the Lagrange multipliers λuh and λψh satisfy the equilibration con-
ditions (3.14) and (3.15), then the minimizations

inf
ŵ±∈V̂

L±(ŵ±;±ψh,−
κ

2
λuh ± λψh ) (3.16)
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are bounded from below.
Proof. A strictly positive reaction term in as(ŵ±, ŵ±) ensures that the lower

bounding minimization (3.10) is bounded below without the aid of equilibration. For
µ = 0, the constant function is not controlled by as(ŵ±, ŵ±) and without equilibration
it would become possible for the subproblems, which only have Neumann boundary
conditions, to be driven to arbitrarily large negative values of the Lagrangian func-
tional. Equilibration ensures the nullification of the constant function, as can be
checked by setting v̂ = const in (3.14) and (3.15).

4. Elemental Subproblems. The continuity relaxation of §3.4 decomposes the
triangulation so that after computing the approximate Lagrange multipliers we may
consider each element independently when computing the bounds. We perform the
global lower bounding minimization (3.10) by minimizing the local contribution of the
Lagrangian on each elemental subdomain and accumulating the results to produce
upper and lower bounds on the exact output∑

T∈Th

s−T ≤ s ≤
∑
T∈Th

s+T (4.1)

We can write the local contribution of the Lagrangian on an arbitrary element T
of the triangulation Th as

∓s±T = inf
w±∈H1(T )

κ

2
as
T (w±, w±) + `±T (w±) + C±T , (4.2)

where we have collected the constant and linear contributions to the local Lagrangian
with the definitions

`±T (v) =
κ

2

{
− `T (v)− aT (v, uh) + bT (v, λuh)

}
±

{
− `OT (v)− aT (v, ψh)− bT (v, λψh )

}
,

(4.3)

C±T =
κ

2

{
`T (uh)− `DT (λuh) +

1
2
C?T

}
±

{
`T (ψh) + `DT (λψh )

}
.

(4.4)

The subscript T denotes restrictions to a single element of the triangulation. For
example, we have

aT (w, v) =
∫
T

ν∇w · ∇v + µwv + (α · ∇w) v dΩ,

`T (v) =
∫
T

fv dΩ +
∫

ΓN
T

gv dΓ,

in which ΓN
T denotes the local Neumann edges, ∂T ∩ ΓN, as well as

bT (w, λuh) =
∫
∂T

σTwλ
u
h dΓ,

`DT (λuh) =
∫

ΓD
T

σTuDλ
u
h dΓ
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in which ΓD
T denotes the local Dirichlet edges, ∂T ∩ ΓD.

Recall from §3.2 that for the advection-diffusion-reaction equation we have

as
T (w,w) =

∫
T

ν|∇w|2 + µw2 dΩ +
1
2

∫
ΓN

T

(α · n)w2 dΓ, (4.5)

which is coercive on V(T ) for µ > 0 (and on V(T ) \ P0(T ) for µ = 0) for all T in Th
because α · n is perforce positive on ΓN

T .

4.1. Dualization of Local Minimization. The localized unconstrained min-
imization (4.2) remains uncomputable in general, since the minimization must be
performed over an infinite-dimensional space in order to guarantee the bounding prop-
erty. Nevertheless, by once again applying the powerful ideas of Lagrangian saddle
point theory, we can compute a lower bound to this lower bound and thus procure
guaranteed computable bounds on the exact output of interest.

Proposition 4.1. The optimal value of the local unconstrained minimization
problem (4.2) can be found by solving the local constrained maximization problem

∓s±T = sup
q±∈(L2(T ))d

r±∈L2(T )

− κ

2
adu
T ((q±, r±), (q±, r±)) + C±T

s.t. κcdu
T ((q±, r±), v) = −`±T (v), ∀v ∈ H1(T ),

(4.6)

where the form adu
T :

(
L2(T )

)d ×H1(T )×
(
L2(T )

)d ×H1(T ) → R is defined as

adu
T ((q, r), (p, v)) =

∫
T

νq · p + µrv dΩ +
1
2

∫
ΓN

T

(α · n)rv dΓ. (4.7)

and the form cdu
T :

(
L2(T )

)d ×H1(T )×H1(T ) → R is defined as

cdu
T ((q, r), v) =

∫
T

νq · ∇v + µrv dΩ +
1
2

∫
ΓN

T

(α · n)rv dΓ. (4.8)

Proof. We begin formulating the dual problem by introducing the auxiliary vari-
able π± ∈

(
L2(T )

)d which satisfies the constraint

κ

∫
T

ν(∇w± − π±) · p dΩ = 0, ∀p ∈
(
L2(T )

)d
, (4.9)

and the auxiliary variable ρ± ∈ L2(T ) which satisfies the constraint

κ

∫
T

µ(w± − ρ±)v dΩ +
κ

2

∫
ΓN

T

(α · n)(w± − ρ±)v dΓ = 0, ∀v ∈ L2(T ). (4.10)

Defining Ξ to be the set of all triples (w±,π±, ρ±) in H1(T ) ×
(
L2(T )

)d × L2(T )
which satisfy the constraints (4.9) and (4.10), we can write the local unconstrained
minimization (4.2) as an equivalent constrained minimization

∓s±T = inf
(w±,π±,ρ±)∈Ξ

κ

2

{ ∫
T

ν(π±)2 + µ(ρ±)2 dΩ +
1
2

∫
ΓN

T

(α · n)(ρ±)2 dΓ
}

+ `±T (w±) + C±T

(4.11)
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This equivalent constrained minimization can be formulated as the Lagrangian saddle
point problem

∓s±T = sup
q±∈(L2(T ))d

r±∈L2(T )

inf
w±∈H1(T )

π±∈(L2(T ))d

ρ±∈L2(T )

J±T (w±,π±, ρ±; q±, r±) + C±T , (4.12)

where the Lagrangian functional is defined as

J±T (w±,π±, ρ±; q±, r±) = κ

∫
T

ν(
1
2
π± − q±)π± + µ(

1
2
ρ± − r±)ρ± dΩ

+
κ

2

∫
ΓN

T

(α · n)(
1
2
ρ± − r±)ρ± dΓ

+ κ

{ ∫
T

ν∇w± · q± + µw±r± dΩ

+
1
2

∫
ΓN

T

(α · n)w±r± dΓ
}

+ `±T (w±).

(4.13)

Equality on the left of (4.12) results from the quadratic Lagrangian functional, but
the bound method can also be derived when only weak duality holds.

A necessary condition for optimality of the inner minimization of (4.12) with
respect to the principle primal variable w± is

κ

{ ∫
T

ν∇v · q±,∗ + µvr±,∗ dΩ +
1
2

∫
ΓN

T

(α · n)vr±,∗ dΓ
}

= −`±T (v), ∀v ∈ H1(T ),

(4.14)
where the superscript ∗ indicates optimality of the variable. Necessary conditions for
optimality with respect to the two auxiliary primal variables π± and ρ± are

κ

∫
T

ν(π±,∗ − q±,∗)p dΩ = 0, ∀p ∈
(
L2(T )

)d
, (4.15a)

κ

∫
Ω

µ(ρ±,∗ − r±,∗)v dΩ +
κ

2

∫
ΓN

T

(α · n)(ρ±,∗ − r±,∗)v dΓ = 0, ∀v ∈ L2(T ).

(4.15b)

After substituting the auxiliary variable optimality conditions (4.15) into the
Lagrangian (4.13) and retaining the principle primal variable condition (4.14) as a
constraint in the outer maximization of the saddle problem (4.12), we arrive at the
local dual constrained maximization (4.6) formulation of the original unconstrained
local minimization (4.2).

Significantly, we may inexpensively compute a quantitative lower bound on ∓s±T ,
and thereby upper and lower bounds on the exact output s, by performing the local
dual constrained maximization (4.6) over a finite dimensional set so long as the set
is rich enough to allow the dual constraint to be satisfied exactly. Indeed, while
maximization will improve the sharpness of the bounds, we only require dual feasibility
to obtain bounds.



ADVECTION-DIFFUSION-REACTION OUTPUT BOUNDS 9

4.2. Dual Subproblems. The local dual maximization problem (4.6) has the
optimality conditions: find (q±, r±, ξ±) ∈

(
L2(T )

)d ×H1(T )×H1(T ) such that

−κadu
T ((q±, r±), (p, v))− κcdu

T ((p, v), ξ±) =0, ∀(p, v) ∈
(
L2(T )

)d ×H1(T ), (4.16a)

−κcdu
T ((q±, r±), v) =`±T (v), ∀v ∈ H1(T ), (4.16b)

which, as a result of the linear equality constraint and convex objective functional, are
both necessary and sufficient. For the purpose of computing bounds, the Lagrange
multiplier ξ± is an artifact of solving the constrained maximization problem and we
will not make direct use of it.

As formulated, the optimality conditions depend explicitly upon the scaling pa-
rameter κ, but the substitutions

(q±, r±, ξ±) = (∇uh −
1
2
qu ± 1

κ
qψ, uh −

1
2
ru ± 1

κ
rψ,−1

2
ξu ± 1

κ
ξψ)

will transform the above κ-dependent problems into the following two κ-independent
problems: find (qu, ru, ξu) ∈

(
L2(T )

)d ×H1(T )×H1(T ) such that

adu
T ((qu, ru), (p, v)) + cdu

T ((p, v), ξu) =0, ∀(p, v) ∈
(
L2(T )

)d ×H1(T ), (4.17a)

cdu
T ((qu, ru), v) =R̂uT (v), ∀v ∈ H1(T ), (4.17b)

and find (qψ, rψ, ξψ) ∈
(
L2(T )

)d ×H1(T )×H1(T ) such that

adu
T ((qψ, rψ), (p, v)) + cdu

T ((p, v), ξψ) =0, ∀(p, v) ∈
(
L2(T )

)d ×H1(T ), (4.18a)

cdu
T ((qψ, rψ), v) =R̂ψT (v), ∀v ∈ H1(T ), (4.18b)

where we have defined the the localized residual forms

R̂uT (v) =`T (v)− aT (uh, v)− bT (v, λuh), (4.19)

R̂ψT (v) =− `OT (v)− aT (v, ψh)− bT (v, λψh ). (4.20)

Equilibration ensures that all dual feasible functions (qu, ru) and (qψ, rψ) are
orthogonal to the local finite element basis.

Lemma 4.2. Any pair (qu, ru) in
(
L2(T )

)d × H1(T ) that satisfies the con-
straint (4.17b) has the orthogonality property

adu
T ((qu, ru), (∇v, v)) = cdu

T ((qu, ru), v) = 0, ∀v ∈ Vh(T ), (4.21)

and any pair (qψ, rψ) in
(
L2(T )

)d × H1(T ) that satisfies the constraint (4.18b) has
the orthogonality property

adu
T ((qψ, rψ), (∇v, v)) = cdu

T ((qψ, rψ), v) = 0, ∀v ∈ Vh(T ). (4.22)

Proof. This is a direct consequence of equilibration provided by (3.14) and (3.15),
and the definitions (4.19) and (4.20).



10 A. M. SAUER-BUDGE AND J. PERAIRE

With the above orthogonality property we can calculate the objective from dual
feasible functions (qu, ru) and (qψ, rψ) using

∓ s±T = −κ
2

{
1
4
adu
T ((qu, ru), (qu, ru))− CuT

}
− 1

2κ
adu
T ((qψ, rψ), (qψ, rψ))

±
{

1
2
adu
T ((qu, ru), (qψ, rψ)) + CψT

}
, (4.23)

with the definitions

CuT =`T (uh)− as
T (uh, uh)− `DT (λuh) +

1
2
C?T , (4.24)

CψT =`T (ψh) + `DT (λψh ). (4.25)

4.3. Subproblem Computation. Recall from §4.1 that, by virtue of the du-
alization of the local minimization problem, we can choose a finite dimensional set
within which to search for the dual functions (qu, ru) and (qψ, rψ), so long as the set
is rich enough to admit at least one pair (qu, ru) satisfying (4.17b) and at least one
pair (qψ, rψ) satisfying (4.18b).

Lemma 4.3. If the interior data f |T , (α · ∇uh)|T , fO|T , and (α · ∇ψh)|T are all
members of Pm(T ), the boundary data g|γ , gO|γ , and ((α ·n)ψh)|γ are all members of
Pm(γ) for all γ ∈ ∂T , and the continuity multipliers λuh and λψh are equilibrated accord-
ing to (3.14) and (3.15), then there exists at least one pair (quh, r

u
h) ∈ (Pq(T ))d×Pq(T )

satisfying (4.17b) and at least one pair (qψh , r
ψ
h ) ∈ (Pq(T ))d×Pq(T ) satisfying (4.18b)

for q > p and q > m.
Proof. Let quh = quD + qu0 , with quD · n = −σTλuh − ν(∇uh · n) on ∂T \ ΓN

T ,
quD · n = −σTλuh on ΓN

T , qu0 · n = 0 on ∂T , and let ruh = 0 on ΓN
T . With this lifting

and a Green’s formula we can write the constraint (4.17b) as∫
T

(−ν∇ · qu0 + µru)v dΩ =
∫
T

(f + ν∆uh − µuh + α · ∇uh + ν∇ · quD)v dΩ,

for all v in Pq(T ). The requirements of the lemma ensure that the data on the right
is in the range of the operator on the left for the case µ > 0 and ru, and therefore at
least one solution exists. Existence for the case µ = 0 is guaranteed by equilibration,
as we previously addressed in [16]. Analogous reasoning applies for the pair (qψh , r

ψ
h )

with the exception that a Green’s formula must also be applied to the advection term,
which results in the additional requirement of (α · n)ψh)|γ being in Pm(γ).

Note that the requirement q ≥ p suffices in the above lemma when α · n = 0 on
ΓN
T or ΓN

T = ∅, as well as when µ = 0 and both ruh and rψh have been set to zero.
The above proof suggests one way to solve the subproblem, but other approaches

are possible. For instance, we could set ruh and rψh to zero from the outset in order to
produce a method which treats Poisson’s equation, the advection-diffusion equation
and the advection-diffusion-reaction equation uniformly. Existence would be ensured
by equilibration, but doing so reduces the number of available degrees of freedom in
the maximization and thus would most likely reduce the sharpness of the resulting
bounds.

A particularly favorable circumstance for solving the subproblem arises for both
Poisson’s equation and the advection-diffusion equation (µ = 0) when the problem
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data consists only of constants (m = 0) and linear finite elements (p = 1) are employed
with q = 1, and both ruh = 0 and rψh = 0. Under these circumstances, the dual
functions quh and qψh can be explicitly constructed from the subproblem boundary
data.

More generally, we can formulate the pair of computable subproblems as: find
(quh, r

u
h, ξ

u
h) ∈ Quh(T )× Pq(T )× Pq(T ) such that

adu
T ((quh, r

u
h), (p, v)) + cdu

T ((p, v), ξu) =0, ∀(p, v) ∈ (Pq(T ))d × Pq(T ), (4.26a)

cdu
T ((quh, r

u
h), v) =R̂uT (v), ∀v ∈ Pq(T ), (4.26b)

and find (qψh , r
ψ
h , ξ

ψ
h ) ∈ Qψh (T )× Pq(T )× Pq(T ) such that

adu
T ((qψh , r

ψ
h ), (p, v)) + cdu

T ((p, v), ξψ) =0, ∀(p, v) ∈ (Pq(T ))d × Pq(T ), (4.27a)

cdu
T ((qψh , r

ψ
h ), v) =R̂ψT (v), ∀v ∈ Pq(T ), (4.27b)

where we have defined the sets

Quh(T ) =

{
q ∈ (Pq(T ))d q · n =

{
−σTλuh on ∂T \ ΓN

T

−σTλuh + g on ΓN
T

}
, (4.28)

Qψh (T ) =

{
q ∈ (Pq(T ))d q · n =

{
−σTλψh on ∂T \ ΓN

T

−σTλψh − gO on ΓN
T

}
. (4.29)

5. Output Bound Procedure. The elemental subproblems explicated in the
previous section can be computed independently and in parallel, accumulating the
local contributions (4.23) to the output bounds in the process. If we define the
aggregated values

zuh =
1
8

∑
T∈Th

adu
T ((quh, r

u
h), (quh, r

u
h)), zψh =

1
2

∑
T∈Th

adu
T ((qψh , r

ψ
h ), (qψh , r

ψ
h )),

z̄h =
1
2

∑
T∈Th

adu
T ((quh, r

u
h), (qψh , r

ψ
h )),

(5.1)

then we can write the total output bound expression as

s±h = −z̄h − Cψ ±
{
κzuh +

1
κ
zψh

}
, (5.2)

in which the constant Cu defined in (4.24) is eliminated by the fact that `(uh) −
as(uh, uh)− `D(λuh) + 1

2C
? = 0 which results from equilibration.

We introduced the scaling parameter κ at the outset to allow us to optimize
the sharpness of the computed bounds as well as provide dimensional consistency.
Maximizing the lower bound and minimizing the upper bound with respect to κ
yields the optimal value κ2 = zψh /z

u
h with which we can write the upper and lower

bounds succinctly as

s±h = s̄h ± 2
√
zuhz

ψ
h , (5.3)

where we have defined the bound average s̄h = −z̄h − Cψ.
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The complete method for computing output bounds can now be written as a four
steps procedure.

Step 1: Finite Element Approximation
1. Find uh ∈ Uh such that

a(uh, v) = `(v), ∀v ∈ Vh, (5.4)

2. Find ψh ∈ Vh such that

a(v, ψh) = −`O(v), ∀v ∈ Vh, (5.5)

Step 2: Finite Element Equilibration
1. Find λuh ∈ Λh such that

b(v̂, λuh) = `(v̂)− a(uh, v̂), ∀v̂ ∈ V̂h, (5.6)

2. Find λψh ∈ Λh such that

b(v̂, λψh ) = −`O(v̂)− a(v̂, ψh), ∀v̂ ∈ V̂h. (5.7)

Step 3: Elemental Subproblems
1. Find (quh, r

u
h, ξ

u
h) ∈ Quh(T )× Pq(T )× Pq(T ) such that

adu
T ((quh, r

u
h), (p, v)) + cdu

T ((p, v), ξuh) =0, ∀(p, v) ∈ (Pq(T ))d × Pq(T ),

cdu
T ((quh, r

u
h), v) =R̂uT (v), ∀v ∈ Pq(T ).

(5.8)

2. Find (qψh , r
ψ
h , ξ

ψ
h ) ∈ Qψh (T )× Pq(T )× Pq(T ) such that

adu
T ((qψh , r

ψ
h ), (p, v)) + cdu

T ((p, v), ξψh ) =0, ∀(p, v) ∈ (Pq(T ))d × Pq(T ),

cdu
T ((qψh , r

ψ
h ), v) =R̂ψT (v), ∀v ∈ Pq(T ).

(5.9)

3. Calculate z̄T , zuT , and zψT

zuT,h =
1
8
adu
T ((quh, r

u
h), (quh, r

u
h)), zψT,h =

1
2
adu
T ((qψh , r

ψ
h ), (qψh , r

ψ
h )),

z̄T,h =
1
2
adu
T ((quh, r

u
h), (qψh , r

ψ
h )).

(5.10)

Step 4: Bounds

zuh =
∑
T∈Th

zuT,h, zψh =
∑
T∈Th

zψT,h, s̄h = −
∑
T∈Th

z̄T,h − CψT . (5.11)

s±h = s̄h ± 2
√
zuhz

ψ
h (5.12)

The upper and lower bounding property of s+h and s−h follows directly from the
Lagrangian saddle point property of the constrained minimization reformulation of
the model problem. Either a strictly positive reaction coefficient, µ, or equilibration
ensure that the independent local subproblems resulting from the Lagrangian relax-
ation can provide non-trivial bounds. Forming the dual of the unconstrained local
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minimization enables the computation of a lower bound on the infinite-dimensional
minimization problem with a finite-dimensional feasibility problem. That the re-
sulting dual subproblems are indeed computable is a consequence of the subproblem
constraint data being being polynomial and choosing a polynomial subset for the local
dual problem. The resulting bounds converge to the exact linear functional output at
twice the rate of the H1-norm measure of the error in the finite element solution, as
proven in our earlier paper [16] and verified by the numerical examples.

To a large extent the subproblems are independent of the finite element approx-
imation. We need only check that the localized data uh|T , ψh|T , λuh|∂T and λψh |∂T
passed to the subproblem equilibrates the element according to (5.6) and (5.7). As
alluded to in the introduction, this precondition is entirely local and can easily be
checked. Moreover, it has very practical implications for building correct simula-
tion software as it acts as a verifiable contract between the relatively simple bounds
subproblem and the much more complicated global approximation.

6. Numerical Examples. In this last section, we demonstrate the method with
two numerical examples. In both examples we employ a very simple adaptive strategy
that uses the local information produced during the calculation of the bounds to drive
the output to a prescribed precision. At each level of refinement, only elements for
which ∆T = κzuT,h + 1

κz
ψ
T,h > ∆tol/K are refined, where ∆tol is a user specified

tolerance for the bound gap and K is the number of elements in the triangulation at
that level. The meshes are generated and adaptively refined using the freely available
Triangle mesh generator [17].

6.1. Example 1. In our first example we consider the unit square (x, y) ∈ [0, 1]2

with the parameters ν = 1, α = (α, 0), the Dirichlet boundary conditions u(0, y) = 1
on the left side and u(1, y) = 0 on the right side, and homogeneous Neumann boundary
conditions on the top and bottom sides. These conditions result in the well known
one-dimensional solution

u(x, y) =
eβe

1
2 (α−β)x − e

1
2 (α+β)x

eβ − 1
, (6.1)

where β =
√

4µ+ α2.
For the output, we examine the average normal gradient on the right side of the

square,
∫ 1

0
∇u(1, y) · n dΓ, which we write with the interior test function, χ = x, as

`O(v) =
∫

Ω

ν∇v · ∇χ+ µvχ+ (α · ∇v)χdΩ (6.2)

using the technique discussed in [14].
Since we know the exact output for this example, we can calculate the effectiveness

of the bounds as an indicator of the error in the finite element solution using

η =
s+h − s−h
2|sh − s|

. (6.3)

Our primary goal, however, is not estimating the error in the finite element solution
but providing an upper and lower bound on the exact output. The finite element
solution is mostly just a means to this end.

Table 6.1 summarizes the results of uniformly refining an initial mesh of 16 ele-
ments with method parameters p = 1 and q = 1. Both the output and the bound gap
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K (sh − s)/s (s− s−h )/s (s+h − s)/s (s+h − s−h )/s η
16 0.029963 0.296452 0.160602 0.457054 7.63
256 0.001178 0.023548 0.021966 0.045514 19.32
1024 0.000295 0.006097 0.005713 0.011810 20.01
16384 0.000018 0.000385 0.000362 0.000747 20.25

Table 6.1
Uniform mesh refinement results for Example 1 with α = 10 and µ = 10.

asymptotically converge at the optimal rate of 2. The last level of uniform refinement
contains 16284 elements and produces a bound gap of 0.000747, while the simple
adaptive method described above can be used to produce a bound gap of 0.000646
with a mesh containing only 4114 elements.

Table 6.2 summarizes the influence of the Peclet number, α, on the effectivity of
the bounds in the context of the simple adaptive method with a tolerance of ∆tol =
0.001s. Although the method is valid for nonnegative α, the sharpness of the bound
degrades significantly with increasing Peclet number, but the bounding property is
retained.

α K (sh − s)/s (s− s−h )/s (s+h − s)/s (s+h − s−h )/s η
0 384 -0.000045 0.000342 0.000068 0.000410 4.52
1 256 -0.000051 0.000535 0.000186 0.000721 7.12
5 2883 -0.000056 0.000412 0.000404 0.000816 7.23
10 6108 -0.000005 0.000458 0.000456 0.000913 98.21

Table 6.2
Adaptive mesh refinement results for Example 1 with µ = 1 and various values of α.

We strive to produce guaranteed, if conservative, bounds on quantities typically
queried from simulations and not estimates of the error. Consequentially, we trade
better estimates of the error for the confidence provided by one-sidedness. Neverthe-
less, various enhancements to the basic method presented here, such as the incorpo-
ration of gradient recovery heuristics, could be considered in order to improve the
effectiveness of the error estimate.

6.2. Example 2. Our second example provides a qualitative demonstration of
the method on a more complicated example problem. We consider the unit square
(x, y) ∈ [0, 1]2 with the equation parameters ν = 1, α = 500(y − 1

2 ,
1
2 − x), µ = 10,

and all homogeneous Dirichlet boundary conditions. The problem is forced in the
square region [0.7, 0.8]2 with f = 1000 and the output is the average, fO = 1, over
the square region ΩO = [0.2, 0.3]2. The initial mesh containts 100 elements and the
method parameters are p = 1 and q = 2.

We examine the result of adaptively solving the output problem with ∆tol =
0.0005. Figure 6.1 displays u and ψ for the final solution, which has a guaranteed
precision of 0.000488 and contains 2917 elements. Figure 6.2 shows the distribution of
elemental bound gap contributions, ∆T , for the initial solution and Figure 6.3 shows
the final mesh obtained at the end of the adaptive process.
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Fig. 6.1. Adaptive solution and adjoint for Example 2.

Fig. 6.2. Elemental bound gap contributions
on initial mesh for Example 2.

Fig. 6.3. Final mesh for Example 2.
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