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Abstract 
 
 The majority of scientific visualization 
algorithms are finite-element based.  For 
Cartesian meshes, the definition of the boundary 
conditions around the body leads to inaccurate 
visualization data due to the nature of the grid (it 
is not compatible with finite-element based 
algorithms).  In this paper, we present an 
algorithm to generate an intermediate, 3D, body-
fitted mesh that links the Cartesian mesh to the 
body, and allows accurate visualization data 
near the body.  The 3D grid consists of 
tetrahedral cells, and it matches to all of the 
nodes (including the hanging nodes) of the 
Cartesian grid.  The only nodes created on this 
body are surface nodes.  
 
 
1. Introduction 
 

Cartesian and body-fitted 
meshes are the two forms of grid generation used 
for the simulation of many 3D physical systems. 
The orientation of the cells in a Cartesian mesh is 
independent of the body of interest. All of the 
faces of the cells are positioned in one of the 
three Cartesian coordinates, x, y, and z.  
Establishing a Cartesian mesh is therefore 
remarkably simple. Complications occur 
however where the cells are intersected by the 
body geometry, requiring a special treatment to 
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deal with the boundary conditions. The end 
result is a quick and automatic method to mesh 
the domain combined with a complex set of 
routines that describe its boundary conditions.  
Body-fitted grids are more widely used. The key 
feature of this type of grid is that the bounds of 
the mesh conform to the shape of the body. 
While this makes the definition of the boundary 
conditions simple, the actual task of creating the 
grid becomes complex, potentially labor 
intensive and time consuming.[1-6]  Ultimately, 
a hybrid grid of both these two methods would 
be ideal, which is what is presented in this paper.  
 

The format of this paper is as follows. 
In section 2 there is an overview of the problems 
that exist with Cartesian meshes and why it is 
difficult to visualize their results.  Section 3 will 
present the concepts developed and applied to 
achieve the hybrid grid, along with a more 
detailed presentation of the 2D and 3D 
algorithms.  Finally, in section 4, we present 
some examples of the application of this hybrid 
grid, along with the current limitations of the 
code. 
 
 
2. Related Work 
 

Most scientific visualization algorithms 
are finite-element based (and assume a linear/bi-
linear/tri-linear interpolant). Put another way, 
these tools require the interpolation of scalar and 
vector fields from within the volume elements 
that support the 3D domain of interest. The 
technique that produces geometric cuts and iso-
surfaces employs a lookup table to generate the 
resultant surface from the volume element (or 
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cell). The index to this table is based upon 
whether each node that supports the cell is above 
the cut value. For hexahedra the table length is 
256 in length (28 where 8 is the number of 
nodes). Implicit in this algorithm is that there is 
only one intersection possible along an element 
edge and its placement is linearly based on the 
scalar values of the nodes. Streamlining and 
particle tracing use one of a number of possible 
integration schemes, all of which require the 
velocity returned at a specified location within 
the domain. Almost never is this location exactly 
at a node that supports the mesh. Interpolation is 
again required. 
 

It is clear that applying the normal 
visualization algorithms to the results of solvers 
that are Cartesian based will produce 
questionable results for the cut-cells. This is 
problematic because the data in regions close to 
a body is of great importance to the engineers 
and designers that are analyzing the results from 
these physical systems. 
 

Cartesian meshes are trivial to create; 
yet the definition of the boundary conditions 
around the geometry of the body being meshed 
may be quite complicated.  To demonstrate this 
problem, examine the 2D cell in Figure 1.  It is 
an element that has been split in two by the 
discretization line of a body 

 

          
 
Figure 1.  Surface cell for a Cartesian mesh 

 
The top four vertices appear inside the 

computational domain (denoted by circles) and 
the bottom two are inside the body (denoted by 
crosses).  Ordinarily, the flow quantities of any 
point could be determined anywhere in the cell 

using an interpolation scheme and the four 
vertices of this 2D cell.  In the case of the cell 
shown in Figure 1, however, this becomes a 
problem.  The cells inside the body cannot have 
any valid data that can be used to determine 
actual flow quantities, since they are not part of 
the solution. Take for example the no-slip 
condition that would be applied along the surface 
of the wall.  It would be impossible to develop 
an interpolation scheme that would produce zero 
velocity all along the edge within the cell using 
only the two valid vertices at the top corners.  
Furthermore, one may be able to generate an 
interpolant for this simple example by using the 
invalid nodes, but this also becomes impossible 
as soon as the cut becomes more complex 
(containing more line segments). 
 
 The interpolation problem is clearly 
depicted in Shultz, et. al. [7] in their figure 3. 
Here streamlines pass through the car body, a 
non-physical result. The authors attempt to 
remedy the problem by stopping the integration 
when the path intersects the body. But as far as 
the solver is concerned, fluid does not enter or 
leave the car hood. This indicates that the data 
handling is incorrect, not the solution. 
 

For the sake of argument, suppose it is 
possible to come up with some form of linear 
interpolation for the cut cell based upon the cell 
vertices that are valid and those that support the 
body discretization. This could produce a non-
simple and possibly concave element, which 
would prohibit the use of the lookup table for 
geometric cuts and iso-surfaces. The size of the 
table is 2^n and it would not be out of the 
question to get more than a 20-node element in 
3D. How is the table generated and stored? 
 

One could imagine using a higher order 
interpolant that could be developed to provide 
better definition of the field quantities within the 
cell cut by the body.  Accompanying this 
solution however are several complications in 
actually constructing the function. But now we 
could not use the lookup table because there can 
be multiple crossings along an edge. 
 

Another complication to the 
visualization of results from Cartesian systems is 
that there may be a form of hierarchical 
embedding used. This produces the potential for 
hanging nodes. These vertices split the edges of 
larger neighboring elements. Interpolating near 
these nodes in the large element becomes a 
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problem. The resultant values will not be 
contiguous in the larger element near the 
hanging node. 
 
3. Concepts 
 
3.1 Visualization for Cartesian Systems 
 

The goal of the work described in this 
paper is to develop techniques so those 
visualization algorithms can be used on the 
results from Cartesian-based simulations. This is 
important so that the solver�s results can be 
represented back to the investigator with correct 
imagery.  
 

The method proposed here is counter-
intuitive to the Cartesian methodology since it 
generates a body-fitted mesh. In a sense we are 
performing grid generation with rather specific 
requirements: 
 
• Fast 
The ideal situation would be to have a technique 
that could generate the visualization mesh on the 
fly. In this way no additional memory would be 
required to hold the resultant body-fit mesh. This 
is admittedly a lofty goal. 
 
• Robust 
The algorithm must be deterministic (require no 
user intervention) and always function even 
when applied to the most complex of geometries. 
 
• Addition of nodes 
If any additional nodes need to be inserted, they 
must be on the body discretization, so that an 
interpolated value can be constructed. 
 

It is well know that any 2D region 
defined via an outer collection of ordered line 
segments (and optionally any number of inner 
loops) can be filled with triangles. There are a 
number of algorithms in Computational 
Geometry that will perform this task very rapidly 
and robustly with no additional nodes required. It 
is also well known that this can not be done in 
3D.  Many circumstances are present [8] which 
prevent the filling of a husk of nodes defined by 
the closed triangular discretization of surfaces 
with tetrahedra. A number of unstructured grid 
generators exist that can routinely fill arbitrary 
volumes with tetrahedra and they are able to 
overcome this volume fill problem by inserting 
nodes into the volume of interest. This is clearly 

something that can not be done here � what 
would be the interpolated value for the node? 

 
The technique used to solve this 

problem is one that always maintains a properly 
filled volume by cutting existing tetrahedron into 
tetrahedra. A cube (hexahedron) is the starting 
point. This element is simple and convex and can 
always be broken up into either 5 or 6 tetrahedra. 
The body discretization is imprinted into the 
cube and the inside (or outside) is then removed, 
leaving a body-fit tetrahedral mesh bounded by 
the box. To best understand this algorithm, it will 
first be described in 2D and then in 3D. 
 
3.2 2D Algorithm 
 

Presented here are the steps followed by 
the 2D algorithm.  This algorithm was developed 
to help understand some of the problems that 
may occur in 3D.  Each square cell is separated 
into the appropriate triangles, depending on 
which hanging nodes are present (Figure 2a).  
All of the triangles have orientation flags which 
indicate which side of the discretization line they 
are on. 
 

       
a) b) c)  
 

       
d) e) f)  

    
g)

Figure 2.  Example of 2D triangulation of one 
cell. 
 
1. Insert all the discretization nodes in the cell, 

and split the triangles they are inside of into 
3 smaller triangles (Figure 2b). 

 
2. Connect starting discretization node to the 

end node with a straight line. 
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2.1. If the straight line cuts the edge of a 
triangle before reaching the end node, 
insert a new node at the intersection and 
cut the triangles accordingly  (Figure 
2c, 2d).  Continue until the end node is 
reached. 

2.2.  Else nodes are connected; proceed to 
the next set of adjacent nodes. 

2.3. Continue until all of the discretization 
nodes have been connected by straight 
lines and the discretization line leaves 
the cell (Figure 2e). 

 
3. Move along the boundary and flag the 

triangles that are inside the body (Figure 2f). 
 
4. Sweep through the remaining unmarked 

triangles and flag those that are inside the 
body (Figure 2g). 

 
Now that the mesh has been generated 

and marked, it can be modified with the intention 
of easing the task for solving.  For any grid, a 
simple swap algorithm [9,10] is employed to try 
and improve the aspect ratios of the triangles. 
The swap algorithm looks at the angles between 
edges on each triangle in their original 
configuration.  It then compares these angles to 
the case where the opposite nodes of the triangle 
set are connected (dashed line in figure 3a).  The 
configuration that is selected is the one that 
lowers the maximum angle (or increases the 
minimum angle).  Only edges that appear inside 
both triangles were considered for swapping.  It 
should also be noted that the swap operation was 
only performed for triangles inside the 
computational domain, and hence none of the 
discretization edges were swapped. 
 

 
 
a) Prior to edge swap b) After edge swap 
 

Figure 3.  Edge swapping. 

 
 
 

3.3 3D Algorithm 
 

An algorithm was developed to handle 
3D geometry based on the 2D discussion above.  
Additional features are added however, due to 
the increased difficulty in 3D.  This difficulty is 
due to the inability to track the discretization in a 
single direction because each triangle has 2 
directions that one could follow.  It was decided 
that it would be cleaner (and more expedient 
when providing the mesh for interpolation) to 
color the nodes that will finally support the 
tetrahedral mesh. The 4 possibilities are: 

 
• Cell vertices 
These are the nodes that support the cut cell. 
Only those that are actually part of the volume of 
interest are used. This also includes any hanging 
nodes. 

 
• Discretization vertices 
These are the points that make up the body 
discretization. Collections of 3 of these nodes 
form the triangular tessellation that makes up the 
body. It is assumed that this complete 
tessellation is closed and holds water. Also, all 
triangles that make up the surface must have the 
same orientation so that the normals either point 
in a direction that is into or out of the body. 

 
• Edge nodes 
The 3D algorithm constructs these nodes. They 
are made up of the two node indices, each of 
which must be a discretization node with an 
associated weight. 

 
• Interior nodes 
These algorithm nodes are generated in the 
interior of body discretization triangles. The 
index to the triangle is stored as well as the 
weights (to 2 of the 3 nodes) so the linear 
interpolant in the triangle can be applied. 
 

It was determined that keeping a list of 
neighboring tetrahedra is important from a 
performance standpoint, since techniques can be 
applied that use this information to avoid volume 
searches. Also, an orientation/cut flag is made 
available for each tetrahedron. 
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To ensure that each function performed 
on the coupled set of tetrahedra maintains a 
correct result, any cut operations were cast as a 
set of the following 3 primitives: 

 
1. Tetrahedron insertion 
A node is inserted into the interior of a 
tetrahedron. The result is that the parent is split 
into 4 tetrahedra (3 additional).  
 

 
Figure 4.  Node inserted inside a tetrahedron. 

 
2. Face insertion 
A node is inserted that is co-planar and 
coincident with a triangular face of a tetrahedron. 
This splits the triangle into 3 new triangles.  3 
new tetrahedra take the place of the parent 
tetrahedron.  If the face is interior (not exposed 
to the outside of the cube) then the neighboring 
cell must also be split. The end result is that 2 
tetrahedra becomes 6 (the addition of 4).  
 

 
Figure 5.  Node inserted on a tetrahedron face. 

 
3. Edge insertion 
A node is created along the edge between 2 
nodes that support the volume elements (not to 
be confused with edges of the discretization). A 
tetrahedron that touches the edge is split in 2. 
Unfortunately it is not possible to specify the 
exact count because any number of tetrahedra 
can come together at an edge. All tetrahedra that 
touch an edge can be found by locating a single 
tetrahedron that contains the edge and 
successively examining the appropriate 
neighbors of each of these tetrahedra. 
 

 
 

Figure 6.  Node inserted along a tetrahedron 
edge. 

For all primitives, the neighboring 
information is updated during the operation, so 
the result is always valid. 
 

The 3D algorithm consists of the 
following phases: 
 
• Generate the Box 
The lower-left and upper-right set of coordinates 
are used to generate the 8 nodes that support the 
cube. This box is then subdivided into 6 
tetrahedra.  While the hexahedron cell could 
have been cut into 5 tetrahedra as well, we have 
chosen cutting it into 6 so that the directions of 
diagonals on opposite faces match. Though this 
is only important if one needs to patch together 
neighboring cubes. 
 
• Insert the hanging nodes 
Any hanging nodes are included in the volume 
by using Operation 2 or 3. 
 
• Compute the intersection of the box and the 

tessellation triangles 
The bounding box for each triangle from the 
discretization is compared with the coordinates 
of the cube. If there is any overlap, the triangle is 
considered for the following phases. Note: all 
nodes (for the triangle) can be outside the box 
but the triangle can still cut through. 
 
• Insert the discretization vertices 
These nodes may be inserted by any of the 3 
primitive operations depending on the location of 
the vertex with respect to the current suite of 
tetrahedra. A special case is when the 
discretization vertex coincides with the box 
corner. Here the box node is overwritten with the 
vertex marker. It is assumed that the vertices that 
make up the body will not coincide. 
 
• Scribe the tessellation edges 
This is similar to the 2D cutting. The tessellation 
edges are inscribed in the volume by insuring 
that tetrahedral edges coincide. This is done by 
examining each tessellation edge and 
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determining if any node is outside (and the edge 
intersects the node). If either is outside, then new 
edge nodes get inserted by using Operation 2 or 
3. Again, the special case exists where this node 
matches with a box vertex. If so, the box node is 
overwritten with the edge node. 
 
Starting from the first vertex node (or edge node) 
a ray is cast toward the final node. If the ray 
intersects the tetrahedron�s face, Operation 2 is 
performed, if it happens to intersect an edge 
along the opposite face, then Operation 3 is used.  
This ray casting function continues from the new 
inserted node until a node in a tetrahedron (that 
contains the new node) also has the final node. 
 
• Cut the tessellation triangles 
This process slices the volume so that faces of 
the tetrahedra match faces of the body 
tessellation.  There is an outer loop for triangles 
that are included for this cube. Each tetrahedron 
is examined. Nodes that contain tessellation 
indices for that triangle (either discretization or 
edge) or the triangle index itself are marked. If 
there are 3 nodes marked, then this tetrahedron is 
complete. 
 
The equation of the plane (that is supported by 
the triangle) is constructed. If the plane is found 
to intersect the tetrahedron (and the intersection 
point(s) are within the triangle) then the 
tetrahedron is cut using Operation 3. If there are 
no valid intersections then for this triangle, the 
tetrahedron is finished. 
 
• Mark the orientation of tetrahedra that touch 

the tessellation 
Another loop through all triangles to look for 
tetrahedra that have faces with indices that 
belong to the triangle. When one is found, the 
node not part of the face is tested with the 
equation of the plane for the triangle. If it is 
found to be greater than the intercept then the 
tetrahedra is marked with a positive orientation. 
If the result is less then the equation�s intercept, 
the tetrahedron is inside and marked as such. 
 
• Flood the orientation 
A volume flood of all the tetrahedra is performed 
to find those that have not been assigned a value, 
as was described in the 2D algorithm. 
 
• Cleave the inside away from the outside 
To perform the actual slicing of the volume, the 
neighboring information along the triangulation 

surface is removed. It is replaced with pointers to 
the owning triangle. 
 
• Remove possible interior and edge nodes 
To reduce the count of inserted nodes (and 
resulting tetrahedra) all interior nodes and edge 
nodes are examined. Any nodes that are 
completely contained within tetrahedra that have 
one face exposed and the opposite node a match, 
can be removed. The node removal involves 
producing an outer loop that must be re-
triangulated and tetrahedra extruded to that 
opposite node. 
• Face swap 
A face swapping operation (as in the 2D 
algorithm) is used on the desired volume to 
produce a better interpolant (similar to Delaunay 
triangulation). The procedure is first done (in 
2D) on the exposed box faces. This will insure 
that neighboring boxes will match at their 
internal faces. Then the 3D analogue is done for 
all interior faces. [10,11] 
 
 
4. Discussion 
 

 
Figure 7.  Makin� bacon.  A Cartesian pig. 

 
4.1 3D Examples 
 

Presented here is a visual example of 
the 3D algorithm applied to the Cartesian pig 
(Figure 7).  For the entire domain around the pig, 
there are 21,314 cut cells.  The total number of 
tetrahedra generated is large.  This result should 
not be a surprise; each primitive operation 
produces many new cells. For all the cut-cells 
around the domain, the average number of 
tetrahedra created per cell is 76 (both inside and 
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out), with a maximum of 15,104 for the cell 
intersecting the most geometry.  The total 
number of tetrahedra generated outside the body 
was 840,333, giving an average of 39.4 per cut-
cell.   

 
In Figure 8, one cell (not directly from 

the mesh of the pig) is shown intersecting the 
body.  Note that it encapsulates more geometry 
than usually found in a normal Cartesian cut-cell.  
It contains 16 vertices, 98 triangle edges and 57 
discretization triangles.  

 

 
 

Figure 8.  Pig�s feet.  Intersection of a cell with 
the pig body. 

 

 
 
Figure 9.  Contrast between the tetrahedra inside 
and outside the body.  There were 451 new edge 
nodes and 215 new interior nodes created for this 
cell. 

 
Figure 10.  View of the surface of the body 
before node removal (cells inside the body 
removed).  
 

 
 
Figure 11.  View of the surface of the body after 
node removal. 
 

A more detailed view of this cell in 
Figure 9 shows the numerous tetrahedra edges  
that connect to vertices created along the 
discretization surface.  As can be seen in the 
figure, the face that does not intersect with the 
body has only two triangles on it.  Its nodes 
match those of any hexahedron cell that neighbor 
it.  The hexahedron cell in this example has 8 
nodes and hence no hanging nodes.  If it did, the 
number of faces would change correspondingly 
so that the nodes always match.  This cut-cell has 
a relatively large number of tetrahedra � 3026 
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(1402 inside the body and 1624 in the 
computational domain). 

 
Removing the tetrahedra that are inside 

the body, we are able to look at those that will be 
used for visualization (Figure 10).  This figure 
clearly shows the complex nature of the surface 
discretization.  Keep in mind that all of the nodes 
created using this algorithm are on this surface. 

 
Finally, in Figure 11, we see the same 

view as in Figure 10, except with a simplified 
geometry due to the removal of interior nodes 
and edge nodes.  For this cell in particular, 35% 
of the interior nodes were removed and 32% of 
the edge nodes were removed.  As a result of 
these node removals,  442 tetrahedra (27%) in 
the computational domain were removed. 

 
Further analysis of all of the cut-cells 

that surround the pig shows that 7% of all the 
interior nodes and 26% of all the edge nodes can 
be removed.  Figure 12 shows the distribution of 
all these nodes as a function of the number of 
nodes per cell. 
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Figure 12.  Distribution of all interior and edge 
nodes versus the number of nodes per cell. 

 
 These percentages are misleading 
because the majority of the nodes are found in 
cells which have very small (less than 25) 
numbers of nodes candidate for removal (see 
Figure 13).  Cells containing such low  numbers 
of nodes are  generally not very complex and do 
not need node removal as much as much as cells 
with a higher degree of complexity.  As the 
number of nodes per cell increases, so does the 
percentage of nodes actually removable. 
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Figure 13  Distribution of removable nodes 
versus the number of nodes per cell. 
 

Timings were conducted on all cut-cells 
for the example seen in Figure 7. This is an 
important element since one of the original 
motivations behind this idea was to be able to 
generate grids on the fly.  Using a 250 MHz 
R10000 Octane, all of the 21,314 cut-cells that 
intersect with the pig body were filled with 
tetrahedra in 58 seconds. It should be noted that 
the 733 cut-cells that intersect the most geometry 
took 24 seconds. Although this is not a bad 
result, the timings are not good enough to 
consider not storing the results in a pre-
processing step. 
 
4.2 Limitations 
 

What became apparent in 3D, more so 
than 2D, is that there are large numbers of 
tetrahedra being created from this algorithm. In 
some cases where the cut-cell intersects a great 
deal of body geometry, the number of tetrahedra 
can exceed 10,000.  A good tetrahedral mesh 
should have between 5 and 6 tetrahedra per node 
[12] and it is not unheard of to see examples of 2 
to 3 tetrahedra per node in our test cases.  This 
does not bode well for bodies that could 
potentially be surrounded by several hundred 
thousand cells.  However, another observation 
from the example cases was that many of the 
tetrahedra generated all shared a similar face and 
an opposing node.  When this is the case, all of 
the interior nodes and edge nodes that tie the 
tetrahedra together can be removed and a much 
simpler configuration following the perimeter of 
this patch can be developed.  It would appear 
that about 35% of them can be removed for the 
example used in this paper.  This simplification 
can be repeated even further, since these 
modified tetrahedra may share to another node 
with other volumes.   



 9

5.  Conclusion 
 

The importance of this work is two-
fold.  First, it involves the development of a new 
grid generation scheme that is fast, robust, yet 
provides accurate boundary representations.  
This has the potential to simplify the general grid 
generation process significantly.  The algorithms 
presented here can be applied to any type of 
Cartesian mesh.  There are, however, still a few 
issues that must be addressed.  Currently, aspect 
ratios of the cells have not been given any 
consideration.  Sliver elements may appear. This 
is not a problem for the use in visualization 
because these cells will have little impact (the 
chances of being in the cell are small). But if the 
mesh is to be used by solvers directly then sliver 
elements can cause problems.  It also remains to 
be seen whether all of the box interfaces will 
match up.  The 2D face swapping needs to be 
fully tested to determine if this problem is 
resolved. 
 

Secondly, and the thrust of this paper, is 
the ability to apply classical, finite-element 
based, visualization techniques to Cartesian 
meshes.  Up until now, visualization data along 
the boundaries of bodies that employed these 
meshes were not very precise and produced 
inaccurate imagery. 
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