
 1

Filling the Void: Interpolating in Cartesian Cut Cells

A. Hendriks*
Massachusetts Institute of Technology,

Cambridge, MA 02139

R. Haimesϒ
Massachusetts Institute of Technology,

Cambridge, MA 02139

M. J. Aftosmisψ
NASA Ames Research Center,

Moffett Field, CA 94035

Abstract

 The majority of scientific visualization
algorithms are finite-element based. For
Cartesian meshes, the definition of the boundary
conditions around the body leads to inaccurate
visualization data due to the nature of the grid (it
is not compatible with finite-element based
algorithms). In this paper, we present an
algorithm to generate an intermediate, 3D, body-
fitted mesh that links the Cartesian mesh to the
body, and allows accurate visualization data
near the body. The 3D grid consists of
tetrahedral cells, and it matches to all of the
nodes (including the hanging nodes) of the
Cartesian grid. The only nodes created on this
body are surface nodes.

1. Introduction

Cartesian and body-fitted
meshes are the two forms of grid generation used
for the simulation of many 3D physical systems.
The orientation of the cells in a Cartesian mesh is
independent of the body of interest. All of the
faces of the cells are positioned in one of the
three Cartesian coordinates, x, y, and z.
Establishing a Cartesian mesh is therefore
remarkably simple. Complications occur
however where the cells are intersected by the
body geometry, requiring a special treatment to

*Graduate Student.
ϒPrincipal Research Engineer, AIAA Member.
ψResearch Scientist, Senior AIAA Member.
Copyright  2001 by Adam Hendriks, Robert Haimes,

& Mike Aftosmis. Published by the American Institute of
Aeronautics and Astronautics, Inc. with permission.

deal with the boundary conditions. The end
result is a quick and automatic method to mesh
the domain combined with a complex set of
routines that describe its boundary conditions.
Body-fitted grids are more widely used. The key
feature of this type of grid is that the bounds of
the mesh conform to the shape of the body.
While this makes the definition of the boundary
conditions simple, the actual task of creating the
grid becomes complex, potentially labor
intensive and time consuming.[1-6] Ultimately,
a hybrid grid of both these two methods would
be ideal, which is what is presented in this paper.

The format of this paper is as follows.
In section 2 there is an overview of the problems
that exist with Cartesian meshes and why it is
difficult to visualize their results. Section 3 will
present the concepts developed and applied to
achieve the hybrid grid, along with a more
detailed presentation of the 2D and 3D
algorithms. Finally, in section 4, we present
some examples of the application of this hybrid
grid, along with the current limitations of the
code.

2. Related Work

Most scientific visualization algorithms
are finite-element based (and assume a linear/bi-
linear/tri-linear interpolant). Put another way,
these tools require the interpolation of scalar and
vector fields from within the volume elements
that support the 3D domain of interest. The
technique that produces geometric cuts and iso-
surfaces employs a lookup table to generate the
resultant surface from the volume element (or

 2

cell). The index to this table is based upon
whether each node that supports the cell is above
the cut value. For hexahedra the table length is
256 in length (28 where 8 is the number of
nodes). Implicit in this algorithm is that there is
only one intersection possible along an element
edge and its placement is linearly based on the
scalar values of the nodes. Streamlining and
particle tracing use one of a number of possible
integration schemes, all of which require the
velocity returned at a specified location within
the domain. Almost never is this location exactly
at a node that supports the mesh. Interpolation is
again required.

It is clear that applying the normal
visualization algorithms to the results of solvers
that are Cartesian based will produce
questionable results for the cut-cells. This is
problematic because the data in regions close to
a body is of great importance to the engineers
and designers that are analyzing the results from
these physical systems.

Cartesian meshes are trivial to create;
yet the definition of the boundary conditions
around the geometry of the body being meshed
may be quite complicated. To demonstrate this
problem, examine the 2D cell in Figure 1. It is
an element that has been split in two by the
discretization line of a body

Figure 1. Surface cell for a Cartesian mesh

The top four vertices appear inside the

computational domain (denoted by circles) and
the bottom two are inside the body (denoted by
crosses). Ordinarily, the flow quantities of any
point could be determined anywhere in the cell

using an interpolation scheme and the four
vertices of this 2D cell. In the case of the cell
shown in Figure 1, however, this becomes a
problem. The cells inside the body cannot have
any valid data that can be used to determine
actual flow quantities, since they are not part of
the solution. Take for example the no-slip
condition that would be applied along the surface
of the wall. It would be impossible to develop
an interpolation scheme that would produce zero
velocity all along the edge within the cell using
only the two valid vertices at the top corners.
Furthermore, one may be able to generate an
interpolant for this simple example by using the
invalid nodes, but this also becomes impossible
as soon as the cut becomes more complex
(containing more line segments).

 The interpolation problem is clearly
depicted in Shultz, et. al. [7] in their figure 3.
Here streamlines pass through the car body, a
non-physical result. The authors attempt to
remedy the problem by stopping the integration
when the path intersects the body. But as far as
the solver is concerned, fluid does not enter or
leave the car hood. This indicates that the data
handling is incorrect, not the solution.

For the sake of argument, suppose it is
possible to come up with some form of linear
interpolation for the cut cell based upon the cell
vertices that are valid and those that support the
body discretization. This could produce a non-
simple and possibly concave element, which
would prohibit the use of the lookup table for
geometric cuts and iso-surfaces. The size of the
table is 2^n and it would not be out of the
question to get more than a 20-node element in
3D. How is the table generated and stored?

One could imagine using a higher order
interpolant that could be developed to provide
better definition of the field quantities within the
cell cut by the body. Accompanying this
solution however are several complications in
actually constructing the function. But now we
could not use the lookup table because there can
be multiple crossings along an edge.

Another complication to the
visualization of results from Cartesian systems is
that there may be a form of hierarchical
embedding used. This produces the potential for
hanging nodes. These vertices split the edges of
larger neighboring elements. Interpolating near
these nodes in the large element becomes a

 3

problem. The resultant values will not be
contiguous in the larger element near the
hanging node.

3. Concepts

3.1 Visualization for Cartesian Systems

The goal of the work described in this
paper is to develop techniques so those
visualization algorithms can be used on the
results from Cartesian-based simulations. This is
important so that the solver�s results can be
represented back to the investigator with correct
imagery.

The method proposed here is counter-
intuitive to the Cartesian methodology since it
generates a body-fitted mesh. In a sense we are
performing grid generation with rather specific
requirements:

• Fast
The ideal situation would be to have a technique
that could generate the visualization mesh on the
fly. In this way no additional memory would be
required to hold the resultant body-fit mesh. This
is admittedly a lofty goal.

• Robust
The algorithm must be deterministic (require no
user intervention) and always function even
when applied to the most complex of geometries.

• Addition of nodes
If any additional nodes need to be inserted, they
must be on the body discretization, so that an
interpolated value can be constructed.

It is well know that any 2D region
defined via an outer collection of ordered line
segments (and optionally any number of inner
loops) can be filled with triangles. There are a
number of algorithms in Computational
Geometry that will perform this task very rapidly
and robustly with no additional nodes required. It
is also well known that this can not be done in
3D. Many circumstances are present [8] which
prevent the filling of a husk of nodes defined by
the closed triangular discretization of surfaces
with tetrahedra. A number of unstructured grid
generators exist that can routinely fill arbitrary
volumes with tetrahedra and they are able to
overcome this volume fill problem by inserting
nodes into the volume of interest. This is clearly

something that can not be done here � what
would be the interpolated value for the node?

The technique used to solve this

problem is one that always maintains a properly
filled volume by cutting existing tetrahedron into
tetrahedra. A cube (hexahedron) is the starting
point. This element is simple and convex and can
always be broken up into either 5 or 6 tetrahedra.
The body discretization is imprinted into the
cube and the inside (or outside) is then removed,
leaving a body-fit tetrahedral mesh bounded by
the box. To best understand this algorithm, it will
first be described in 2D and then in 3D.

3.2 2D Algorithm

Presented here are the steps followed by
the 2D algorithm. This algorithm was developed
to help understand some of the problems that
may occur in 3D. Each square cell is separated
into the appropriate triangles, depending on
which hanging nodes are present (Figure 2a).
All of the triangles have orientation flags which
indicate which side of the discretization line they
are on.

a) b) c)

d) e) f)

g)

Figure 2. Example of 2D triangulation of one
cell.

1. Insert all the discretization nodes in the cell,

and split the triangles they are inside of into
3 smaller triangles (Figure 2b).

2. Connect starting discretization node to the

end node with a straight line.

 4

2.1. If the straight line cuts the edge of a
triangle before reaching the end node,
insert a new node at the intersection and
cut the triangles accordingly (Figure
2c, 2d). Continue until the end node is
reached.

2.2. Else nodes are connected; proceed to
the next set of adjacent nodes.

2.3. Continue until all of the discretization
nodes have been connected by straight
lines and the discretization line leaves
the cell (Figure 2e).

3. Move along the boundary and flag the

triangles that are inside the body (Figure 2f).

4. Sweep through the remaining unmarked

triangles and flag those that are inside the
body (Figure 2g).

Now that the mesh has been generated

and marked, it can be modified with the intention
of easing the task for solving. For any grid, a
simple swap algorithm [9,10] is employed to try
and improve the aspect ratios of the triangles.
The swap algorithm looks at the angles between
edges on each triangle in their original
configuration. It then compares these angles to
the case where the opposite nodes of the triangle
set are connected (dashed line in figure 3a). The
configuration that is selected is the one that
lowers the maximum angle (or increases the
minimum angle). Only edges that appear inside
both triangles were considered for swapping. It
should also be noted that the swap operation was
only performed for triangles inside the
computational domain, and hence none of the
discretization edges were swapped.

a) Prior to edge swap b) After edge swap

Figure 3. Edge swapping.

3.3 3D Algorithm

An algorithm was developed to handle
3D geometry based on the 2D discussion above.
Additional features are added however, due to
the increased difficulty in 3D. This difficulty is
due to the inability to track the discretization in a
single direction because each triangle has 2
directions that one could follow. It was decided
that it would be cleaner (and more expedient
when providing the mesh for interpolation) to
color the nodes that will finally support the
tetrahedral mesh. The 4 possibilities are:

• Cell vertices
These are the nodes that support the cut cell.
Only those that are actually part of the volume of
interest are used. This also includes any hanging
nodes.

• Discretization vertices
These are the points that make up the body
discretization. Collections of 3 of these nodes
form the triangular tessellation that makes up the
body. It is assumed that this complete
tessellation is closed and holds water. Also, all
triangles that make up the surface must have the
same orientation so that the normals either point
in a direction that is into or out of the body.

• Edge nodes
The 3D algorithm constructs these nodes. They
are made up of the two node indices, each of
which must be a discretization node with an
associated weight.

• Interior nodes
These algorithm nodes are generated in the
interior of body discretization triangles. The
index to the triangle is stored as well as the
weights (to 2 of the 3 nodes) so the linear
interpolant in the triangle can be applied.

It was determined that keeping a list of
neighboring tetrahedra is important from a
performance standpoint, since techniques can be
applied that use this information to avoid volume
searches. Also, an orientation/cut flag is made
available for each tetrahedron.

 5

To ensure that each function performed
on the coupled set of tetrahedra maintains a
correct result, any cut operations were cast as a
set of the following 3 primitives:

1. Tetrahedron insertion
A node is inserted into the interior of a
tetrahedron. The result is that the parent is split
into 4 tetrahedra (3 additional).

Figure 4. Node inserted inside a tetrahedron.

2. Face insertion
A node is inserted that is co-planar and
coincident with a triangular face of a tetrahedron.
This splits the triangle into 3 new triangles. 3
new tetrahedra take the place of the parent
tetrahedron. If the face is interior (not exposed
to the outside of the cube) then the neighboring
cell must also be split. The end result is that 2
tetrahedra becomes 6 (the addition of 4).

Figure 5. Node inserted on a tetrahedron face.

3. Edge insertion
A node is created along the edge between 2
nodes that support the volume elements (not to
be confused with edges of the discretization). A
tetrahedron that touches the edge is split in 2.
Unfortunately it is not possible to specify the
exact count because any number of tetrahedra
can come together at an edge. All tetrahedra that
touch an edge can be found by locating a single
tetrahedron that contains the edge and
successively examining the appropriate
neighbors of each of these tetrahedra.

Figure 6. Node inserted along a tetrahedron
edge.

For all primitives, the neighboring
information is updated during the operation, so
the result is always valid.

The 3D algorithm consists of the
following phases:

• Generate the Box
The lower-left and upper-right set of coordinates
are used to generate the 8 nodes that support the
cube. This box is then subdivided into 6
tetrahedra. While the hexahedron cell could
have been cut into 5 tetrahedra as well, we have
chosen cutting it into 6 so that the directions of
diagonals on opposite faces match. Though this
is only important if one needs to patch together
neighboring cubes.

• Insert the hanging nodes
Any hanging nodes are included in the volume
by using Operation 2 or 3.

• Compute the intersection of the box and the

tessellation triangles
The bounding box for each triangle from the
discretization is compared with the coordinates
of the cube. If there is any overlap, the triangle is
considered for the following phases. Note: all
nodes (for the triangle) can be outside the box
but the triangle can still cut through.

• Insert the discretization vertices
These nodes may be inserted by any of the 3
primitive operations depending on the location of
the vertex with respect to the current suite of
tetrahedra. A special case is when the
discretization vertex coincides with the box
corner. Here the box node is overwritten with the
vertex marker. It is assumed that the vertices that
make up the body will not coincide.

• Scribe the tessellation edges
This is similar to the 2D cutting. The tessellation
edges are inscribed in the volume by insuring
that tetrahedral edges coincide. This is done by
examining each tessellation edge and

 6

determining if any node is outside (and the edge
intersects the node). If either is outside, then new
edge nodes get inserted by using Operation 2 or
3. Again, the special case exists where this node
matches with a box vertex. If so, the box node is
overwritten with the edge node.

Starting from the first vertex node (or edge node)
a ray is cast toward the final node. If the ray
intersects the tetrahedron�s face, Operation 2 is
performed, if it happens to intersect an edge
along the opposite face, then Operation 3 is used.
This ray casting function continues from the new
inserted node until a node in a tetrahedron (that
contains the new node) also has the final node.

• Cut the tessellation triangles
This process slices the volume so that faces of
the tetrahedra match faces of the body
tessellation. There is an outer loop for triangles
that are included for this cube. Each tetrahedron
is examined. Nodes that contain tessellation
indices for that triangle (either discretization or
edge) or the triangle index itself are marked. If
there are 3 nodes marked, then this tetrahedron is
complete.

The equation of the plane (that is supported by
the triangle) is constructed. If the plane is found
to intersect the tetrahedron (and the intersection
point(s) are within the triangle) then the
tetrahedron is cut using Operation 3. If there are
no valid intersections then for this triangle, the
tetrahedron is finished.

• Mark the orientation of tetrahedra that touch

the tessellation
Another loop through all triangles to look for
tetrahedra that have faces with indices that
belong to the triangle. When one is found, the
node not part of the face is tested with the
equation of the plane for the triangle. If it is
found to be greater than the intercept then the
tetrahedra is marked with a positive orientation.
If the result is less then the equation�s intercept,
the tetrahedron is inside and marked as such.

• Flood the orientation
A volume flood of all the tetrahedra is performed
to find those that have not been assigned a value,
as was described in the 2D algorithm.

• Cleave the inside away from the outside
To perform the actual slicing of the volume, the
neighboring information along the triangulation

surface is removed. It is replaced with pointers to
the owning triangle.

• Remove possible interior and edge nodes
To reduce the count of inserted nodes (and
resulting tetrahedra) all interior nodes and edge
nodes are examined. Any nodes that are
completely contained within tetrahedra that have
one face exposed and the opposite node a match,
can be removed. The node removal involves
producing an outer loop that must be re-
triangulated and tetrahedra extruded to that
opposite node.
• Face swap
A face swapping operation (as in the 2D
algorithm) is used on the desired volume to
produce a better interpolant (similar to Delaunay
triangulation). The procedure is first done (in
2D) on the exposed box faces. This will insure
that neighboring boxes will match at their
internal faces. Then the 3D analogue is done for
all interior faces. [10,11]

4. Discussion

Figure 7. Makin� bacon. A Cartesian pig.

4.1 3D Examples

Presented here is a visual example of
the 3D algorithm applied to the Cartesian pig
(Figure 7). For the entire domain around the pig,
there are 21,314 cut cells. The total number of
tetrahedra generated is large. This result should
not be a surprise; each primitive operation
produces many new cells. For all the cut-cells
around the domain, the average number of
tetrahedra created per cell is 76 (both inside and

 7

out), with a maximum of 15,104 for the cell
intersecting the most geometry. The total
number of tetrahedra generated outside the body
was 840,333, giving an average of 39.4 per cut-
cell.

In Figure 8, one cell (not directly from

the mesh of the pig) is shown intersecting the
body. Note that it encapsulates more geometry
than usually found in a normal Cartesian cut-cell.
It contains 16 vertices, 98 triangle edges and 57
discretization triangles.

Figure 8. Pig�s feet. Intersection of a cell with
the pig body.

Figure 9. Contrast between the tetrahedra inside
and outside the body. There were 451 new edge
nodes and 215 new interior nodes created for this
cell.

Figure 10. View of the surface of the body
before node removal (cells inside the body
removed).

Figure 11. View of the surface of the body after
node removal.

A more detailed view of this cell in
Figure 9 shows the numerous tetrahedra edges
that connect to vertices created along the
discretization surface. As can be seen in the
figure, the face that does not intersect with the
body has only two triangles on it. Its nodes
match those of any hexahedron cell that neighbor
it. The hexahedron cell in this example has 8
nodes and hence no hanging nodes. If it did, the
number of faces would change correspondingly
so that the nodes always match. This cut-cell has
a relatively large number of tetrahedra � 3026

 8

(1402 inside the body and 1624 in the
computational domain).

Removing the tetrahedra that are inside

the body, we are able to look at those that will be
used for visualization (Figure 10). This figure
clearly shows the complex nature of the surface
discretization. Keep in mind that all of the nodes
created using this algorithm are on this surface.

Finally, in Figure 11, we see the same

view as in Figure 10, except with a simplified
geometry due to the removal of interior nodes
and edge nodes. For this cell in particular, 35%
of the interior nodes were removed and 32% of
the edge nodes were removed. As a result of
these node removals, 442 tetrahedra (27%) in
the computational domain were removed.

Further analysis of all of the cut-cells

that surround the pig shows that 7% of all the
interior nodes and 26% of all the edge nodes can
be removed. Figure 12 shows the distribution of
all these nodes as a function of the number of
nodes per cell.

0

20

40

60

80

100

120

140

160

180

200

0 - 25 25 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300 300+

Number of Nodes per Cell

(in
 th

ou
sa

nd
s)

Interior Nodes
Edge Nodes

Figure 12. Distribution of all interior and edge
nodes versus the number of nodes per cell.

 These percentages are misleading
because the majority of the nodes are found in
cells which have very small (less than 25)
numbers of nodes candidate for removal (see
Figure 13). Cells containing such low numbers
of nodes are generally not very complex and do
not need node removal as much as much as cells
with a higher degree of complexity. As the
number of nodes per cell increases, so does the
percentage of nodes actually removable.

0

5

10

15

20

25

30

35

40

45

0 - 25 25 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300 300 +

Number of Nodes per Cell

Interior Nodes
Edge Nodes

Figure 13 Distribution of removable nodes
versus the number of nodes per cell.

Timings were conducted on all cut-cells
for the example seen in Figure 7. This is an
important element since one of the original
motivations behind this idea was to be able to
generate grids on the fly. Using a 250 MHz
R10000 Octane, all of the 21,314 cut-cells that
intersect with the pig body were filled with
tetrahedra in 58 seconds. It should be noted that
the 733 cut-cells that intersect the most geometry
took 24 seconds. Although this is not a bad
result, the timings are not good enough to
consider not storing the results in a pre-
processing step.

4.2 Limitations

What became apparent in 3D, more so
than 2D, is that there are large numbers of
tetrahedra being created from this algorithm. In
some cases where the cut-cell intersects a great
deal of body geometry, the number of tetrahedra
can exceed 10,000. A good tetrahedral mesh
should have between 5 and 6 tetrahedra per node
[12] and it is not unheard of to see examples of 2
to 3 tetrahedra per node in our test cases. This
does not bode well for bodies that could
potentially be surrounded by several hundred
thousand cells. However, another observation
from the example cases was that many of the
tetrahedra generated all shared a similar face and
an opposing node. When this is the case, all of
the interior nodes and edge nodes that tie the
tetrahedra together can be removed and a much
simpler configuration following the perimeter of
this patch can be developed. It would appear
that about 35% of them can be removed for the
example used in this paper. This simplification
can be repeated even further, since these
modified tetrahedra may share to another node
with other volumes.

 9

5. Conclusion

The importance of this work is two-
fold. First, it involves the development of a new
grid generation scheme that is fast, robust, yet
provides accurate boundary representations.
This has the potential to simplify the general grid
generation process significantly. The algorithms
presented here can be applied to any type of
Cartesian mesh. There are, however, still a few
issues that must be addressed. Currently, aspect
ratios of the cells have not been given any
consideration. Sliver elements may appear. This
is not a problem for the use in visualization
because these cells will have little impact (the
chances of being in the cell are small). But if the
mesh is to be used by solvers directly then sliver
elements can cause problems. It also remains to
be seen whether all of the box interfaces will
match up. The 2D face swapping needs to be
fully tested to determine if this problem is
resolved.

Secondly, and the thrust of this paper, is
the ability to apply classical, finite-element
based, visualization techniques to Cartesian
meshes. Up until now, visualization data along
the boundaries of bodies that employed these
meshes were not very precise and produced
inaccurate imagery.

Acknowledgements

This work was sponsored by Sandia
National Laboratories contract #BE-8246 with
Timothy J. Bartel as technical monitor.

References

[1] Melton, J.E., Berger, M.J., Aftosmis, M.J.,

Wong, D.M., �Development and
Application of a 3D Cartesian Grid Euler
Method,� Proc. from NASA Wkshp on
Surf. Modeling, Grid Gen., and Related
Issues, NASA Lewis Research Center, May
9-11, 1995.

[2] Melton, J.E., Berger, M.J., Aftosmis, M.A,

and Wong, M.J., �3D Applications of a
Cartesian Grid Euler Method,� AIAA Paper
95-0853, January 1995.

[3] Aftosmis, M.A., Melton, J.E., and Berger,

M.J., �Adaption and Surface Modeling for

Cartesian Mesh Methods,� AIAA Paper 95-
1725-CP, 1995.

[4] Coirier, W.J., and Powell, K.G., �An

Accuracy Assessment of Cartesian-Mesh
Approaches for the Euler Equations,� AIAA
Paper 93-3335-CP, June 1993.

[5] Berger, M.J., and Melton, J.E., �An

Accuracy Test of a Cartesian Grid Method
for Steady Flow in Complex Geometries,�
Proc. of the 5th International Conf. Hyp.
Prob., Sonybrook, NY, 1994.

[6] Thompson, J.F., �A Reflection on Grid

Generation in the 90s: Trends, Needs, and
Influences,� 5th International Conference on
Grid Generation in CFS, 1996.

[7] Schulz, M., Reck, F., Barthelheimer, W.,

and Ertl, T., �Interactive Visualization of
Fluid Dynamic Simulations in Locally
Refined Cartesian Grids,� Visualization �99,
pp. 413-416. IEEE Computer Society, 1999.

[8] �Application Challenges to Computational

Geometry,� The Computational Geometry
Impact Task Force Report, Technical Report
TR-521-96, Princeton University, April
1996.

 http://www.cs.princeton.edu/~chazelle

[9] Webster, B.E., Shephard, M.S., Rusak, Z.,

and Flaherty, J.E., �Automated Adaptive
Time-Discontinuous Finite Element Method
for Unsteady Compressible Airfoil
Aerodynamics,� AIAA Journal, Vol. 32, pp
748-757, April 1994.

[10] Lawson, C.L., �Properties of n-Dimensional

Triangulations,� Computer Aided Geometric
Design, Vol. 3, pp 231-246, 1986.

[11] Freitag, L.A., and Ollivier-Gooch, C.F.,

�Tetrahedral Mesh Improvement Using
Swapping and Smoothing,� International
Journal for Numerical Methods in
Engineering, Vol. 40, pp 3979-4002, 1997.

[12] Marcum, D.L., �Unstructured grid

generation using automatic point insertion
and local reconnection.� In Thompson, J.,
Soni, B., and Weatherhill, N., Handbook of
Grid Generation, CRC press, Boca Raton
FL., 1999.

