
Advanced Programmer’s Guide

for

pV3 Rev. 2.05

Bob Haimes

December 12, 2001

DISCLAIMER: This programming interface is maturing. The goal is to mimic Visual3s ad-
vanced programming interface as much as possible.

Sections marked with this change-bar are have had a major change from last release (Rev 2.00)
and may require some programming modifications.

1



License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of Technology
(M.I.T.) under the following license. By obtaining, using and/or copying this software, you agree
that you have read, understood, and will comply with these terms and conditions:

Permission to use, copy, modify and distribute, this software and its documentation for any
purpose and without fee or royalty is hereby granted, provided that you agree to comply with the
following copyright notice and statements, including the disclaimer, and that the same appear on
ALL copies of the software and documentation:

Copyright 1994 - 2001 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED “AS IS”, AND M.I.T. MAKES NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED
SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used in advertising
or publicity pertaining to distribution of the software. Title to copyright in this software and any
associated documentation shall at all times remain with M.I.T., and USER agrees to preserve same.

2



Contents

1 Introduction 7

2 pV3 Server & Viewer Event Handling 8

3 Use of Pointers & FORTRAN in the pV3 Server Suite 10

3.1 MALLOCPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 FREEV3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 REALLOCPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Server Side Extracts 12

4.1 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 0 - Surface Sub-Extract Tris . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.2 1 - Surface Sub-Extract Quads . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.3 2 - Surface Sub-Extract XYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.4 3 - Surface Sub-Extract Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.5 4 - Surface Sub-Extract Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.6 5 - Surface Sub-Extract Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.7 6 - Surface Sub-Extract Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.8 7 - Surface Sub-Extract Threshold . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.9 8 - Surface Sub-Extract 2D Mapping . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.10 9 - Surface Sub-Extract Transformed 2D Mapping . . . . . . . . . . . . . . . 14

4.1.11 10 - Surface Sub-Extract Tri normals . . . . . . . . . . . . . . . . . . . . . . 15

4.1.12 11 - Surface Sub-Extract Quad normals . . . . . . . . . . . . . . . . . . . . . 15

4.1.13 10* - Surface Sub-Extract Planar clipping . . . . . . . . . . . . . . . . . . . . 15

4.2 StreamLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 0 - StreamLine Sub-Extract Cell . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2 1 - StreamLine Sub-Extract Time . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.3 2 - StreamLine Sub-Extract XYZ . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.4 3 - StreamLine Sub-Extract Div . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.5 4 - StreamLine Sub-Extract Angle . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.6 5 - StreamLine Sub-Extract Scalar . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.7 6 - StreamLine Sub-Extract Vector . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.8 7 - StreamLine Sub-Extract Threshold . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3



4.3.1 0 - Particle Sub-Extract Number . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.2 1 - Particle Sub-Extract Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.3 2 - Particle Sub-Extract XYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.4 3 - Particle Sub-Extract Div . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.5 5 - Particle Sub-Extract Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.6 6 - Particle Sub-Extract Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.7 7 - Particle Sub-Extract Threshold . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.8 10 - Particle Sub-Extract Group Index . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Vector Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 2 - VC Sub-Extract XYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.2 5 - VC Sub-Extract Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.3 6 - VC Sub-Extract Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.1 0 - Point Sub-Extract Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.2 1 - Point Sub-Extract Cell Index . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.3 2 - Point Sub-Extract XYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.4 3 - Point Sub-Extract Local Block Index . . . . . . . . . . . . . . . . . . . . . 21

4.5.5 4 - Point Sub-Extract IJK Indices . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.6 5 - Point Sub-Extract Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.7 6 - Point Sub-Extract Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5.8 7 - Point Sub-Extract Threshold . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Server Suite Supplied Routines and Calls 23

5.1 pVEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 pV Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 pV GetPointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 pV GetState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 pV SetState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6 pVSafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 pV Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.8 pVSetExtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9 pV GetExtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10 pV SetSub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.11 pV GetSub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4



5.12 pV ClearSub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.13 pV SetExMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.14 pV SetInsMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.15 pV SetExColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.16 pVSend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.17 pV SendData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.18 pVRubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.19 pVDraw3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.20 pV Object3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.21 pV Annotate3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.22 pVDraw2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.23 pV Object2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.24 pV Annotate2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.25 pVProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.26 pV Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.27 pVDraw1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.28 pV LineColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.29 pVInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.30 pV Pick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.31 pV Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.32 pV GetPicMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.33 pV SetPicMask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.34 pVPicked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Client Side Programming 65

6.1 The Use of Pointers in FORTRAN for the Clients . . . . . . . . . . . . . . . . . . . . 65

6.1.1 MALLOCPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.2 FREEPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.3 REALLOCPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Client Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Node based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.2 Cell based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.3 Domain Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.4 Domain Surface Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5



6.2.5 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 pV GetStruc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 pVSetStruc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 pV Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 pVExtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.7 pV SendXi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.8 pV SendXr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.9 pVSSInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.10 pVLocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.11 pVUpdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.12 pV Int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.13 pVBounce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.14 pVNotify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.15 pV GetServerData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Plotting Masks 78

A.1 Cut Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2 StreamLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.3 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4 Vector Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6



1 Introduction

The control of the pV3 interactive and post-processing visualization session is driven by the user.
Much time and effort were placed in making that interaction real-time. But there are many instances
when you may want the control of what is rendered on the screen to be specified by a program.
Examples of this are demonstrations, visual results from expert-systems, macros and etc.

In that the pV3 interactive server and the pV3 post-processing viewer are X windows appli-
cations, control is driven by X events. Figure 1 shows these task’s normal processing loop. In
general, all X events are extracted from the X event queue and the internal pV3 state information
is adjusted appropriately. When all events are exhausted, any changes to state that require getting
data from the application cause the server to request various extracts from the clients in the inter-
active session. After this information collection phase is done, the windows that require updating
are redrawn during the rendering phase. Then the event queue is checked for more user interaction,
and this continues for the life of the pV3 server or viewer.

Event Handling

Information Collection Phase

Data Rendering

?

?

?

" !

#  

Figure 1: The pV3 Server’s Internal Loop

Also, to simplify the data handling, pV3 only exposed it’s internal data to the programmer when
it required data on the client side. The data generated to produce cut surfaces, streamlines and
other objects was hidden. This document describes how the advanced pV3 programmer can access
this extract information on the server and client sides.

7



2 pV3 Server & Viewer Event Handling

One of the goals of allowing programming control in the pV3 suite is to maintain the current action
as the default. Also this must allow the programmer to either modify the effects of an event or
completely take over.

Before attempting to program pV3 at this level it is important to understand the interactive
server’s and post-processing viewer’s program structure. This includes the internals of the event
handling phase.

The details of the pV3 server and pV3 viewer event handling phase can be seen in Figure 2.
First, an X event is pulled of the X event queue. The event is described by a window ID - IWIN

(the window in which the event occurred), the type of event (e.g., KeyPress, ButtonPress, and etc.),
the location in the window of the event, and finally any state data (e.g., which button or key was
pressed). There is a special window ID flag of −1 which indicates that the event queue was empty.

Get Event

call pVEvents

Event Processing

@
@
@

�
�
�

�
�
�

@
@
@

?
IWIN = 0IWIN = −1

-�

?

?

?

?

?

-

� �
6

Figure 2: pV3 Server and Viewer Event Handling

Next a programmer-supplied routine pVEvents is called with the event data.
pVEvents has the option of passing the event on (doing nothing), performing some action based on
the event, changing the event (by modifying the arguments) or having the event ignored (by setting
IWIN , the window ID, to 0). The other routines described in this document may be called within
pVEvents to inquire and set many of the pV3 internal state variables.

8



On the basis of the value of IWIN , as returned by pVEvents; the event processing section of
pV3 is called when IWIN > 0, the event is ignored if pVEvents sets IWIN = 0, or this phase
is terminated with IWIN = −1. When changing the action of the pV3 server it is important to
remember that nothing will be updated in the windows until pVEvents returns with IWIN = −1.
Also, if pVEvents was called with IWIN = −1 and an event is constructed and passed through to
the event processing section, pVEvents will be re-entered (possibly with IWIN 6= −1), before the
screen gets updated.

Examples of pVEvents, that perform various functions, are contained within the distribution.

9



3 Use of Pointers & FORTRAN in the pV3 Server Suite

Some of the data that gets returned from pV GetPointer, pV GetExtract and pV GetSub is
in the form of pointers to blocks of memory. There are two modes that the pointers may be handled:

• %val

A mechanism exists on all major workstation’s FORTRAN (but NOT on CRAYs) to allow the
pointer to be passed to a SUBROUTINE or FUNCTION and then have the memory treated
as a normally declared vector or array. This is done by the VAX extension ‘%val(pointer)’
used in the CALL or function invocation. When the pointer is passed to the sub-program by
‘value’, it is equivalent to passing a variable by ‘reference’ (the FORTRAN method). That is,
in both cases, the address of the memory of interest is placed in the stack!

In this case, the pointers are treated as INTEGER variables. This causes a problem in porta-
bility. The pointers must be treated as INTEGER*4 variables on all 32 bit machines. On 64
bit machines (ALPHAs and SGIs with R8000, R10000 or R12000 chips, in native mode) the
pointers are INTEGER*8.

• POINTER statment

The POINTER statement supported by most FORTRANs removes the portability problem.
This syntax allows the coupling of a pointer with an array.

Using either mechanism, sophisticated pV3 enhancements may be performed using FORTRAN.
To complete this picture, three additional entries to the server have been added to allow the FOR-
TRAN programmer to allocate and free up blocks of memory.

3.1 MALLOCPV

PTR = MALLOCPV(NBYTES)

This function is equivalent to the C routine ‘malloc’. It allocates a block of memory and returns the
pointer to the block. On 64 bit machines, this function may need to be declared INTEGER*8.

NBYTES:i: I The number of bytes to allocate.

PTR:o: I The address of the block (0 is an error indicator).

3.2 FREEV3

FREEPV(PTR)

This function is equivalent to the C routine ‘free’. It deallocates a block of memory. NOTE: Only
free up blocks of memory that YOU allocate!

PTR:i: I The address of the block.

10



3.3 REALLOCPV

PTRN = REALLOCPV(PTRO, NBYTES)

This function is equivalent to the C routine ‘realloc’. It re-allocates a block of memory and returns the
pointer to the new block. On 64 bit machines, this function may need to be declared INTEGER*8.

PTRO:i: I The address of the block.

NBYTES:i: I The number of bytes to allocate.

PTRN:o: I The address of the new block (0 is an error indicator).

11



4 Server Side Extracts

The following section describes the internal data stored in the pV3 server suite (which includes
pV3Server, pV3Batch and pV3Viewer). This is the data used to produce the graphics objects that
get rendered to make the scene. Each tool generates a different type of extract from the 3D data in
the client(s). The data gets transmitted to the server and is stored for as long as it is needed (or
is written to disk in the case of the batch server). Each extract consists of a number of sub-extract
types, and there is a complete collection of sub-extracts for each client. Note: each client’s data is
stored separately.

4.1 Surfaces

This data is generated by the pV3 scalar tools (planar cuts, structured block planes, programmed
cut surfaces, iso-surfaces and domain surfaces). This data is exposed so that new ‘probes’ may be
easily generated. The size of many of these arrays (and therefore the pointers) will change during
the execution of pV3, so when using this data, get the current pointers before accessing the memory.

Extract Type Valid Sub-Extracts

2 Planar Cut 0 1 2 3 4 5 6 7 9 10*
3 Block Plane 1 2 3 4 5 6 7 8 9 11
4 Geometric Cut 0 1 2 3 4 5 6 7 8 9 10 11
5 Domain Surface 0 1 2 3 4 5 6 7 8 9 10 11
7 Iso-Surface 0 1 2 3 4 5 6 7 10 11

4.1.1 0 - Surface Sub-Extract Tris

The following data defines the disjoint triangle space. Where the number of triangles in the structure
is KTRI.

TRIS: I(4,KTRI) disjoint triangle definitions.

TRIS(1,n) = first node index for the triangle.

TRIS(2,n) = second node index for the triangle.

TRIS(3,n) = third node index for the triangle.

TRIS(4,n) = the parent 3D cell number (in the client).

12



4.1.2 1 - Surface Sub-Extract Quads

The following data defines the disjoint quadrilateral space. Where the number of quadrilaterals in
the structure is KQUAD.

QUADS: I(5,KQUAD) disjoint quadrilateral definitions.

QUADS(1,n) = first node index for the quadrilateral.

QUADS(2,n) = second node index for the quadrilateral.

QUADS(3,n) = third node index for the quadrilateral.

QUADS(4,n) = fourth node index for the quadrilateral.

QUADS(5,n) = the parent 3D cell number (in the client).

4.1.3 2 - Surface Sub-Extract XYZ

The following data defines the 3D coordinates for the nodes (and therefore also the number of nodes)
that support the surface. The number of nodes in the structure is KXYZ. If KXYZ is 1 this is usually
the indication of a sub-extract place-holder and not actual data.

XYZ: R(3,KXYZ) (x, y, z)-coordinates for the nodes.

4.1.4 3 - Surface Sub-Extract Mesh

The following data defines the disjoint lines that make-up the intersection of the cell edges and the
cutting surface. The number of line segments in the structure is KFACE.

FACE: I(2,KFACE) disjoint line definitions.

FACE(1,n) = first node index for the line.

FACE(2,n) = second node index for the line.

4.1.5 4 - Surface Sub-Extract Outline

The following data defines the disjoint lines that make-up the outline of the surface. The number
of line segments in the structure is KEDGE.

EDGE: I(3,KEDGE) disjoint line definitions.

EDGE(1,n) = first node index for the line.

EDGE(2,n) = second node index for the line.

EDGE(3,n) = the parent surface face number (in the client).

4.1.6 5 - Surface Sub-Extract Scalar

The following data defines the current scalar for the nodes (and therefore also the number of nodes)
that support the surface. The number of nodes in the structure is KS and is the same as KXYZ.

S: R(KS) scalar functional values for the nodes.

13



4.1.7 6 - Surface Sub-Extract Vector

The following data defines the current vector for the nodes (and therefore also the number of nodes)
that support the surface. The number of nodes in the structure is KV and is the same as KXYZ.

V: R(3,KV) vector values (V x, V y, V z) for the nodes.

4.1.8 7 - Surface Sub-Extract Threshold

The following data defines the current threshold values for the nodes that support the surface. The
number of nodes in the structure is KT and is the same as KXYZ.

T: R(KT) threshold functional values for the nodes.

4.1.9 8 - Surface Sub-Extract 2D Mapping

The following data defines the 2D mapping for the nodes that support the surface. The number of
nodes in the structure is KXY and is the same as KXYZ.

XY: R(2,KXY) raw (x′, y′)-coordinates as specified by the client.

Notes:
(1) The 2D mapping for planar cuts is implicit and not required from the client.
(2) There is no 2D mapping for iso-surfaces.

4.1.10 9 - Surface Sub-Extract Transformed 2D Mapping

The following data defines the 2D mapping used to draw the surface into the 2D window, where the
viewed range is between −1.0 and 1.0 in both x′ and y′. This is a simple transformation of XY. The
number of nodes in the structure is KXYP and is the same as KXYZ.

XYP: R(2,KXYP) transformed (x′, y′)-coordinates.

Notes:
(1) This data is generated at the server and not transfered from the clients.
(2) If KYXP is zero, the transformation has not yet been computed.
(3) There is no 2D mapping for iso-surfaces.

14



4.1.11 10 - Surface Sub-Extract Tri normals

The following data defines the normals used (for each disjoint triangle). This data is used in the
lighting model for drawing the surface in the 3D window. The number of normals in the structure
is KTRIN and is the same as KTRI.

TRIN: R(3,KTRIN) (x, y, z)-normals for the triangle.

Notes:
(1) This data is generated at the server and not transfered from the clients.
(2) If KTRIN is zero, the normals have not yet been computed.
(3) The normals for planar cuts are implicit and the same for all triangles and therefore this sub-
extract is not used (but the index is reused for clipping).

4.1.12 11 - Surface Sub-Extract Quad normals

The following data defines the normals used for each disjoint quadrilateral. This data is used in the
lighting model for drawing the surface in the 3D window. The number of normals in the structure
is KQUADN and is the same as KQUAD.

QUADN: R(3,KQUADN) (x, y, z)-normals for the quadrilateral.

Notes:
(1) This data is generated at the server and not transfered from the clients.
(2) If KQUADN is zero, the normals have not yet been computed.
(3) The normals for planar cuts are implicit and the same for all quadrilaterals and therefore this
sub-extract is not used.

4.1.13 10* - Surface Sub-Extract Planar clipping

The following data defines the clipping index used for each node. The number of entries in the
structure is KCLIP and is the same as KXYZ.

CLIP: I(KCLIP) 0 - not clipped, otherwise the following are additive:

1 - transformed x′ less than −1.0

2 - transformed x′ greater than 1.0

4 - transformed y′ less than −1.0

8 - transformed y′ greater than 1.0

Notes:
(1) This data is generated at the server and not transfered from the clients.
(2) If KCLIP is zero, the clipping index has not yet been computed.
(3) This sub-extract index is only used for planar cuts so that there is no conflict with triangle
normals.

15



4.2 StreamLines

This data is generated by the pV3 clients during the integration of instantaneous streamlines. The
size of many of these arrays (and therefore the pointers) will change during the execution of pV3,
so when using this data, get the current pointers before accessing the memory. Unlike all other
Extracts, the number of sub-extracts is not a function of the number of clients but of the maximum
allotted streamline segments (that is greater than the number of clients). This allows a streamline
to reenter a client more than once.

4.2.1 0 - StreamLine Sub-Extract Cell

The following data contains the 3D cell number for the position of the point for this segment (used
for the point probe). The number of entries in the structure is KCELL and is the same as KXYZ.

CELL: I(KCELL) the parent 3D cell number (in the client).

4.2.2 1 - StreamLine Sub-Extract Time

The following data defines the integration pseudo-time for the point (used for streamline animation).
Where the number of elements in the structure is KTIME and is the same as KXYZ.

TIME: R(KTIME) integration time (from the seed position).

4.2.3 2 - StreamLine Sub-Extract XYZ

The following data defines the 3D coordinates for the points that support this poly-line segment.
The number of nodes in the structure is KXYZ.

XYZ: R(3,KXYZ) (x, y, z)-coordinates for the points.

4.2.4 3 - StreamLine Sub-Extract Div

The following data defines the cross-flow divergence felt by each point during the integration. Where
the number of elements in the structure is KDIV and this is the same as KXYZ.

DIV: R(KDIV) used for streamtube rendering, where the size of the tube is
based on a starting size mutiplied by e to this power.

4.2.5 4 - StreamLine Sub-Extract Angle

The following data contains the curl for each point, calculated during the integration, in this segment
of the streamline Where the number of entries in the structure is KANG and this is the same value
as KXYZ.

ANG: R(KANG) angle of the twist for ribbons in degrees.

16



4.2.6 5 - StreamLine Sub-Extract Scalar

The following data defines the current scalar for the points that support the line in this segment.
The number of points in the structure is KS and this is the same as KXYZ.

S: R(KS) scalar functional values for the points.

4.2.7 6 - StreamLine Sub-Extract Vector

The following data defines the current vector for the points that make up this segment of the
streamline. The number of elements in the structure is KV and this is the same as KXYZ.

V: R(3,KV) vector values (V x, V y, V z) for the points.

4.2.8 7 - StreamLine Sub-Extract Threshold

The following data defines the current threshold values for the points that support the poly-line.
The number of entries in the structure is KT and is the same as KXYZ.

T: R(KT) threshold functional values for the points.

17



4.3 Particles

This data is updated by the pV3 clients during the bubble integration at each time-step. The size
of many of these arrays (and therefore the pointers) will change during the execution of pV3, so
when using this data, get the current pointers before accessing the memory.

4.3.1 0 - Particle Sub-Extract Number

The following data contains the unique particle number for each bubble in that client. The number
of entries in the structure is KNUM and this is the same as KXYZ.

NUM: I(KNUM) the global particle number.

4.3.2 1 - Particle Sub-Extract Time

The following data defines the start time for each bubble. The number of elements in the structure
is KTIME and this number is the same as KXYZ.

TIME: R(KTIME) bubble simulation time when the particle was seeded.

4.3.3 2 - Particle Sub-Extract XYZ

The following data defines the current 3D coordinates for the particles. The number of nodes in the
structure is KXYZ.

XYZ: R(3,KXYZ) (x, y, z)-coordinates for the bubbles.

4.3.4 3 - Particle Sub-Extract Div

The following data defines the cross-flow divergence currently felt by each bubble. Where the number
of elements in the structure is KDIV and this is the same as KXYZ.

DIV: R(KDIV) optionally used for bubble rendering, where the size of the par-
ticle is based on a starting size mutiplied by e to this power.

4.3.5 5 - Particle Sub-Extract Scalar

The following data defines the current scalar for the particles in this client. The number of points
in the structure is KS and this is the same as KXYZ.

S: R(KS) scalar functional values for the bubbles.

18



4.3.6 6 - Particle Sub-Extract Vector

The following data defines the current vector for the particles. The number of elements in the
structure is KV and this number is the same as KXYZ.

V: R(3,KV) vector values (V x, V y, V z) for the bubbles.

4.3.7 7 - Particle Sub-Extract Threshold

The following data defines the current threshold values for the particles. The number of entries in
the structure is KT and is the same as KXYZ (the number of bubbles).

T: R(KT) threshold functional values for the bubbles.

4.3.8 10 - Particle Sub-Extract Group Index

The following data defines the current group number for the particles. The number of entries in the
structure is KGI and is the same as KXYZ (the number of bubbles).

GI: I(KGI) group index for the bubbles (used for time lines).

19



4.4 Vector Clouds

4.4.1 2 - VC Sub-Extract XYZ

The following data defines the coordinates for the 3D nodes that satisfy the threshold limits within
each client. The number of nodes in the structure is KXYZ.

XYZ: R(3,KXYZ) (x, y, z)-coordinates for the vector cloud.

4.4.2 5 - VC Sub-Extract Scalar

The following data defines the current scalar for the vector cloud The number of points in the
structure is KS and this number is the same as KXYZ.

S: R(KS) scalar functional values for the 3D nodes.

4.4.3 6 - VC Sub-Extract Vector

The following data defines the current vector for each node in the client that satisfies the threshold
limits. The number of elements in the structure is KV and this number is the same as KXYZ.

V: R(3,KV) vector values (V x, V y, V z) for the vector cloud.

20



4.5 Points

This data is updated by the pV3 clients after a Point extract is created. See the pV3 Server
Builder’s Guide.

4.5.1 0 - Point Sub-Extract Index

The following data contains the index (bias 1) from the original list for this point. The number of
entries in the structure is KINDX and this is the same as KXYZ.

INDX: I(KINDX) the point index.

4.5.2 1 - Point Sub-Extract Cell Index

The following data contains the cell index in the client that contains the point. The number of
entries in the structure is KICEL and this is the same as KXYZ.

ICEL: I(KICEL) the cell index.

4.5.3 2 - Point Sub-Extract XYZ

The following data defines the coordinates for the 3D points requested from within each client. The
number of nodes in the structure is KXYZ.

XYZ: R(3,KXYZ) (x, y, z)-coordinates for the points.

4.5.4 3 - Point Sub-Extract Local Block Index

The following data contains the clients local block index (bias 1) for this point. An index of zero is
an indication that the point is not in a structured block. The number of entries in the structure is
KLNIN and this is the same as KXYZ.

LBIN: I(KLBIN) the structured block index.

4.5.5 4 - Point Sub-Extract IJK Indices

The following data defines the IJK (with fraction) for the points requested from within each client.
This contains valid data if the point is contained within a structured block. The indices are local
to the clients numbering. The number of entries in the structure is KIJK and this is the same as
KXYZ.

IJK: R(3,KIJK) (I, J,K)-indices for the points.

21



4.5.6 5 - Point Sub-Extract Scalar

The following data defines the current scalar for the point extract. The number of points in the
structure is KS and this number is the same as KXYZ.

S: R(KS) scalar functional values for the requested points.

4.5.7 6 - Point Sub-Extract Vector

The following data defines the current vector for each node in the client. The number of elements
in the structure is KV and this number is the same as KXYZ.

V: R(3,KV) vector values (V x, V y, V z) for the points.

4.5.8 7 - Point Sub-Extract Threshold

The following data defines the current threshold values for the requested points. The number of
nodes in the structure is KT and is the same as KXYZ.

T: R(KT) threshold functional values for the points.

22



5 Server Suite Supplied Routines and Calls

Consistant with the pV3 naming convension, the routines that are part of pV3’s server suite are
prefixed with ‘pV ’, those that are supplied by the programmer start with ‘pV’.

5.1 pVEvents

PVEVENTS(IWIN,TYPE,XE,YE,STATE)

This subroutine is called by the pV3 server or viewer immediately after an X event has been pulled
of the queue. This routine may perform certain functions based on the event, change the event
status, have the server (or viewer) ignore the event or just do nothing. Not called in the batch server
– pV3Batch.

IWIN:i/o: I The X window ID of the event or:

IWIN=-1 No more events to process, therefore pass the con-
trol of the server to the data collection phase

IWIN=0 Output only. Ignore this event and pull the next one
off the queue

NOTE: this must be INTEGER*8 (or long) on 64 bit machines.

TYPE:i/o: I The event type. The event types that pV3 windows can gen-
erate are:

TYPE=2/3 KeyPress/KeyRelease

TYPE=4/5 ButtonPress/ButtonRelease

TYPE=12 Expose

TYPE=14 NoExpose

TYPE=33 X ClientEvent

XE:i/o: I The X pixel location in the window of the event (0 is the left)

YE:i/o: I The Y pixel location in the window of the event (0 is the top of
the window)

STATE:i/o: I The event state. For Key events, the state is the X KeySym
number (usually the ASCII code except for the special keys).
For mouse button events, the state is the button number.

5.2 pV Cursor

PV CURSOR(FLAG)

This subroutine can be used by certain programmer-supplied routines when the programmer wants
to add a function which needs user input from the text window. Should not be called from the batch
server.

FLAG:i: L FLAG=.TRUE. Move cursor to text window

FLAG=.FALSE. Move cursor back to previous window

23



5.3 pV GetPointer

PV GETPOINTER(OPT,PTR)

Returns the internal pV3 server structure. This routine can be called from any programmer-supplied
code in the interactive server or post-processing viewer.

OPT:i: I Option set to specify what data to get.

PTR:o: I Integer (in FORTRAN) used as a pointer to the structure.
FORTRAN Note: this must be INTEGER*8 on 64-bit ma-
chines.

• OPT = 0 - X Event Structure:

PTR = *XEvent - Useful for building Graphical User Interfaces (GUIs) on the pV3 server
or viewer. Allows passing the event information to tool-kits such as Motif. This need
only be called once. The same structure is used for all event handling.

• OPT = 1 - X window structure for the 1D Window

• OPT = 2 - X window structure for the 2D Window

• OPT = 3 - X window structure for the 3D Window

• OPT = 4 - X window structure for the Dails Window

• OPT = 5 - X window structure for the Key Window

• OPT = 6 - X window structure for the Text Window

• OPT = 7 - X pointer for the Comparison Window (0 means the window is not open)

• OPT = 8 - X window structure for the Root Window

• OPT = 9 - X pointer for the Servers Window (0 means the window is not open)

PTR = *Window - for the appropriate Window

24



5.4 pV GetState

PV GETSTATE(OPT,IVEC,RVEC,STRING)

Returns the internal pV3 state. This pV3 server suite routine can be called from any programmer-
supplied code linked with the server, batch server or viewer.

OPT:i: I Option set to specify what data to get

IVEC:i/o: I() Integer data returned based on OPT (length also determined
by OPT). Some OPTs control actions on input.

RVEC:o: R() Real data returned based on OPT (length also determined by
OPT)

STRING:o: C Character data returned based on OPT

NOTE: The symbol † indicates global data (not discipline specific) in multi-disciplinary runs.
All non-marked options are related to the current discipline.

• OPT = -8 - Get client discretization:

IVEC(1) = Client index - Input (1 to total number of clients)

IVEC(2) = NNODE - Number of nodes

IVEC(3) = KCEL1 - Number of tets

IVEC(4) = KCEL2 - Number of pyramids

IVEC(5) = KCEL3 - Number of prisms

IVEC(6) = KCEL4 - Number of hexas

IVEC(7) = KNPTET - Number of polytet strips

IVEC(8) = KPTET - Number of polytet cells

IVEC(9) = KNBLK - Number of structured blocks

IVEC(10) = KPHEDRA - Number of complex polyhedra

• OPT = -7 - Get client block sizes:

IVEC(1) = Client index - Input (1 to total number of clients)

IVEC(2) = Block index - Input (1 to KNBLK from OPT = -8)

IVEC(3) = Ni

IVEC(4) = Nj

IVEC(5) = Nk

• OPT = -6 - Get programmer-defined cut data:

IVEC(1) = Cut index - Input (1 to total number of cuts, 0 returns only IVEC(2))

IVEC(2) = NPGCUT - total number of programmer-defined cuts

STRING = TPGCUT - title for cut indexed by IVEC(1)

25



• OPT = -5 - Get field variable data:

IVEC(1) = Field Variable Index - Input (1 to total number of field variables, 0 returns
only IVEC(4))

IVEC(2) = FKEYS - function type for field variable indexed by IVEC(1)

IVEC(3) = IKEYS - X-keypress for activation

IVEC(4) = NKEYS - total number of field variables

RVEC(1-2) = FLIMS - limits for variable indexed by IVEC(1)

STRING = TKEYS - title for the field variable indexed by IVEC(1)

• † OPT = -4 - Get 3D cursor data:

IVEC(1) = Discipline ID

IVEC(2) = Client index - 1 to total number of clients

IVEC(3) = Cell index - the cell index in the client

IVEC(4) = Mask - −1 for no data, or:

0 - No Scalar or Vector

1 - Scalar

2 - Vector

3 - Scalar and Vector

RVEC(1-3) = XYZ position

RVEC(4) = Time - simulation time for this data

RVEC(5) = Scalar value

RVEC(6-8) = Vector values

• OPT = -3 - Get client data:

IVEC(1) = Client index - input (1 to total number of clients)

IVEC(2) = PVM tid - the PVM task id of the client index

IVEC(3) = IOPT - unsteady option for the client index

IVEC(4) = Number of clients - the total number of clients

IVEC(5) = State-Vector rank - 0 for no state vector

STRING = Partition name - maximum of 20 characters used.

• † OPT = -2 - Get unsteady info:

IVEC(1) = IOPT - maximum for all clients

IVEC(2) = Pause State - 0 not paused, 1 paused, 2 single-step

RVEC(1) = Time - simulation time currently displayed. This has no meaning for steady-
state or Non-Time Accurate cases.

STRING = SubTitle - the subtitle returned from the clients.

26



• † OPT = -1 - Get special key bindings. IVEC is filled with 32 integers that are the X

KeySyms for the non-ASCII keys used by pV3. A file ‘KeyBoard’ contains the default pV3

server KeySyms and the associated labels. These values may be modified and used by the
server if the environment variable ‘Visual KB’ is set to point to the file containing the new
bindings.

• † OPT = 0 - Get Rev number:

IVEC(1) = pV3 flag always -1

IVEC(2) = pV3 type :

0 - Interactive Server

1 - Batch Server

2 - Post-Processing Viewer

3 - Programmed Server

RVEC(1) = Revision Number

• † OPT = 1 - Get the current transformation matrix for the 3D view. 12 words of RVEC are
used.

• † OPT = 2 - Get the current planar cut coordinates. 9 words of RVEC are used for 3 of the 4
corners of the cut plane in 3 space.

• OPT = 3 - Get the current scalar tool status.

IVEC(1) = Current Tool :

0 - No tool

1 - Structured block plane

2 - Planar cut

3 - Planar cut positioning on

4 - Programmed cut

5 - Mapped surface

6 - Mapped surface with surface functions

7 - Iso-surface

IVEC(2-8) = Block Indces - for 1 above

IVEC(2) = Cut Index - for 4 above

RVEC(1) = Current ZPRIME - for 2, 4 and 7 above

RVEC(2) = XPC - for 1, 4, 5 and 6

RVEC(3) = YPC - for 1, 4, 5 and 6

RVEC(4) = HALFW - for 1, 4, 5 and 6

RVEC(5) = 2D Rotation Angle in degrees - for 1, 4, 5 and 6

RVEC(6) = Zmin - for 2, 3, 4, and 7 above

RVEC(7) = Zmax - for 2, 3, 4, and 7 above

RVEC(8) = Time - Time when RVEC(6) and RVEC(7) were last updated.

27



• † OPT = 4 - Lighting and Mirroring state:

IVEC(1) = Mirror status :

0 - No Mirroring

1 - Mirror about X = 0.0

2 - Mirror about Y = 0.0

3 - Mirror about Z = 0.0

IVEC(2) = Number of Lights maximum is 8

RVEC(1-3) = Ambient light color (r,g,b) - values between 0.0 and 1.0

• OPT = 5 - Scalar state:

IVEC(1) = Binding index

RVEC(1) = Minimum for display - fmin shown in the key window

RVEC(2) = Maximum for display - fmax shown in the key window

RVEC(3) = Minimum scalar function for the entire node space

RVEC(4) = Maximum scalar function for the entire node space

RVEC(5) = Time RVEC(3) and RVEC(4) last updated

STRING = Scalar title - maximum of 32 characters used

• OPT = 6 - Vector state:

IVEC(1) = Binding index

RVEC(1) = Vector scale - the scale factor for tufts and arrows

RVEC(2) = Maximum Vector Magnitude for the entire node space

RVEC(3) = Time RVEC(2) last updated

STRING = Vector title - maximum of 32 characters used.

• OPT = 7 - Threshold state:

IVEC(1) = Binding index - negative value indicates the appropriate scalar index

IVEC(2) = Vector Cloud status - 0 = off, 1 = on

IVEC(3) = Dynamic Threshold status - 0 = off, 1 = on

RVEC(1) = Minimum for display - tmin shown in the key window

RVEC(2) = Maximum for display - tmax shown in the key window

RVEC(3) = Minimum scalar function for the entire node space

RVEC(4) = Maximum scalar function for the entire node space

RVEC(5) = Time RVEC(3) and RVEC(4) last updated

STRING = Threshold title - maximum of 32 characters used.

28



• † OPT = 8 - User response status:

IVEC(1) = First mouse button action - 0 = no button press

IVEC(2) = X pixel location for action

IVEC(3) = Y pixel location for action

IVEC(4) = Second mouse button action

IVEC(5) = X pixel location for action

IVEC(6) = Y pixel location for action

STRING = Text answer

The data in IVEC is valid for those operations that require snapping a line/circle or a ‘rubber-
band’ box.

• † OPT = 9 - Light Status:

IVEC(1) = Light number - input (1 to the number of lights)

RVEC(1-3) = Light color (r,g,b) - values between 0.0 and 1.0

RVEC(4-6) = Light normal

• OPT = 10 - Current domain/static surface state:

IVEC(1) = Surface index

IVEC(2) = Current drawing state - see the Appendix

IVEC(3) = Surface type :

2 - Planar cut
RVEC is filled with the 9 words (for the corners) at the time of the cut. This is like
OPT = 2.

4 - Programmer-defined cut
RVEC(1) contains the ZPrime value.

5 - Domain surface

7 - Iso-surface
RVEC(1) contains the iso-surface value.

IVEC(4) = Maximum number of surfaces

STRING = Surface title - maximum of 20 characters used.

29



• OPT = 11 - Current streamline state:

IVEC(1) = Current streamline group number - 0 no streamlines active

IVEC(2) = Current drawing state - See Appendix

IVEC(3) = Stream group number

IVEC(4) = Maximum number of streamline groups

IVEC(5) = Global Surface number - 0 indicates a volume streamline

RVEC(1) = Ribbon rotation in degrees

RVEC(2) = Ribbon/Tube size

RVEC(3) = Tube limitter

RVEC(4) = Time limitter - 0.0 indicates no limitting

STRING = Streamline title - maximum of 20 characters used.

• OPT = 12 - Client visibility state:

IVEC(1) = Client index - input

IVEC(2) = Visibility state - 0 is off / 1 is on.

STRING = Partition name - maximum of 20 characters used.

• OPT = 13 - Current probe state:

IVEC(1) = 1D plot type :

0 - no plot

1 - StreamLine Probe

2 - Strip Chart

3 - Line Probe

4 - Edge Plot

5 - Surface Layer Scan

6 - Programmer-defined probe

IVEC(2) = Point Probe status - 0 (off) or 1 (on)

IVEC(3) = Reference line status - 0 (off) or 1 (on)

RVEC(1) = X Minimum for plot

RVEC(2) = X Maximum for plot

RVEC(3) = Y Minimum for plot

RVEC(4) = Y Maximum for plot

30



• OPT = 14 - Global drawing state:

IVEC(1) = Edge Outline status - 0 (off), 1 (on - default), 2 (no internal boundary edges)

IVEC(2) = Handedness † -1 (left - default), 1 (right handed)

IVEC(3) = Transparent Plane † 0 (no plane for the planar cut), 1 (display the plane -
default)

IVEC(4) = Outline 3D Rendering † 0 (normal 3D drawing - default), 1 (only the outline)

RVEC(1) = Object Radius † The radius of the sphere that encloses the object(s).

RVEC(2) = Line Adjustment † The amount that lines are displaced (towards the viewer)
so that the surfaces do not obscure them.

RVEC(3) = Screen Z Clip value † data added to screen Z to move object(s) into the front
or back clipping plane.

RVEC(4) = Feature Line Dot - The value of the dot-product between Domain Surface
facet normals below which the shared edge is displayed when the Feature Line attribute
is set. Default: 0.0 - no Feature Lines, maximum value is 1.0 (same as turing the enitire
on).

• OPT = 15 - Dynamic surface and Arrow state:

IVEC(1) = Current drawing state - see the Appendix

IVEC(2) = Number of tufts - the number of tufts on a side

IVEC(3) = 3D Arrow representation :

0 - Line segment

1 - Line segment with colored head

2 - Open head

3 - Closed head

RVEC(1) = Vector scale - the scale factor for tufts and arrows

RVEC(2) = Vector scale for surface functions - the scale factor used with tufts and
arrows for special surface functions

RVEC(3) = 3D Arrow head length ratio

RVEC(4) = 3D Arrow head spread ratio

31



• OPT = 16 - StreamLine/Bubble drawing state:

IVEC(1) = StreamLine representation (when seeded):

0 - StreamLine

1 - Ribbon

2 - StreamTube

3 - Tubes with twist

IVEC(2) = Bubble rendering :

0 - off

1 - Rendered in foreground color

2 - Rendered using scalar color

3 - Rendered with surface function (for Surface particles only)

IVEC(3) = Current Surface/Volume setting :

0 - Volume Scalar/Volume Vector

1 - Surface Scalar/Volume Vector

2 - Volume Scalar/Surface Vector

3 - Surface Scalar/Surface Vector

• OPT = 17 - Key and Colormap state:

IVEC(1) = Key status :

0 - Scalar

1 - Special Surface Scalar

2 - † Time

IVEC(2) = Number of entries in colormap

IVEC(3) = Number of entries in background colormap - between 1 and 4

• OPT = 18 - Get colormap entry in current Key colormap:

IVEC(1) = index - set on input:

-2 - Foreground: used for outlines and pseudo-cursors, usually white

-1 - Midground: used for 1D cursor and solid surfaces, usually grey

0 - Background: used for Dial and 1D window background, usually black

1-on - Colormap/background colormap entry. The background colormap indices follow
the colormap entries.

RVEC(1-3) = The color (r,g,b) - values between 0.0 and 1.0

32



• OPT = 19 - Contouring state:

IVEC(1) = Dynamic contour status - 0 = off, 1 = on

IVEC(2) = Number of contour levels

• OPT = 20 - Surface Scalar state:

IVEC(1) = Binding index

RVEC(1) = Minimum for display - fsmin shown in the key window

RVEC(2) = Maximum for display - fsmax shown in the key window

STRING = Scalar title - maximum of 32 characters used.

• OPT = 21 - Surface Vector state:

IVEC(1) = Binding index

RVEC(1) = Vector scale - the scale factor for tufts and arrows

STRING = Vector title - maximum of 32 characters used.

• † OPT = 22 - Discipline state:

IVEC(1) = current discipline index - 0 to the number of disciplines −1

IVEC(2) = number of disciplines

IVEC(3) = discipline index for rendering - −1 indicates that no rendering is in progress

RVEC(1-3) = offset - default at (0.0, 0.0, 0.0)

RVEC(4) = scale - default at 1.0

STRING = discipline title - maximum of 20 characters used.

• OPT = 23 - Replication state:

IVEC(1) = Client index - input (1 to the number of clients)

IVEC(2) = Instance state - for plotting:

n - plot n additional objects

0 - allow the use of global mirroring

-1 - Mirror about X = 0.0 for this client

-2 - Mirror about Y = 0.0 for this client

-3 - Mirror about Z = 0.0 for this client

-4 - no mirroring or instancing

IVEC(3) = Total number of replicants - 0 indicates that there can be no replication

RVEC(1-16) = Replication Matrix - Any rotation and translation of objects can be de-
fined via this 4x4 transformation matrix. It allows pure rotation like in axial turboma-
chinery or any combination of translation and/or rotation. This matrix is defined at the
client.

33



• OPT = 24 - Replication mask:

IVEC(1) = Client index - input (1 to the number of clients)

IVEC(2) = Instance index - input (1 to n) from OPT = 23.

IVEC(3) = Mask :

0 - Do not plot this instance

1 - Plot

34



5.5 pV SetState

PV SETSTATE(OPT,IVEC,RVEC,STRING)

Sets the internal pV3 server module state. This routine can only be called from pVEvents or
pVSafe.

OPT:i: I Option set to specify what internal state data to change

IVEC:i: I() Integer data set based on OPT (length also determined by OPT)

RVEC:i: R() Real data set based on OPT (length also determined by OPT)

STRING:i: C Character data set based on OPT

NOTE: The symbol † indicates global data (not discipline specific) in multi-disciplinary runs.
All non-marked options relate to the current discipline or the discipline index is explicitly defined.

• OPT = -3 - Send the string in STRING to all clients.

• † OPT = -2 - Force the simulation time to the value found in RVEC(1). Post-Processing
Viewer only.

• † OPT = -1 - Force a 3D and 2D window update. This tells pV3 to do a complete redraw
including the static objects.

• OPT = 0 - Obsolete. See pV GetState and pV SetState with OPT = 23.

• † OPT = 1 - Set the current transformation matrix for the 3D view. 12 words of RVEC are
used.

• † OPT = 2 - Set the current planar cut coordinates. 9 words of RVEC are used for 3 of the 4
corners of the cut plane in 3 space.

• OPT = 3 - Set the current scalar tool values:

IVEC(1) = Tool Flag - If this value is positive and no other scalar tool is on, this indicates
that a structured block plane is desired. This number is the global block number. If this
number is negative (and the negated value of the current global block number) then the
tool is turned off.

IVEC(2-7) = Block Indices - These are the values for Imin, Imax, Jmin, Jmax, Kmin and
Kmax respectively. One pair must contain equal indices – this is the plane that will be
spanned by the other indices. If a min value is set to zero it will be internally reset to
one. Any max that is zero indicates the maximum extent of that block index range.

RVEC(1) = ZPRIME

RVEC(2) = XPC

RVEC(3) = YPC

RVEC(4) = HALFW

RVEC(5) = 2D Rotation Angle in degrees

35



NOTES:
1) If you don’t wish to change all of the above call pV GetState(3,IVEC,RVEC,STRING) first!
2) Set IVEC(1) = 0 for any non-structured block interactions.

• † OPT = 4 - Set Lighting and Mirroring state:

IVEC(1) = Mirror status :

0 - No Mirroring

1 - Mirror about X = 0.0

2 - Mirror about Y = 0.0

3 - Mirror about Z = 0.0

IVEC(2) = Number of Lights maximum is 8

RVEC(1-3) = Ambient light color (r,g,b) - values between 0.0 and 1.0

• OPT = 5 - Scalar state:

IVEC(1) = Binding index - allows the changing of the current scalar function.
A negative value indicates that the current scalar is not changed but the (absolute value
of) the index should be reloaded at the clients and the min and max recalculated. Can
also be used with threshold fields.

RVEC(1) = Minimum for display - fmin shown in the key window

RVEC(2) = Maximum for display - fmax shown in the key window

STRING = Scalar title - up to 32 characters used (blank indicates no change)

• OPT = 6 - Vector state:

IVEC(1) = Binding index - allows the setting of the current vector field.
A negative value indicates that the current vector is not changed but the (absolute value
of) the index should be reloaded and the range recalculated.

RVEC(1) = Vector scale - the scale factor for tufts and arrows

STRING = Vector title - up to 32 characters used (blank indicates no change)

• OPT = 7 - Threshold state:

IVEC(1) = Binding index - negative value indicates the appropriate scalar index

IVEC(2) = Vector Cloud status - 0 = off, 1 = on

IVEC(3) = Dynamic Threshold status - 0 = off, 1 = on

RVEC(1) = Minimum for display - tmin shown in the key window

RVEC(2) = Maximum for display - tmax shown in the key window

STRING = Threshold title - up to 32 characters used (blank string indicates no change).
You cannot change the title of a scalar threshold with this function.

36



• † OPT = 8 - Enter user response:

IVEC(1) = First mouse button action - 0 = no button press

IVEC(2) = X pixel location for action

IVEC(3) = Y pixel location for action

IVEC(4) = Second mouse button action

IVEC(5) = X pixel location for action

IVEC(6) = Y pixel location for action

STRING = Text answer

The data in IVEC is required for those operations that snap a line/circle or a ‘rubber-band’
box.

• † OPT = 9 - Set Lights:

IVEC(1) = Light number - 1 to the number of lights

RVEC(1-3) = Light color (r,g,b) - values between 0.0 and 1.0

RVEC(4-6) = Light normal

• OPT = 10 - Domain/static surface state:

IVEC(1) = Surface index (-) value indicates that the numbered surface should be deleted
without effecting what is the current surface

IVEC(2) = Current drawing state - value < 0 doesn’t change the state. See the Ap-
pendix.

STRING = Surface title - maximum of 20 characters used (blank string indicates no change).
Only for Domain surfaces.

• OPT = 11 - Streamline state:

IVEC(1) = Streamline group index (-) value indicates that the numbered streamline group
should be deleted without effecting what is the current streamline index

IVEC(2) = Current drawing state - value < 0 doesn’t change the state. See the Ap-
pendix.

RVEC(1) = Ribbon rotation in degrees

RVEC(2) = Ribbon/Tube size

RVEC(3) = Tube limitter

RVEC(4) = Time limitter - 0.0 indicates no limitting

STRING = Streamline title - maximum of 20 characters used (blank string indicates no
change). Warning: changing the name of a streamline may cause problems!

37



• OPT = 12 - Set client visibility state:

IVEC(1) = Client index - input

IVEC(2) = Visibility state - 0 is off / 1 is on.

STRING = Partition name - maximum of 20 characters used.

• OPT = 13 - Set probe state:

IVEC(1) = 1D plot type :

0 - turn off plot

1 - Streamline Probe

6 - start Programmer-defined probe

Note: use the proper ‘events’ for initiating the other probes.

• OPT = 14 - Set global drawing state:

IVEC(1) = Edge Outline - 0 (off), 1 (on), 2 (no internal boundary edges)

IVEC(2) = Handedness † -1 (left handed), 1 (right handed)

IVEC(3) = Transparent Plane † 0 (no plane for the planar cut), 1 (display the plane)

IVEC(4) = Outline 3D Rendering † 0 (normal 3D drawing), 1 (only the outline)

RVEC(1) = Object Radius † The radius of the sphere that encloses the object(s).

RVEC(2) = Line Adjustment † The amount that lines are displaced (towards the viewer)
so that the surfaces do not obscure them.

RVEC(3) = Screen Z Clip value † data added to screen Z to move object(s) into the front
or back clipping plane.

RVEC(4) = Feature Line Dot - The value of the dot-product between Domain Surface
facet normals below which the shared edge is displayed when the Feature Line attribute
is set. 0.0 - no Feature Lines, maximum value is 1.0.

• OPT = 15 - Set Dynamic surface and Arrow state:

IVEC(1) = Current drawing state - see the Appendix

IVEC(2) = Number of tufts - the number of tufts on a side

IVEC(3) = 3D Arrow representation :

0 - Line segment

1 - Line segment with colored head

2 - Open head

3 - Closed head

RVEC(1) = Vector scale - the scale factor for tufts and arrows

RVEC(2) = Vector scale for surface functions - the scale factor used with tufts and
arrows for special surface functions

RVEC(3) = 3D Arrow head length ratio

RVEC(4) = 3D Arrow head spread ratio

38



• OPT = 16 - Set StreamLine/Bubble drawing state:

IVEC(1) = StreamLine seed representation :

0 - StreamLine

1 - Ribbon

2 - StreamTube

3 - Tubes with twist

IVEC(2) = Bubble rendering :

0 - off

1 - Rendered in foreground color

2 - Rendered using scalar color

3 - Rendered with surface function (for Surface particles only)

IVEC(3) = Current Surface/Volume setting :

0 - Volume Scalar/Volume Vector

1 - Surface Scalar/Volume Vector

2 - Volume Scalar/Surface Vector

3 - Surface Scalar/Surface Vector

• OPT = 17 - Set Key and Colormap state:

IVEC(1) = Key status :

0 - Scalar

1 - Special Surface Scalar - if any Surface Scalars

2 - † Time

IVEC(2) = Number of entries in colormap

IVEC(3) = Number of entries in background colormap - between 1 and 4

This forces a Key Window redraw. When changing the colors, first set the Key state (Scalar,
Surface Scalar or Time) if not already correct, then set the new colormap entries (calls with
OPT = 18) and finally (again) make this call.

• OPT = 18 - Set colormap entry in current Key colormap:

IVEC(1) = index :

-2 - Foreground: used for outlines and pseudo-cursors - Key independent

-1 - Midground: used for 1D cursor and solid surfaces - Key independent

0 - Background: used for Dial and 1D window background - Key independent

1-on - Colormap/background colormap entry. The background colormap indices follow
the colormap entries.

RVEC(1-3) = The color (r,g,b) - values between 0.0 and 1.0

39



• OPT = 19 - Set Contouring state:

IVEC(1) = Dynamic contour status - 0 = off, 1 = on

IVEC(2) = Number of contour levels - must be greater than 1

• OPT = 20 - Set Surface Scalar state:

IVEC(1) = Binding index

RVEC(1) = Minimum for display - fsmin shown in the key window

RVEC(2) = Maximum for display - fsmax shown in the key window

STRING = Scalar title - maximum of 32 characters used (blank string indicates no change)

• OPT = 21 - Set Surface Vector state:

IVEC(1) = Binding index

RVEC(1) = Vector scale - the scale factor for tufts and arrows

STRING = Vector title - maximum of 32 characters used (blank string indicates no change)

• † OPT = 22 - Set Discipline state:

IVEC(1) = Set discipline index - 0 to the number of disciplines −1. pV3 must not be
rendering for this to take effect.

IVEC(2) = Redraw key and dials windows - 0 no redraw / 1 redraw (not to be called
from PVSAFE).

RVEC(1-3) = offset - default at (0.0, 0.0, 0.0)

RVEC(4) = scale - default at 1.0

NOTE: This should not be called while rendering is active.

• OPT = 23 - Set Replication state:

IVEC(1) = Client index - 1 to the number of clients

IVEC(2) = Instance state - for plotting:

n - plot n additional objects (max is the number of replicants)

0 - allow the use of global mirroring

-1 - Mirror about X = 0.0 for this client

-2 - Mirror about Y = 0.0 for this client

-3 - Mirror about Z = 0.0 for this client

-4 - no mirroring or instancing

40



• OPT = 24 - Set Replication mask:

IVEC(1) = Client index - 1 to the number of clients

IVEC(2) = Instance index - 1 to n (from OPT = 23).

IVEC(3) = Mask :

0 - Do not plot this instance

1 - Plot

41



5.6 pVSafe

PVSAFE()

This programmer-supplied routine is called when the graphics thread of the server is stalled. This
is the time where calls can be made that require neither thread to be active. The buffers have not
been swapped, so that queries of extracts will look at the last state.

No Arguments

NOTES:
1) The first call to PVSafe is done when there is only one thread. This should be used to register all
extracts (at least for the first allocation). This allows the ‘batch’ server to know what programmer-
supplied data is going to be generated and therefore can enter this information in the output file
header.
2) Calls to pV SetState that cause any drawing (OPTs = 5, 7, 10, 11, 12, 17, 18, and 20) must be
avoided.

5.7 pV Register

PV REGISTER(INDEX, NAME, SUBTYPE, SUBSIZE, SUBOPT, SUBLOC,

ROUTINE, EXNUM)

Registers a programmer-defined extract with the pV3 server. This routine should only be called
when the threads are sync’ed, therefore the only valid place to execute this routine is within pVSafe.
For multi-disciplinary cases, the discipline index must be set so that the extract is regestered within
the appropriate discipline.

INDEX:i: I The extract index. This number must be greater that 100 and
defines an extract. Different disciplines must use unique extract
indices!

NAME:o: C*20 Extract name.

SUBTYPE:i: I(12) The subextract types. Each extract is composed of up to 12
subextracts for each client. This vector defines whether the
subextract is an integer (0) or a real (1).

SUBSIZE:i: I(12) The subextract size per length. For example, if the subextract
is for the 3D coordinates (X,Y,Z) that support the extract, the
size would be 3.

SUBOPT:i: I(12) The level of unsteadyness that requires the data at every time-
step. Valid entries are 0 to 3 (where 3 is a special flag for a
server-side only subextract). The following table specifies what
action is taken with an existing subextract:

Client’s OPT − > 0 1 2 3

SUBOPT = 0 leave refill refill refill
SUBOPT = 1 leave leave refill refill
SUBOPT = 2 leave leave leave refill

42



SUBLOC:i: I(12) The subextract’s locality. If this subextract comes from the
clients then the value is -1. If this subextract is local to the
server and it’s length is set by another subextract, then SUBLOC
must contain the index (0 biased) to that subextract. SUB-
OPTs for local subextracts must match that of the keyed subex-
tract.

ROUTINE:i This is the programmer-supplied routine that will be called to
render the data associated with this extract.
FORTRAN programmers must declare the subroutine ‘EXTER-
NAL’ in the calling module.

EXNUM:o: I This is a status return. If the value is zero or greater, that
indicates success. The value is the number used for multiple
allocations of extracts with the same INDEX (that use the same
rendering routine). If the number is negative it is an indication
of an error:

-1 - Invalid INDEX number

-2 - Invalid SUBTYPE in one of the entries

-3 - Invalid SUBSIZE in one of the entries

-4 - Invalid SUBOPT in one of the entries

-5 - Invalid SUBLOC in one of the entries

-6 - SUBTYPE mismatch for subsequent calls using
INDEX

-7 - SUBSIZE mismatch for subsequent calls

-8 - SUBOPT mismatch for subsequent calls

-9 - SUBLOC mismatch for subsequent calls

-10 - ROUTINE mismatch for subsequent calls

-11 - Allocation error

-12 - Routine not called from pVSafe

-13 - SUBOPTs mismatch for local subextract

NOTES:
1) Having an extract that contains only subextracts that are SUBOPT=3 or SUBLOC>=0 will not
request any data from the clients.
2) The length of a server-side subextract must be set by a call to pV SetSub.

ROUTINE must have the form:
ROUTINE(ISTAT, EXNUM, PLOTMASK, CID, CNT,

LEN0,SUB0, .... LEN11,SUB11)

The programmer-supplied render routine for a registered extract. This routine is called for each
active, visible pV3 client. And, this routine will be called during the 3 stages of the 3D window’s
rendering. The drawing should be done by calls to pV Object3D. See pVDraw3D.

43



ISTAT:i: I Rendering stage:

0 - rendering for static object(s)

1 - rendering for dynamic object(s)

2 - rendering for translucent object(s)

EXNUM:i: I The extract number.

PLOTMASK:i: I The value that describes the drawing state of the extract.

CID:i: I Client-id for this set of subextracts.

CNT:i: I The client count (always starts at zero). Note: clients with
visibility turned off are not included in the count.

LENn:i/o: I The length of the subextracts. If the value is zero for a non-
local extract then there is no data for this subextract. If the
value is zero for a local subextract (and the keyed length is
non-zero) then this routine can fill the subextract and set the
length to the size of the keyed subextract. If the value is −1 for
a local subextract, then there was some problem in allocation.
Do NOT fill the subextract in this case!

SUBn:i/o The subextracts. The size and type are determined by the call
to register the extract.

5.8 pVSetExtract

PVSETEXTRACT(INDEX,EXNUM,PLOTMASK,REQMASK,IVAL,RVEC)

This routine gets called for each registered extract. The programmer must supply data associated
with the status for the next set of requests from the clients. The post-processing viewer only needs
PLOTMASK returned.

INDEX:i: I The extract index. This number must be greater that 100 and
defines an extract (and discipline).

EXNUM:i: I The extract number associated with INDEX.

PLOTMASK:o: I Programmer defined integer that specifies the plot attributes
for the extract. This is passed to the render routine.

REQMASK:o: I The request mask. Each bit specifies which subextracts are
required to statisfy the plotting attributes. For example, 5 re-
quests subextract 0 and subextract 2. If the most-significant bit
is set all subextracts are requested, even if based on SUBOPT,
the data exists (i.e. some state has changed).

IVAL:o: I An integer sent to the clients associated with this extract.

RVEC:o: R(9) A real vector of data sent to the clients with the request for this
extract.

44



5.9 pV GetExtract

PV GETEXTRACT(EX,TYPE,NUM,IVEC,RVEC,NAME,NEXTEX)

Returns the internal pV3 extract structure info. This routine can be called from any server suite
programmer-supplied code. The extracts form a linked list. There is a unique list for each discipline.
This routine allows the scanning of all active extracts by continual calls until the desired extract is
found.

EX:i/o: I Extract pointer (integer in FORTRAN). On input, this is the
desired extract. The special case of the first extract is indi-
cated by a 0 or NULL and is updated with the actual extract
pointer for the current discipline. FORTRAN Note: this must
be INTEGER*8 on 64 bit machines.

TYPE:o: I The extract type or index. Zero indicates an extract pointer
error.

NUM:o: I The extract number. This is a unique number for the type.

IVEC:o: I(11) Integer data set based on TYPE (length also determined by
TYPE)

RVEC:o: R(12) Real data set based on TYPE (length also determined by TYPE)

NAME:o: C*20 Extract name.

NEXTEX:o: I Extract pointer (integer in FORTRAN) to the next extract. 0
or NULL indicates that this is the last extract in the discipline.
This can be used in the next call to pV GetExtract (argument
EX) to continue scanning the list. FORTRAN Note: this must
be INTEGER*8 on 64 bit machines.

• Planar Cut - TYPE = 2

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = Instancing mask

RVEC(1-9) = Cut corners - Three of the 4 corners that denote the plane

RVEC(10-12) = Plane normal

• Structured Block Plane - TYPE = 3

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = Global Block number

45



IVEC(6) = Instancing mask

RVEC(1-6) = Block Indices - Imin, Imax, Jmin, Jmax, Kmin and Kmax.

RVEC(7) = Rotation of the data in the 2D Window

RVEC(8) = Center of 2D Window in X’

RVEC(9) = Center of 2D Window in Y’

RVEC(10) = 1/2 Window size

• Geometric Cut - TYPE = 4

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = Cut index - May be the index negated

IVEC(6) = Instancing mask

RVEC(1) = Z prime

RVEC(2) = Center of 2D Window in X’

RVEC(3) = Center of 2D Window in Y’

RVEC(4) = 1/2 Window size

RVEC(5) = Rotation of the data in the 2D Window

REVC(6) = DeltaTime - Zero indicates a normal extract. Any other value performs time
averaging for the specified time segment (Data Unsteady only).

• Domain Surface - TYPE = 5

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = Mapping flag

IVEC(6) = Special surface scalar index

IVEC(7) = Special surface vector index

RVEC(1) = Center of 2D Window in X’

RVEC(2) = Center of 2D Window in Y’

RVEC(3) = 1/2 Window size

RVEC(4) = Rotation of the data in the 2D Window

46



• Iso-Surface - TYPE = 7

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = Scalar index for Iso-Surface

RVEC(1) = Z prime

• StreamLine - TYPE = 18

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = StreamLine Group number

IVEC(6) = Client-id for client with seed location

IVEC(7) = Cell index in client to start StreamLine

IVEC(8) = Minimum StreamLine number for group

IVEC(9) = Maximum StreamLine number for group

IVEC(10) = Surface Index (0 - volume StreamLine)

IVEC(11) = Number of StreamLine segments

RVEC(1-3) = Seed location (XYZ)

• Particles - TYPE = 19

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

• Vector Cloud - TYPE = 20

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

RVEC(1) = Threshold minimum

RVEC(2) = Threshold maximum

47



• Points - TYPE = 21

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = List Length - # of requested points

IVEC(6) = Request Type - 0 XYZ, 1 IJK

• Programmer-defined - TYPE > 100

IVEC(1) = Plot Mask

IVEC(2) = Scalar field index

IVEC(3) = Vector field index

IVEC(4) = Threshold index

IVEC(5) = IVAL

RVEC(1-9) - Real values assoctated with the extract

5.10 pV SetSub

ISTAT = PV SETSUB(EX,SUBEX,NUMCS,LEN)

This sets the memory for the server-side subextract based on LEN. If there is a currently allocated
block, then its size is adjusted to LEN. If LEN is zero any allocated block is free’d. This routine can
be called from any server programmer-supplied code.

EX:i: I Extract pointer (integer in FORTRAN) as returned by
pV GetExtract or pV Register.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

SUBEX:i: I Sub-extract number (0-11).

NUMCS:i: I Client index (0 biased).

LEN:o: I Length of structure, the total length of the memory block in
words is LEN*SUBSIZE (when registered).

ISTAT:o: I Return code:

0 - OK

-1 - Invalid EX

-2 - Invalid SUBEX

-3 - Invalid NUMCS

-4 - Allocation error

NOTES:
1) There are still subextracts for each client indexed by NUMCS – they need not be used.
2) After this call you may invoke pV GetSub to expose the pointer to the block of memory. This
block can now be filled.

48



5.11 pV GetSub

ISTAT = PV GETSUB(EX,SUBEX,NUMCS,PTR,LEN,CID)

Returns the internal pV3 sub-extracts. This routine can be called from any server programmer-
supplied code.

EX:i: I Extract pointer (integer in FORTRAN) as returned by
pV GetExtract.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

SUBEX:i: I Sub-extract number (0-12 based on TYPE). 12 is a flag to in-
dicate the State-Vector (only available within the Interactive
Server if specifically requested – see pV SetExMask).

NUMCS:i: I Client index or StreamLine segment number (0 biased).

PTR:o: I Integer (in FORTRAN) used as a pointer to the structure. In
C this returns the pointer to the block of memory. A 0 (zero)
indicates that the memory block is not allocated.

LEN:o: I Length of structure. A 0 (zero) indicates that the structure is
not currently filled.

CID:o: I Client-id for the client that produced the segment (StreamLines
Only).

ISTAT:o: I Return code:

-1 - ERROR

0 - Not Updated since last access

1 - Data has been updated since last call to this routine

5.12 pV ClearSub

PV CLEARSUB(EX,SUBEX,NUMCS)

This clears the memory for the server-side subextract. It has the effect of causing the subsextract
to be reloaded from the client(s). This routine should only be called from pVSafe.

EX:i: I Extract pointer (integer in FORTRAN) as returned by
pV GetExtract or pV Register.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

SUBEX:i: I Sub-extract number (0-11).

NUMCS:i: I Client index (0 biased).

49



5.13 pV SetExMask

PV SETEXMASK(EX,MASK)

Sets the mask for the specified Extract. This routine should be called from pVSafe to insure that
the change to the attributes is effective for the next iteration.

EX:i: I Extract pointer (integer in FORTRAN) as returned by
pV GetExtract.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

MASK:i: I Plot mask to be set for the Extract.
Note: If the mask is set to −1, this informs pV3 to get the
State-Vector (for the Interactive Server only). −1 turns off the
State-Vector flag once set.

5.14 pV SetInsMask

PV SETINSMASK(EX,MASK)

Sets the instancing flag for the specified Extract. This routine should be called from pVSafe to insure
that the change to the attributes is effective for the next iteration. This is valid for programmed
cuts, block planes and planar cuts only.

EX:i: I Extract pointer (integer in FORTRAN) as returned by
pV GetExtract.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

MASK:i: I The Instancing flag to be set for the Extract; 0 – replicate (de-
fault for programmed cuts and block planes), 1 – do not instance
(default for planar cuts).

5.15 pV SetExColor

PV SETEXCOLOR(EX,COLOR)

The default foreground color for an extract (if surface type) is grey. This routine sets the color.

EX:i: I Extract pointer (integer in FORTRAN) as returned by
pV GetExtract.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

COLOR:i: R(3) 0.0 – 1.0 for red, green and blue. A −1 in the first entry of
COLOR is a flag that indicates that the color should be set
back to the default.

50



5.16 pVSend

PVSEND(IDISC)

This programmer-supplied routine is called by the IO thread of the server for each discipline. This
invocation is after the beginning of frame messages have been sent to the clients and before the end
of frame message. This is the call where any pV3 server to client data may be sent. This should
only be done through calls to pV SendData.

IDISC:i: I Discipline ID

5.17 pV SendData

PV SENDDATA(IDISC, ICID, IMID, NINT, INTS, NFLOAT, FLOATS,

NCHAR, CHARS)

This routine should only be called from within pVSEND. It allows general messages to be sent
from the server to the client(s). Each message is tagged by a message ID so the clients can determine
what to do with the data. See pVNotify and pV GetServerData in the client-side section for
documentation on the routines required to recieve this data.

IDISC:i: I Discipline ID

ICID:i: I Client ID – If this is set to −1 then a broadcast of this data is
sent to all clients in the discipline.

IMID:i: I This is the message ID that may be freely used to indicate the
type of message/data

NINT:i: I The number of integer values in INTS to send in this message

INTS:i: I(*) The integer values

NFLOAT:i: I The number of real values in FLOATS to send

FLOATS:i: R(*) The real values

NCHAR:i: I The number of characters in CHRS to send in this message

CHARS:i: C*(*) The characters

51



The following routine can be used to keep another GUI up-to-date when pV3 is

rubber-banding or rendering:

5.18 pVRubber

PVRUBBER(IDWIN, ITYPE)

This programmer defined call-back is invoked during operations that would lock out an ancillary
GUI. Also can inform the GUI about the status of the Network and Event Queue.

IDWIN:i: I 3 or 2 for the window where the operation is occuring. 0 indi-
cates that pV3 is rendering. 5 reports the state of the ‘Traffic’
lights.

ITYPE:i: I Operation or State:

0 - set the first point (type unknown) or IDWIN = 0

1 - set first point - line

2 - set first point - circle

3 - set first point - box

4 - set second point - line

5 - set second point - circle

6 - set second point - box

0 - Red local, Red network light

1 - Yellow local, Red network light

2 - Green local, Red network light

3 - Red local, Yellow network light

4 - Yellow local, Yellow network light

5 - Green local, Yellow network light

6 - Red local, Green network light

7 - Yellow local, Green network light

8 - Green local, Green network light

52



The following routines are used for drawing programmer defined objects in the 3D

window:

5.19 pVDraw3D

PVDRAW3D(ISTAT)

This programmer supplied subroutine is called by the pV3 server or viewer at different times during
the rendering phase. It is the responsibility of this routine to specify the object(s) to be plotted based
on the rendering status. The object(s) are defined by calls to pV Object3D and pV Annotate3D.
Calls to pV GetState, pV GetExtract, pV GetSub and pV GetPointer are valid but invo-
cations of pV SetState should be avoided.

ISTAT:i: I Rendering stage:

0 - rendering for static object(s)

1 - rendering for dynamic object(s)

2 - rendering for translucent object(s)

The options listed above reflect the manner that the server suite draws the 3D scene. If the case
is steady-state (or unsteady and pause is in effect) and the viewing transformation matrix is NOT
changing, static objects only get rendered once (until the transformation matrix is changed again).
Snap-Shot Rendering is used to improve drawing performance so the result of the rendering of the
static objects is saved in a secondary pixmap and ZBuffer. These items are used to start the scene
generation for subsequent animation frames.

Dynamic objects are those that will change or move from frame to frame even if the underlying
(static) object(s) are not moving. An example of this is any dynamic surface (cut plane or iso-surface)
or StreamLine animation using ‘blobs’ to display the integration pseudo-time.

Translucent objects, even if static, must be rendered last in order to get the scene to look correct.
The ZBuffer must be updated with the translucent surfaces last.

If the application is unsteady (and not paused), the static objects as well as the dynamic and
translucent objects are rendered each time step.

53



5.20 pV Object3D

PV OBJECT3D(ITYPE,ICOLOR,XYZP,RADII,COL,NP)

This routine must only be used from within pVDraw3D or the registered routine for programmer
defined extracts. pV Object3D defines additional plotting for the 3D window. Multiple objects
may be drawn by multiple calls to this routine from within pVDraw3D or the extract rendering
routine.

ITYPE:i: I Type of plotting primitive:

0 - disjoint quadrilaterals - NP must be 4 times the number of
quads

1 - disjoint triangles - NP must be 3 times the number of tris

2 - polytriangle strip - NP must be the length of the strip

3 - disjoint line segments - NP must be 2 times the number of
segments

4 - polyline - NP must be the length of the line

5 - spheroids - NP must be the number of shpere-like objects
to plot

ICOLOR:i: I The method used for coloring the object:

-1 - draw the object white

0 - draw the object in grey

1 - color the object from the data in COL(NP)

2 - color the object from the color triads in COL(3,NP)

3 - color the object from the data in COL(NP) – No lighting

4 - color the object from the color triads in COL(3,NP) – No
lighting

XYZP:i: R(3,NP) The (x, y, z)-coordinates of the points that support the primi-
tive.

RADII:i: R(NP) The spheroid radius (in user coordinates). For ITYPE = 5 only.
Points are plotted (and are MUCH faster) if RADII(1) is 0.0

COL:i: R(NP) or R(3,NP) Color scaling for the data points (used for ICOLOR = 1). The
values must be in the range 0.0 to 1.0 and the scalar field color
map is applied to that range to compute the color for the point.
COL contains the actual color values for ICOLOR = 2.

NP:i: I Object length (the number of points). NOTE: if NP is neg-
ative XYZP is taken to be screen coordinates and not object
coordinates.

54



5.21 pV Annotate3D

PV ANNOTATE3D(FID,COLOR,SIZE,WIDTH,XYZ,NORX,NORY,STR)

This routine must only be used from within pVDraw3D or the registered routine for programmer
defined extracts. pV Annotate3D draws annotation for the 3D window. Multiple text strings
may be drawn by multiple calls to this routine from within pVDraw3D or the extract rendering
routine.

FID:i: I Font ID:

0 - Normal ASCII encoding

1 - Symbol font

COLOR:i: R(3) 0.0 – 1.0 for red, green and blue. Sets the text color.

SIZE:i: R character size – object coordinates.

WIDTH:i: R pixel width of the stroke-lines.

XYZ:i/o: R(3) The (x, y, z)-coordinates of the start of the text. This is re-
turned with the position for next character.

NORX:i: R(3) Unit normal direction for the text.

NORY:i: R(3) Unit normal direction for height of the text.

STR:i: C*(*) FORTRAN Character string

NOTE: If NORY == 3*0.0 then it is assumed that the annotation will be based in screen
coordinates and not in object space. SIZE is based on the window size (2.0 is the basis). XYZ must
be normalized to that basis (-1.0 to 1.0). NORX(1) holds the angle like pV Annotate2D.

55



The following routines are used for drawing programmer defined objects in the 2D

window:

5.22 pVDraw2D

PVDRAW2D(ISTAT)

This programmer supplied subroutine is called by the server or viewer at different times during the
2D window rendering phase. It is the responsibility of this routine to specify the object(s) to be
plotted based on the rendering status. The object(s) are defined by calls to pV Object2D and
pV Annotate2D. Calls to pV GetState, pV GetExtract, pV GetSub and pV GetPointer

are valid but invocations of pV SetState should be avoided.

ISTAT:i: I Rendering stage:

0 - rendering for static object(s)

1 - rendering for dynamic object(s)

Like rendering for the 3D window, the 2D window scene generation has multiple phases. Because
translucency is not supported (nor does it make much sense) in the 2D window and there is no
ZBuffer, the translucent phase is not implemented.

The only 2D dynamic object that pV3 currently uses is the mapped cross-hair cursor.

For a program controlled 2D window, the programmer must perform a forced update (pV SetState

OPT = -1) for a static draw or should render everything during the dynamic phase.

56



5.23 pV Object2D

PV OBJECT2D(ITYPE,ICOLOR,XYW,COL,NP)

This routine must only be used from within pVDraw2D. It defines additional plotting for the 2D
window. Multiple objects may be drawn by multiple calls to this routine from within pVDraw2D.

ITYPE:i: I Type of plotting primitive:

0 - disjoint quadrilaterals - NP must be 4 times the number of
quads

1 - disjoint triangles - NP must be 3 times the number of tris

2 - polytriangle strip - NP must be the length of the strip

3 - disjoint line segments - NP must be 2 times the number of
segments

4 - polyline - NP must be the length of the line

5 - points - NP must be the number of dots

ICOLOR:i: I The method used for coloring the object:

-1 - draw the object white

0 - draw the object in grey

1 - color the object from the data in COL(NP)

2 - color the object from the color triads in COL(3,NP)

XYW:i: R(2,NP) X and Y window values for the points that make up the drawing
primitive. The plotting in the 2D window for X ranges from -1.0
(left side) to 1.0 (the right side of the window). The Y range is
from -1.0 (bottom) to 1.0 (the top of the window).

COL:i: R(NP) or R(3,NP) Color scaling for the data points (used for ICOLOR = 1). The
values must be in the range 0.0 to 1.0 and the scalar field color
map is applied to that range to compute the color for the point.
COL contains the actual color values for ICOLOR = 2.

NP:i: I Object length in points

57



5.24 pV Annotate2D

PV ANNOTATE2D(FID,COLOR,SIZE,WIDTH,XYW,ANGLE,STRING)

This routine must only be used from within pVDraw2D or the registered routine for programmer
defined extracts. pV Annotate2D draws annotation for the 2D window. Multiple text strings
may be drawn by multiple calls to this routine from within pVDraw2D or the extract rendering
routine.

FID:i: I Font ID: 0 Normal ASCII encoding, 1 - Symbol font.

COLOR:i: R(3) 0.0 – 1.0 for red, green and blue. Sets the text color.

SIZE:i: R character size – window coordinates.

WIDTH:i: R pixel width of the stroke-lines.

XYW:i/o: R(2) The (x′, y′)-coordinates of the start of the text. These coordi-
nates are in the range −1 to 1 for the viewable window. XYW
is returned with the position for next character.

ANGLE:i: R degrees, positive is righthanded rotation.

STRING:i: C*(*) FORTRAN Character string

FORTRAN example that shows the entire normal font:

subroutine pVDraw2D(istat)

integer istat

real xy(2), CH, color(3), width

data color/1.0, 1.0, 1.0/, width/1.0/, CH/0.0625/

if(istat .eq. 0) return

xy(1) = -0.9

xy(2) = 0.8

CALL pV_Annotate2D(0, color, CH, width, xy, 0.0, ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’)

xy(1) = -0.9

xy(2) = 0.7

CALL pV_Annotate2D(0, color, CH, width, xy, 0.0, ’abcdefghijklmnopqrstuvwxyz’)

xy(1) = -0.9

xy(2) = 0.6

CALL pV_Annotate2D(0, color, CH, width, xy, 0.0, ’0123456789,.;:‘"!?@#$%&|()’)

xy(1) = -0.9

xy(2) = 0.5

CALL pV_Annotate2D(0, color, CH, width, xy, 0.0, ’[]{}<>_+-*=/^~’)

return

end

58



The following routines are used for programming 1D window drawing:

5.25 pVProbe

PVPROBE(FLAG,XAXIS,YAXIS)

This programmer supplied subroutine is called by the server or viewer at the end of the rendering
phase if the programmer-defined probe is activated. It is the responsibility of this routine to specify
the line(s) to be plotted and return the axis annotation. The line or lines are defined by calls to
pV Line. Calls to pV GetState, pV GetExtract, pV GetSub and pV GetPointer are valid
but invocations of pV SetState should be avoided.

FLAG:i: L logical flag

.TRUE. first call after probe has been activated

.FALSE. subsequent calls

XAXIS:o: C*32 X-Axis label for the plot

YAXIS:o: C*32 Y-Axis label for the plot

Note: Currently the only way to initiate the programmer-defined probe is by a call to pV SetState

with OPT = 13 from pVEvents.

5.26 pV Line

PV LINE(X,Y,NP)

This routine must only be used from within pVProbe or pVDraw1D. It defines a line to be plotted
in the 1D window. Multiple lines may be drawn by multiple calls to this routine. Auto-scaling is
performed on the first line for the first call to pVProbe or pVDraw1D after the probe has been
started. Afterwards user or programmed events can control the scaling.

X:i: R(NP) X values for the line

Y:i: R(NP) Y values for the line

NP:i: I Line length

5.27 pVDraw1D

PVDRAW1D(ISTAT)

This programmer supplied subroutine is called by the server or viewer at the end of the 1D window
drawing. It is the responsibility of this routine to specify other lines to be plotted. The line(s)
are defined by calls to pV Line and pV LineColor. Calls to pV GetState, pV GetExtract,
pV GetSub and pV GetPointer are valid but invocations of pV SetState should be avoided.

ISTAT:i: I Probe type, see pV GetState OPT = 13, IVEC(1).

59



5.28 pV LineColor

PV LINECOLOR(COLOR)

This routine sets the line color for drawing to be done by pV Line. After the drawing is complete,
the line color is reset to white. Therefore if one needs to set the color before plotting any lines except
if white is to be uesd.

COLOR:i: R(3) The color; 0.0 – 1.0 for red, green and blue.

60



5.29 pVInit

PVINIT(NPIX1,NSX1,NSY1,NPIX2,NSX2,NSY2,NPIX3,NSX3,NSY3)

This routine is called at server suite initialization by the graphics thread before the windows are
open. It allows the customized selection of window sizes and placement as well as allowing any
advanced programming that should only be performed at initialization (such as memory allocation).
Note: this is called by the batch server even though no windows are opened.

NPIX1:i/o: I The size of the 1D window. Enters with pV3s default size.

NSX1:i/o: I The suggested X pixel location (in the root window) for the
start position of the 1D window. Enters with pV3s default
location.

NSY1:i/o: I The suggested Y pixel location (in the root window) for the
start position of the 1D window. Enters with pV3s default
location.

NPIX2:i/o: I The size of the 2D window. Enters with pV3s default size.

NSX2:i/o: I The suggested X pixel location (in the root window) for the
start position of the 2D window. Enters with pV3s default
location.

NSY2:i/o: I The suggested Y pixel location (in the root window) for the
start position of the 2D window. Enters with pV3s default
location.

NPIX3:i/o: I The size of the 3D window. Enters with pV3s default size.

NSX3:i/o: I The suggested X pixel location (in the root window) for the
start position of the 3D window. Enters with pV3s default
location.

NSY3:i/o: I The suggested Y pixel location (in the root window) for the
start position of the 3D window. Enters with pV3s default
location.

61



The following routines are used for picking objects in the 3D window:

5.30 pV Pick

PV PICK(ALL)

This routine sets the picking mode.

ALL:i: I The mode:

-1 - Turns picking off, if on.

0 - Turns picking on for all extracts (ignore the individual ex-
tract mask).

1 - Turns picking on and use the extract pick mask to deter-
mine what is pickable.

5.31 pV Select

PV SELECT(BIT)

This should be called from within the render routine specified in the call to pV Register. This
sets the object bit for masking to be used with the programmer supplied extracts. This call must
be placed between calls to pV Object3D so the system can differentiate the objects and return
meaningful indices.

BIT:i: I Must be between 0 and 30. It must be set for picking to be
properly masked.

5.32 pV GetPicMask

PV GETPICMASK(EX,MASK,ALL)

This returns the state of picking for the extract and the system.

EX:i: I Extract pointer (integer in FORTRAN) as returned by pV GetExtract.
If NULL (0 in FORTRAN) just the pV3 server pick state is re-
turned.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

MASK:o: I The current pick mask for the extract.

ALL:o: I The current pV3 server pick mode.

62



5.33 pV SetPicMask

PV SETPICMASK(EX,MASK)

This sets the picking mask for the extract. For those extracts that can have multiple objects drawn,
a bit on in the mask refers to what objects are pickable.

EX:i: I Extract pointer (integer in FORTRAN) as returned by pV GetExtract.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

MASK:i: I -1 indicates all are pickable, 0 means that this extract can be
ignored during picking. If 1 (bit 0) then the first object is
selectable. For surface extracts, a mask of 3 specifies the surface
entities. Objects must also be rendered as well as having their
mask set on to be picked.

5.34 pVPicked

PVPICKED(EX,XYZ,REP,BIT,ISUB,INDEX,STATE)

This call-back is invoked once per render loop (at the end) when picking is active or when something
has been picked.

EX:i: I Extract pointer as returned by pV GetExtract,
pV Register or pV CrExtract. If NULL (0 in FORTRAN)
this is an indication that the cursor was not pointing at any
pickable object in the 3D window.
FORTRAN Note: this must be INTEGER*8 on 64 bit ma-
chines.

XYZ:i: R(3) The 3D coordinates at the highlighted/picked point.

REP:i: I The replicant index for objects that can be instanced. If neg-
ative this is an indication that the XYZ is from the mirrored
reflection.

BIT:i: I The selected bit index as specified by the call to pV Select or
from table below for built-in extracts.

INDEX:i: I The index into the subextract or the call to pV Object3D (1
baised).

STATE:i: I 0 just pointed to, not yet picked,
1 picked – internally picking is now turned off.

63



BIT table for Domain Surfaces, Planar, Programmed Cuts and IsoSurfaces:

BIT Mask Sub-Extract Description

0 1 0 Disjoint triangles
1 2 1 Disjoint quads
2 4 3 Mesh lines
3 8 4 Surface Outline
4 16 6 Vectors

BIT table for StreamLines, Particles and Vector Clouds:

BIT Mask Sub-Extract Description

0 1 2 Nodes

64



6 Client Side Programming

6.1 The Use of Pointers in FORTRAN for the Clients

Some of the data that gets returned from pV GetStruc or pV GetServerData is in the form of
pointers to blocks of memory. Either of these modes may be used in dealing with this data:

• %val

A mechanism exists on all major workstation’s FORTRAN (but NOT on CRAYs) to allow the
pointer to be passed to a SUBROUTINE or FUNCTION and then have the memory treated
as a normally declared vector or array. This is done by the VAX extension ‘%val(pointer)’
used in the CALL or function invocation. When the pointer is passed to the sub-program by
‘value’, it is equivalent to passing a variable by ‘reference’ (the FORTRAN method). That is,
in both cases, the address of the memory of interest is placed in the stack!

In this case, the pointers are treated as INTEGER variables. This causes a problem in porta-
bility. The pointers must be treated as INTEGER*4 variables on all 32 bit machines. On 64
bit machines (ALPHAs and SGIs with R8000, R10000 or R12000 chips, in native mode) the
pointers are INTEGER*8.

• POINTER statment

The POINTER statement supported by most FORTRANs removes the portability problem.
This syntax allows the coupling of a pointer with an array.

Using either mechanism, sophisticated pV3 enhancements may be performed using FORTRAN.
To complete this picture, three additional entries exist in to the client libraries so that FORTRAN
programmer can allocate and free up blocks of memory.

6.1.1 MALLOCPV

PTR = MALLOCPV(NBYTES)

This function is equivalent to the C routine ‘malloc’. It allocates a block of memory and returns the
pointer to the block. On 64 bit machines, this function may need to be declared INTEGER*8.

NBYTES:i: I The number of bytes to allocate.

PTR:o: I The address of the block (0 is an error indicator).

6.1.2 FREEPV

FREEPV(PTR)

This function is equivalent to the C routine ‘free’. It deallocates a block of memory. NOTE: Only
free up blocks of memory that YOU allocate!

PTR:i: I The address of the block.

65



6.1.3 REALLOCPV

PTRN = REALLOCPV(PTRO, NBYTES)

This function is equivalent to the C routine ‘realloc’. It re-allocates a block of memory and returns the
pointer to the new block. On 64 bit machines, this function may need to be declared INTEGER*8.

PTRO:i: I The address of the block.

NBYTES:i: I The number of bytes to allocate.

PTRN:o: I The address of the new block (0 is an error indicator).

66



6.2 Client Structures

In general, this data is the information returned from the programmer-supplied routines, though the
connectivity tables are internally generated (with the proper IOPT). The structures are exposed so
that multiple copies of the data need not be kept.

6.2.1 Node based

The following data is based on the 3D node space:

XYZ: R(3,NNODE) (x, y, z)-coordinates of grid nodes.

S: R(NNODE) Scalar function values.

T: R(NNODE) Threshold function values.

V: R(3,NNODE) Vector function values (V x, V y, V z).

Z: R(NNODE) Current z′ values for planar or programmed cuts.

IBLANK: I(*) IBLANK values for structured blocks. The length is the num-
ber of nodes in the structured blocks. For a case that is only
structured blocks the length is NNODE. If the pointer to this
array is 0, then no IBLANKing is active.

TBCON: I(*) Client-id number for block connectivity outside current domain.

6.2.2 Cell based

The following data is based on the 3D cell space:

CEL1: I(4,KCEL1) Node pointers for tetrahedral cells.

CEL2: I(5,KCEL2) Node pointers for pyramid cells.

CEL3: I(6,KCEL3) Node pointers for prism cells.

CEL4: I(8,KCEL4) Node pointers for hexahedral cells.

NPTET: I(8,KNPTET) Poly-Tetrahedra strip header:

NPTET(1,n) = the pointer to the end of the strip n, i.e. it
points to the last entry in PTET for the poly-tetrahedral
strip

NPTET(2,n) = the first node in the poly-tetrahedra

NPTET(3,n) = the second node in the poly-tetrahedra

NPTET(4,n) = the third node in the poly-tetrahedra

NPTET(5,n) = the fourth node in the poly-tetrahedra

NPTET(6,n) = the last node in the poly-tetrahedra

NPTET(7,n) = first connection (face 1 of the first tetra)

NPTET(8,n) = last connection (face 2 of the last tetra)

67



PTET: I(KPTET) The rest of each poly-tetrahedra, 1 node per cell. The first and
last node numbers in PTET are replaced by a flag to indicate
the start and end of the strip. The flag is the negative of the
strip number so that if you are in a strip, you can find which
strip it is.

BLOCKS: I(6,KNBLCK) Structured block definitions:

BLOCKS(1,m) = Ni

BLOCKS(2,m) = Nj

BLOCKS(3,m) = Nk

BLOCKS(4,m) = cell number that terminates the block

BLOCKS(5,m) = node number that terminates the block

BLOCKS(6,m) = index into CBLOCK that starts the con-
nectivity table for the block.

6.2.3 Domain Surfaces

The following data is based on the surface space:

NSURF: I(3,KNSURF) NSURF(1,n) is the pointer to the end of domain surface group
n, i.e. it points to the last entry in both SCON and SCEL for
that group.
NSURF(2,n) is the startup drawing state.
NSURF(3,n) is the global surface number.

SCON: I(KSURF) connecting cell number for internal boundaries.

SCEL: I(4,KSURF) node numbers for surface faces. For quadrilateral faces SCEL
must be ordered clockwise or counter-clockwise; for triangular
faces, SCEL(4,n) must be set to zero.

TSURF: C*20(KNSURF) titles for domain surfaces.

6.2.4 Domain Surface Edges

The following data is based on the surface edge space:

NSED: I(2,KNSED) NSED(1,n) is the pointer to the end of the surface edge n, i.e. it
points to the last entry in SED for that group.
NSED(2,n) is the surface group number associated with this
edge. NOTE: a domain surface may have as few a zero edges
(the surface closes totally upon itself) and can have more than
one edge!

SED: I(*) pointers to nodes that make the surface edge. Each node con-
nects to the last (except for the first entry) in a polyline struc-
ture.

68



6.2.5 Connectivity

The connectivity tables are used by the particle path algorithms and other tools that require neigh-
borhood data. Any connection (cell number) that is negative indicates that there is no neighboring
cell and the value is the index into SURF, SCON and SCEL for the surface face. If the pointers to
all of these structures are 0, then this information has been deallocated.

CCEL1: I(4,KCEL1) cell indices for the neighbors touching each of the four faces of
the tetrahedron.

CCEL2: I(5,KCEL2) cell indices for the neighbors touching each of the five faces of
the pyramid.

CCEL3: I(5,KCEL3) cell indices for the neighbors touching each of the five faces of
the prism.

CCEL4: I(6,KCEL4) cell indices for the neighbors touching each of the six faces of
the hexahedon.

CPTET: I(2,KPTET) The neighbor for face 3 and face 4 for each tetrahedra in the
strip. Face 1 and face 2 are implicit (the last and next cells)
except for the beginning and end of the strip where the connec-
tivity can be found in the header NPTET.

CBLOCK: I(*) A vector that contains the cell indices for the husk of the block.
The start index for a particular block is in BLOCKS(6,m).

face 1 - k = 1
first (Ni− 1) ∗ (Nj − 1) entries indexed in a nested set of
loops with j as the outer and i as the inner.

face 2 - i = Ni− 1
next (Nj− 1) ∗ (Nk− 1) entries indexed in a nested set of
loops with k as the outer and j as the inner.

face 3 - j = Nj − 1
next (Ni− 1) ∗ (Nk− 1) entries indexed in a nested set of
loops with k as the outer and i as the inner.

face 4 - i = 1
next (Nj− 1) ∗ (Nk− 1) entries indexed in a nested set of
loops with k as the outer and j as the inner.

face 5 - k = Nk − 1
next (Ni− 1) ∗ (Nj − 1) entries indexed in a nested set of
loops with j as the outer and i as the inner.

face 6 - j = 1
next (Ni− 1) ∗ (Nk− 1) entries indexed in a nested set of
loops with k as the outer and i as the inner.

SURF: I(KSURF) cell number that contains the face. Zero indicates a face without
a cell.

CCEL: I(4,KSURF) surface indices for the neighbors touching each of the three or
four faces of a surface face.

69



6.3 pV GetStruc

PV GETSTRUC(OPT,PTR,LEN)

Returns the internal pV3 client side structure. This pV3 routine can be called from any programmer-
supplied code.

OPT:i: I Option set to specify what data to get.

PTR:o: I Integer (in FORTRAN) used as a pointer to the structure. In
C this returns the pointer to the block of memory. A 0 (zero)
indicates that the memory block is not allocated.
FORTRAN Note: this is an INTEGER*8 value on machines
with 64 bit pointers.

LEN:o: I Length of structure.

• Node Structures:

OPT PTR - Pointer to length of structure Field index

301 XYZ NNODE
302 S NNODE KSCL
303 T NNODE KTHR
304 V NNODE KVCT
305 Z NNODE LASTZ
306 IBLANK number of nodes in blocks
307 TBCON number of nodes in blocks

• Cell Structures:

OPT PTR - Pointer to length of structure

311 CEL1 KCEL1
312 CEL2 KCEL2
313 CEL3 KCEL3
314 CEL4 KCEL4
315 NPTET KNPTET
316 PTET KPTET
317 BLOCKS KNBLCK
318 KPHEDRA

• Domain Surface Structures:

OPT PTR - Pointer to length of structure

321 NSURF KNSURF
322 TSURF KNSURF
323 SURF KSURF
324 SCEL KSURF
327 SCON KSURF

70



• Domain Surface Edge Structures:

OPT PTR - Pointer to length of structure

325 NSED KNSED
326 SED Number of ployline edge points - NSED(1,KNSED)

• Connectivity Structures:

OPT PTR - Pointer to length of structure

331 CCEL1 KCEL1
332 CCEL2 KCEL2
333 CCEL3 KCEL3
334 CCEL4 KCEL4
336 CPTET KPTET
337 CBLOCKS len of husks
338 CCEL KSURF

6.4 pVSetStruc

FLAG = PVSETSTRUC(OPT,LEN,PTR)

Allows the programmer to control certain internal pV3 client side structures. This call-back is
invoked during pV Init and pV Update (for structure unsteady cases). If the programmer is respon-
sible for the structure, then pV3 will not free the memory block.

OPT:i: I Option set to specify what memory block to set.

LEN:i: I Length of structure.

PTR:i/o: I Integer (in FORTRAN) to be used as a pointer to the appro-
priate structure. May require reallocation when input value is
not NULL (or 0).
FORTRAN Note: this is an INTEGER*8 value on machines
with 64 bit pointers.

FLAG:o I Status flag: 0 – Let pV3 deal with the memory block, 1 – PTR
should be used for this block of memory.

• Node Structures:

OPT length of structure (words) PTR - Pointer to

301 3∗LEN XYZ

• Cell Structures:

OPT length of structure (words) PTR - Pointer to

311 4∗LEN CEL1
312 5∗LEN CEL2
313 6∗LEN CEL3
314 8∗LEN CEL4
315 8∗LEN NPTET
316 8∗LEN PTET
317 6∗LEN BLOCKS

71



6.5 pV Field

PV FIELD(KSCL, KVCT, KTHR, LASTZ)

Returns the indices for the last filled internal pV3 client side node structures. This pV3 routine
can be called from any programmer-supplied code.

KSCL:o: I Scalar field index

KVCT:o: I Vector field index

KTHR:o: I Threshold field index. Negative indicates T is filled with the
scalar field associated with -KTHR.

LASTZ:o: I Flag indicating what is in Z:

(-) - Iso-surface with scalar field index equal to -LASTZ

(0) - Result of equation of the plane for a planar cut

(+) - Programmed cut with index LASTZ

6.6 pVExtract

PVEXTRACT(INDEX,EXNUM,REQMASK,IVAL,RVEC)

It is the responsibility of this routine to calculate and send back to the server any requested subex-
tracts. The sending of messages to the server must be done by calls to either pV SendXi or
pV SendXr based on the type of the data (specified during server registration - SUBTYPE).

INDEX:i: I The extract index. Always greater than 100.

EXNUM:i: I The extract number associated with INDEX.

REQMASK:i: I The request mask. Each bit specifies which subextracts are
required to statisfy the plotting attributes. For example, 5 re-
quests subextract 0 and subextract 2.

IVAL:i: I An integer associated with this extract.

RVEC:i: R(9) A real vector of data associated with this extract request.

72



6.7 pV SendXi

PV SENDXI(INDEX,EXNUM,SUBINDEX,SUBSIZE,LEN,IVEC)

Sends an integer subextract back to the server.

INDEX:i: I The extract index. Always greater than 100.

EXNUM:i: I The extract number associated with INDEX.

SUBINDEX:i: I The subextract index (0-11).

SUBSIZE:i: I The subextract size per length. For example, if the subextract
is to define a set of disjoint tris that support the extract, the
size would be 3. This must match the size specified in the server
code during registration.

LEN:i: I Length of structure.

IVEC:i The array of data to be passed to the server. The actual number
of integers transferred is LEN ∗ SUBSIZE.

6.8 pV SendXr

PV SENDXR(INDEX,EXNUM,SUBINDEX,SUBSIZE,LEN,RVEC)

Sends a real subextract back to the server.

INDEX:i: I The extract index. Always greater than 100.

EXNUM:i: I The extract number associated with INDEX.

SUBINDEX:i: I The subextract index (0-11).

SUBSIZE:i: I The subextract size per length. For example, if the subextract
is for the 3D coordinates (X,Y,Z) that support the extract, the
size would be 3. This must match the size specified in the server
code during registration.

LEN:i: I Length of structure.

RVEC:i The array of data to be passed to the server. The actual number
of floating point values transferred is LEN ∗ SUBSIZE.

6.9 pVSSInit

PVSSINIT()

This call-back is invoked at the end of pV3 initialization for steady-state cases. This allows the
programmer to know when this phase is complete. The routine in the library prints out this message;
‘pV3 Initialization Phase Complete!’.

No Arguments

73



6.10 pVLocal

PVLOCAL(NB,IRANGE,JRANGE,KRANGE)

This call-back is invoked by the structured block extractor for each request of a plane (and therefore
only required for modified servers that ask for these extracts). The servers only know the local
storage so this routine must translate the input global indices to local indices for the client. All
arguments are both input and output.

NB:i/o: I The block number. If the block is not in this client then this
value should be set to 0 upon return.

IRANGE:i/o: I(2) The I range (Imin and Imax) for a structured block plane. When
an I plane is specified Imin is equal to Imax.

JRANGE:i/o: I(2) The J range (Jmin and Jmax) for the structured block plane.
When an J plane is specified both Jmin and Jmax are equal.

KRANGE:i/o: I(2) The K range (Kmin and Kmax) for the structured block plane.
When an K plane is specified Kmin is equal to Kmax.

NOTE:
Any minimum range value set to 0 is internally reset to 1. An Imax of 0 indicates Ni, Jmax of 0 is
reset to Nj and Kmax of 0 specifies Nk.

6.11 pVUpdate

PVUPDATE(ISTAT)

This call-back is invoked for unsteady cases from within the call to pV Update. pVUpdate is called
when any structure data and/or new node coordinates have been adjusted and before any server
requests are processed.

ISTAT:i: I The current client status:

-104 - pV3 has not been properly initialized.

-1 - No servers – the structures may not be valid.

0 - At least one server is active and there are no errors.

others - documented client side errors – See the pV3 Program-
mers Guide.

74



6.12 pV Int

PV INT(KC, XYZ, NNODES, NODES, WEIGHTS, NSUFG)

This routine calculates and returns the cell index containing the target position and the weights
applied to the nodes of the cell to interpolate to that position. This pV3 routine can be called from
any programmer-supplied code.

KC:i/o: I On input either 0 indicating that a search is to be one to find
the cell or a 3D cell index to start the search. It is always best
to start from a known cell that is close to the target. On output:

KC = 0 - Error position not in the volume

KC > 0 - 3D cell index containing the position

KC < 0 - (-)index of surface facet index of exiting face

XYZ:i: R(3) Target position

NNODES:o: I Number of nodes that support cell/facet

NODES:o: I(8) 3D Node indices, filled to NNODES for KC > 0.
For KC < 0; 3D Node indices for the facet and:

NODES(5) = face index in the cell

NODES(6) = 3D cell index

NODES(7) = Client ID for internal surfaces

WEIGHTS:o: R(4,8) only filled for KC > 0.

WEIGHTS(1,n) - weight applied to the value associated with
the 3D cell index in NODES to interpolate to position
XYZ.

WEIGHTS(2,n) - weight applied to the value associated with
the 3D cell index in NODES to compute the X derivative
at XYZ

WEIGHTS(3,n) - weight applied to the value associated with
the 3D cell index in NODES to compute the Y derivative
at XYZ

WEIGHTS(4,n) - weight applied to the value associated with
the 3D cell index in NODES to compute the Z derivative
at XYZ

NSUFG:o: I The surface group conatining the facet, only filled for
KC < 0, zero otherwise.

75



6.13 pVBounce

PVBOUNCE(KC, X0, U0, DT, XBOUNCE)

This routine gets called when the streamline or particle integrator hits a domain surface face that
contains no information about continuing the integration. pVBounce will also get called when a face
is hit with all nodes having an IBLANK of 2. This call-back can be used to attempt to keep the
path within the domain (with obvious reduction in numerical accuracy). If bouncing is desired, it
is the programmers resposibility to reposition the path to a valid location. Calls to pV Int can be
used to determine which facet within the domain surface has been hit.

KC:i/o: I On input the cell number that conatins the last valid position
found in X0.
On output this is the cell index containing, or close to, the
location returned in XBOUNCE. It is usually OK to leave KC
unmodified if the target position is visible to X0. The flag 0
(zero) indicates no bounce – the integration should terminate.

X0:i: R(3) The last valid position

U0:i: R(3) The vector field value at X0

DT:i: R The time-step to complete this integration phase

XBOUNCE:i/o: R(3) On input this is the target position. This location may not be
the requested final position (at DT) but may be some interme-
diate guess used by the integrator (a middle stage in the RK4
scheme or an updated point in the Newton-Raphson iteration
for BD4). XBOUNCE could be used as the argument XYZ in
a call to pV Int to get the detailed information about the path
intersection.
On output XBOUNCE should be set to the bounced position
(if KC has not been set to 0).

76



6.14 pVNotify

PVNOTIFY(HANDLE, MESSID)

This routine gets invoked when a general server to client message is generated by a modified running
pV3 server application. The routine pV GetServerData must be called in order to revieve the
data associated with the message.

HANDLE:i: I An INTEGER handle that identifies the messsge

MESSID:i: I The message index specified at the server

6.15 pV GetServerData

PV GETSERVERDATA(HANDLE, MESSID, NINT, PINT, NFLOAT, PFLOAT,

NCHAR, PCHAR)

This routine gets the pointers that contain the data associated with the HANDLE that was specified
by the call to pVNotify. This call can be executed in any client-side code after (or from within) the
pVNotify call. It is the responsibility of the programmer to free up the memory exposed via these
pointers after the data has been used. Once this call is made the message attached to HANDLE is
removed from the internal message stack.

HANDLE:i: I The INTEGER handle that identifies the messsge

MESSID:o: I This is the message ID set by the server

NINT:o: I The number of integer values

PINT:o: pI The pointer to the integer values

NFLOAT:o: I The number of real values

PFLOAT:o: pR The pointer to the real values

NCHAR:o: I The number of characters

PCHAR:o: pC The pointer to the characters

FORTRAN Note:
PINT, PFLOAT and PCHAR are INTEGER*8 values on machines with 64 bit pointers.

77



A Plotting Masks

The following are additive (or-able) so that the proper attibutes can be specified.

A.1 Cut Surfaces

This mask controls the pV3 scalar tools (planar cuts, programmed cut surfaces, iso-surfaces, struc-
tured block planes and domain surfaces) attributes.

1 - Render - Surface rendering on

2 - Grid - Mesh display on

4 - Grey - Surface colored with grey

8 - Threshold - Surface is thresholded according to the threshold function and limits

16 - Contour - Contour lines are plotted on the surface

32 - Translucent - Plot surface using the translucent attribute

64 - Arrows - Arrow drawing on

128 - Tufts - Grid of tufts on (dynamic only)

256 - Mapping - A 2D mapping exists for this surface (domain only)

512 - Probing - 2D probing is active

1024 - Outline - Outline drawing is requested (with the mask equal to only this flag)

4096 - Feature Lines - Feature Lines are drawn for this surface. See pV [S/G]etState OPT =
14, for Domain Surfaces only.

8192 - Whole Arrows - With Arrows ON this bit disables the plotting of the vector in the 3D
window.

16384 - Normal Arrows - With Arrows ON this bit enables the plotting of the vector component
normal to the surface in the 3D window.

32768 - Tangent Arrows - With Arrows ON this bit enables the plotting of the vector component
tangent to the surface in the 3D window.

78



A.2 StreamLines

This mask controls the pV3 streamline plotting attributes and therefore the requested sub-extracts.

1 - Render - StreamLine rendering on

2 - Tube - Tube rendering on

4 - Grey - StreamLine drawn with default color

8 - Threshold - StreamLine is thresholded according to the threshold function and limits (not
currently implemented)

16 - Back - StreamLine is backward going (can not be active with 32)

32 - Fore - StreamLine goes down stream (can not be active with 16)

64 - Ribbon - Ribbon rendering on (with 2 makes tubes with twist)

512 - Particles - Seeding on

2048 - Probing - StreamLine probe currently active for this StreamLine (Read-only).

A.3 Particles

This mask controls the pV3 bubble rendering attributes and therefore the requested sub-extracts.

1 - Render - Bubble rendering on

2 - Size - Bubble size based on divergence like tubes - currently not used

4 - Grey - Bubble colored with default color

16 - Time - Bubbles are colored with the time of spawning

32 - Time Lines - Plot lines between particles in the same group

A.4 Vector Clouds

1 - Render - Vector cloud rendering on

4 - Grey - Vector cloud colored with default color

79


