
pV3 Batch User’s Reference Manual

Rev. 2.05

for use with the following workstations:

Compaq ALPHAs

HP workstations (HPUX 10.20 ACE)

RedHat LINUX (Rev 6.1 or higher)

IBM RS/6000 workstations (AIX 4.3 or higher)

Silicon Graphics

SUNs (Solaris 2.6 or higher)

WindowsNT/2000

Bob Haimes

Massachusetts Institute of Technology

December 12, 2001

Sections marked with this change-bar are have had a major change from last release (Rev 2.00)
and will require some programming modifications.

1

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of Technology
(M.I.T.) under the following license. By obtaining, using and/or copying this software, you agree
that you have read, understood, and will comply with these terms and conditions:

Permission to use, copy, modify and distribute, this software and its documentation for any
purpose and without fee or royalty is hereby granted, provided that you agree to comply with the
following copyright notice and statements, including the disclaimer, and that the same appear on
ALL copies of the software and documentation:

Copyright 1993-2001 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED “AS IS”, AND M.I.T. MAKES NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED
SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used in advertising
or publicity pertaining to distribution of the software. Title to copyright in this software and any
associated documentation shall at all times remain with M.I.T., and USER agrees to preserve same.

2

Contents

1 Introduction 4

2 pV3 Batch Server 5

2.1 Batch Server Startup . 5

2.2 Environment Variables . 6

2.3 Batch Server Shutdown . 7

2.4 Advanced Programming . 7

3 pV3 Post-Processing Viewer 8

3.1 Viewer Startup . 8

3.2 Environment Variables . 8

3.3 Special Files . 9

3.3.1 Notes on the Common Desktop Environment – CDE 11

3.4 User Interface . 12

3.5 Advanced Programming . 13

3.6 File-Spec Compliance . 13

3.7 Warning and Error Messages . 13

4 Using State-Vectors 15

4.1 Client-side . 15

4.1.1 pV Init . 15

4.1.2 pVState . 15

4.1.3 pVPState . 16

4.2 Viewer-side . 17

4.2.1 pVConvert . 17

3

1 Introduction

It has been found that performing certain visualization tools, like streaklines (unsteady particle
paths), in a post-processing manner can lead to incorrect results. The problem with post-processing
is that the time-step selected for the visualization is based on the available disk space and not the
physical problem. The pV3 system does not exhibit this problem because co-processing is fully
supported.

The problem with pV3 in a production environment or for batch execution is that the user may
not be around to fire-up the interactive server and view the results. This manual describes the use
of a Batch server and post-processing viewer for the pV3 suite. The client side remains basically
unchanged. The CFD solver need not know if the results are currently being viewed or to be viewed
at some later time.

Therefore, when a batch job starts, the batch pV3 server should also be started. Data is read on
where and what tools and probes are to be active and their locations. The results (tool extracts) are
collected and written to disk for play-back later. This is different from the normal post-processing
in that the entire volume of data is not written to disk every iteration. The file specification used
to write the data can be found in this sub-directory (the name is ‘FileSpec.txt’).

The end result is something that is not interactive in the placement of tools, but can be thought
of as analogous to a wind-tunnel experiment. You have to be smart in where you place probes to
extract data of interest. If you miss an important area (or only find it after viewing these results) you
will have to re-run the tunnel adding (or changing the location) of the probes. The post-processing
viewer is highly interactive in dealing with time. This is due to the fact that the amount of data
has been reduced by orders-of-magnitude.

The batch server and post-processing viewer can be thought of as the pV3 interactive server
split into two portions. These parts communicate through the data file.

4

2 pV3 Batch Server

It is advisable to start the pV3 batch server either before or concurrently with the solver. The PVM

daemon(s) must be executing. This scheme insures that you will get a proper initialiation and not
possibly miss clients (as can happen with the interactive server – if started while the solver is calling
pV Update). If the solver has a long start-up time, adjust the Time-Out constant appropriatly.

The purpose of this software is to collect and write the visualization data to disk. Therefore
some knowlegde of the underlying hardware must be used. The machine running the pV3 batch
server should be the computer that contains the file-system where the file is written. You do not
want to further burden the network by using nfs or afs (the network file systems).

2.1 Batch Server Startup

The batch server, pV3Batch, takes three arguments at the command line (all optional). The first
is a flag used to indicate how full the extracts should be collected. The second argument is the
Time-Out constant. The third argument is the extract start-up file. An argument of ‘−’ is a place
holder, allowing the default to be used.

examples: % pV3Batch ALL
% pV3Batch STATE 120
% pV3Batch
% pV3Batch − − case.startup

Output always goes to the extract file named ‘pV3.viz’ in the default directory (where execution
began). Additional files may be generated when each reaches the 2 Gigabyte limit. These files are
named ‘pV3ijk.viz’, where ijk starts at 001 and counts up.

• Extract Flag

This argument declares how completely the extracts are collected and written to disk. The
options are MINIMAL (the default) which is how the normal server collects the data. FULL
indicates the complete extract ignoring the specified mask for the object, unless the mask is
zero. STATE indicates that the state-vector should be sent instead of any scalar or vector
field data. ALL is the equivalent of FULL and STATE giving the most flexibility at viewing
(at the cost of more communication and larger files). Any argument not understood reverts
to MINIMAL.

The advantage of passing and storing state-vector information is that the scalar and vector
data can be derived. This allows the use of more compact data and gives flexibility at viewing.
The scalar and vector fields can be constructed by the viewer allowing the changing of these
quantities during the post-processing. The disadvantage is that both the client-side and the
pV3 viewer must be modified to understand how to deal with the state-vector. See the section
on Using State-Vectors.

5

• Time-Out

This value is the same as the environment variable ‘pV3 TO’ (and overrides it’s value). If
the argument is set, it must be an integer string which is the number of seconds to use for
the Time-Out constant (the batch server’s default is 60). This may be required if the time
between solution updates is long. See the section on Time-Outs and Error Recovery in the
Server User’s Reference Manual.

• Start-up file

The startup file is an ASCII list of static extracts that are desired at batch server initialization.
This file can be generated by the pV3 server at any time during the visualization session by
hitting ‘W’ in the Key window. Objects will take 2 iterations to show up in the extracts output
file. More complete post-processing viewing is possible by specifying FULL or ALL for the
Extract flag. The scalar, vector and threshold fields may also be specified via this file.

NOTES:
1) For Programmed extracts, the Extract flag or start-up file have no effect.
2) The format for this type of file has changed for Rev 1.20 in order to support multi-disciplinary
visualization. Older files are still valid at startup for single discipline cases.

2.2 Environment Variables

The batch server also looks at these three Unix environment variables:

‘pV3 TO’ can also be used to change the internal Time-Out constant. If the variable is set, it
must be an integer string which is the number of seconds to use for the Time-Out constant.

‘pV3 Group’ is usefull for differentiating multiple PVM jobs running under the same user ID.
If this variable is set for the solver (client-side) before execution, it overrides the default client side
group name pV3Client. The name used is the string assigned to this variable with Client appended.
By setting this variable before Batch Server execution, it will set the server group to the variable’s
string with Server appended instead of using pV3Server. Only clients with the appropraite matching
group name will be connected to this session.

‘pV3 Threading’ is used to specify how handshaking is handled between the active threads. There
are two methods; (1) ‘Hard’ where the thread sits in a hard loop (with a thread yeild) looking for a
change of state, or (2) ‘Flag’ where the threads use Semaphores for waiting until the state changes.
The advantage of ‘Hard’ is interactivity, the advantage for ‘Flag’ is less processor time consumed.
By default, this variable is set to ‘Hard’ for most situations with single processor workstations and
‘Flag’ for multi-processors.
Exceptions: ALPHA’s default is ‘Hard’, SUN’s default is ‘Flag’, reguardless of number of processors.

’pV3 FileSize’ is used to specify a viz file limit smaller than 2 gigabytes. The value must the the
number of bytes. This option is useful if you wish to store these files for archival purposes. One
can specify 650 Megabytes to go to CDs. WARNING: a value too small (smaller than the header
information) will cause problems.

6

2.3 Batch Server Shutdown

The batch server will shutdown when when one of the following conditions occur:

• A client exits

• The time-out condition is reached

• The batch server is killed – this is not recommended!

• The file ‘pV3Batch.stop’ is found in the directory that the batch server is running from (i.e.,
where it writes the file ‘pV3.viz’).

2.4 Advanced Programming

Doing pV3 advanced programming with the batch server requires slightly different control. This is
because there is no interactive user controlling the session and no X event loop.

Note the following:

• Module in the Server Suite

You can figure-out which server application is running via a call to pV GetState with
OPT = 0. This returns whether pV3Server, pV3Batch or pV3Viewer is running. One ad-
vanced programming set of source can be generated to be used with all modules.

• pVEvents

Because there is no X event loop, there are no calls to pVEvents.

• pVSafe

Use the call to pVSafe to control the session. A single call is made before the data buffers
are flipped and the next set of requests are made to the client(s). That is, once per iteration.

7

3 pV3 Post-Processing Viewer

The pV3 post-processing viewer can be run at anytime from a supported graphics workstation and
does not require PVM. The extracts file is parsed and read to collect the data.

3.1 Viewer Startup

The batch post-processing viewer, pV3Viewer, takes three (or more) arguments at the command
line (all optional). The first is the setup file with the default of ‘pV3.setup’, see Special Files. The
second argument is the color file to be used at startup (the default is ‘spec.col’). The third and
subsequent arguments are the extract file with the default of ‘pV3.viz’. An argument of ‘−’ is a
place holder, allowing the default to be used.

examples: % pV3Viewer case.setup
% pV3Viewer pV3.setup bw.col
% pV3Viewer
% pV3Viewer case.setup − case.viz
% pV3Viewer case.setup − pV3.viz pV3001.viz pV3002.viz

When using multiple extract files the information within each is checked for consistancy. The
number of disciplines and the field variables for each discipline must match. This option is useful
for viewing the results of multiple runs on the same data or when pV3Batch has generated multiple
files (due to the size of the data streams).

3.2 Environment Variables

The pV3 viewer uses three Unix environment variables. Some are the same as the ones used for the
server and Visual3. The variable ‘Visual3 CP’ defines the file path to be searched for color files, if
they are not in the user’s current directory. This allows all of the color files to be kept in one system
directory.

The second variable, ‘Visual KB’ is optional. This variable, if defined, must point to a file that
contains alternate keyboard bindings for the special keys used by pV3. The file is ACSII. The first
column is the key name (10 characters) and the second is the X-keysym value in decimal (use ‘xev’
to determine the appropriate values for the key strokes).

The third is ‘pV3 Threading’ and functions as described for pV3Batch.

8

3.3 Special Files

• Window Manager Resource File

By default, all modern Xwindows Managers allow the closing or deleting of windows by either
double-clicking on the menu pull-down or selecting ‘Close’ or ‘Quit’ from the pull-down. This
will abort the execution of the Server or Viewer. To avoid this, an additional window manager
menu description can be added to the default information for the Window Manager. This
is accomplished by specifying a user-level resource. In the distribution the following files
can be found in the “servers” subdirectory; ‘user.4Dwmrc’, ‘user.mwmrc’, and ‘user.dtwmrc’.
These files are for SGI’s default window manager, the Motif window manager and CDE’s
window manager, respectively. The entire resoure file (for the appropriate window manager)
must be copied from the system (usually something like ‘/usr/lib/X11/system.XXwmrc’ or
‘/etc/dt/config/sys.dtwmrc’) – if not already done. This file gets named ‘.XXwmrc’ (where
XX is 4D or m) and then the appropriate user resource file appended to the end. Note: for
CDE, this file gets put in the ‘.dt’ directory at the users top level and must be given the name
‘dtwmrc’.

• .Xdefaults

If the SGI window manager is used, ‘4DWm’ must be told what to do with pV3s windows.
These commands must be placed in the file ‘.Xdefaults’. See the file ‘user.Xdefaults’. For
DEC, IBM and SUN systems this information is found in the window manager’s Setup File
(Mwm or the appropriate file for the WM used).

The pV3 viewer requires three X fonts. The file ‘.Xdefaults’ in the users home directory
is examined for the font names and are designated “Visual*large”, “Visual*medium” and
“Visual*small”. The sample file ‘user.Xdefaults’ comes with the distribution and may be
concatinated to the user’s ‘.Xdefaults’ file.

The X fonts loaded on any system may be examined by the command ‘xlsfonts’.

• ‘Mwm’ Setup File

When a user begins a session using the Motif window manager, it reads the initialization file
‘Mwm’ in the user’s home directory. This file contains information on how to treat various
classes of windows and the window focus (as well as other things). A sample file ‘user.Mwm’
is in the distribution and may be used as ‘Mwm’ or its contents concatenated to the user’s
‘Mwm’ file.

• ‘twm’ Setup File

If the ‘twm’ window manager is used, when a user begins a session, twm reads an initialization
file ‘.twmrc’ in the user’s home directory. This file defines certain key bindings and window
attributes. It is necessary for correct pV3 operation for the user to modify the standard
‘.twmrc’ file as shown in the ‘user.twmrc’ file on the pV3 distibution, or just use this file as
‘.twmrc’.

9

• Setup File

When the pV3 viewer starts, it looks in the user’s current directory for the setup file specified
as the first argument on the command line. This is an ASCII file which contains a number of
useful defaults that the user may want to set to different values than pV3’s initial defaults.
It also contains a set of viewing positions and cutting plane positions. Normally this file
is generated by pV3 when the user wants to store certain favorite parameters and viewing
positions so that they can be used again on another data set, which is particularly useful when
the user wishes to directly compare two different data sets with the same computational grid
or geometry. However, an experienced user can also generate this file from scratch. NOTE:
This file is NOT compatible with Visual3’s setup file.

• Color Files

A number of different color files are supplied on the distribution. For those who wish to define
their own color files, the format of these ASCII files is as follows:

nc nb

r g b

.

.

.

.

nc

r g b

.

.

.

nb

where nc is the number of colors, nb is the number of background colors (0–4), and r, g, b are
red,green,blue intensity values (0.0–1.0). The four background colors are for window back-
ground; grid color; tuft/streamline/ribbon color; contour line color. The default values which
are used if nb= 0 are black; white; white; white. If nb 6= 0 then the specified colors over-ride
the defaults for the first nb colors.

When the pV3 viewer searches for named color files, it first looks in the current directory, and
then follows the color file path specified by the environment variable ‘Visual3 CP’.

• Lock File

If the server is running on a multi-processor SGI workstation a file is used for the coordination
of the 2 threads generated during execution. This file has the name ‘.pV3.locks’ and is open
in the current directory. It should be noted that running two invokations of the pV3 server
or viewer from the same directory will NOT work. Both will use the same file for the lock and
semaphore arena!

10

3.3.1 Notes on the Common Desktop Environment – CDE

For the pV3 suite to work properly with CDE, the Style Manager must be used to change the default
methods CDE uses for cursor/window functioning. Under the Window section “Point in Window to
Make Active” must be selected. Also, “Raise Window when Active”, and “Allow Primary Windows
on Top” must NOT be selected.

11

3.4 User Interface

The user interface for pV3’s Viewer is roughly the same as the interface for the server as documented
in the Server User’s Reference Manual. The differences are listed below:

• Traffic Light

There is only one traffic light in the Key window. This light indicates only local activity –
there are no requests that are being waited upon.

• Simulation Time

The entire time range in known. The time key (Key Window) reflects this range by having
it displayed as the minimum and maximum of the scale. A specific time may be selected by
clicking on the time key with the right mouse button (like specifying a scalar value for an
iso-surface via the key).

When the last simulation time frame has been displayed, the process recycles. The limits in
the Key Window (when viewing Time) specifies the time range for this cycling. This can be
used to clip off the first 2 frames that do not contain the start-up extracts.

Note: the Viewer currently assumes that time monotonically increases for new disk frames.

• User Requests that Cannot be Satisfied

Any request for the change of an objects attribute, specifying a dynamic surface, or any state
change that cannot be satisfied is ignored. If the data is available the request will be granted.

• Remapping Surfaces

Planar cuts can always be remapped to the 2D window by selecting the surface in the Surface
Data Base (Dial Window) and hitting F2 in the 3D Window.

If ‘pV3.viz’ was written using either the FULL or ALL attributes, then Domain and Pro-
grammed Cut Surfaces can also be remapped. In these cases, again select the desired surface
and hit F4 (in the 3D window) if it is a Programmed Cut Surface or F5 (in the 3D Window)
if the surface is a Mapped Domain Surface.

• Deleteing Streamlines and Surfaces

You cannot delete either Streamlines or Surface Data Base entries. If viewing is not desired,
just turn rendering off.

• Scalar and Thresholding Flipping

If FULL was specified for data collection and both the scalar and threshold fields are actually
scalars (the threshold does not have an FKEYS = 5) then the scalar and threshold definitions
can be swapped. This is accomplished by hitting F9 in the 3D window.

12

3.5 Advanced Programming

For the most part, advanced programming within the post-processing viewer is 100 percent compat-
ible with the interactive server.

Note on Programmed Extracts: Calls to pV Register must be done in the same order (for
multiple instances of extracts with the same index) as was done for the batch server. For simplicity,
the same code for pVSafe can be used for both pV3Batch and pV3Viewer and all extracts should
be registered within the first call.

3.6 File-Spec Compliance

It must be noted that pV3Viewer does not fully deal with all files written that follow the file
specification documented in ‘FileSpec.txt’. It deals with the subset that pV3Batch writes.

3.7 Warning and Error Messages

The following warning and error messages are unique to the viewer:

• Warning: Premature EOF!

The end of the file was reached without a proper close. pV3Batch was probably terminated
without the client(s) exiting.

• ERROR - FileSpec: S*FILE** rev: x.xx

The rev for the FileSpec is not supported.

• ERROR - too many disciplines: num

The number of disiplines num is greater than the viewer can support.

• ERROR - Discipline Index Out of Range: num

A discipline index num is not within the range declared in the file.

• ERROR - Partition Index Out of Range: num

The partition index num is not valid.

• ERROR - Index Out of Range: num

The index for a field variable is less than 0 or too large.

• ERROR - Extract header mis-match!

The definition of an extract does not match the pV3 internals. The file was not written by
pV3Batch.

• ERROR in Programmed Extract - index!

The definition of a programmed extract does not match the pV3 internals.

• ERROR - Unknown Extract!

An unkown extract type was encountered in the file.

13

• ERROR - SubEntity index out of range: num!

A sub-extract index is incorrect.

• ERROR - Illegal tag: string!

An invalid file marker was found.

• ERROR - Entity Marker Mismatch!

The trailer of an extract does not match the header.

• ERROR - sub-index out of range: num!

A sub-extract index is incorrect.

• ERROR - Extract index Not Registered!

The programmed extract indexed by index has not been registered. Register it via the first
invokation of pVSafe.

• Extract ERROR ...

Filling the listed sub-extract required more memory than allocated. This is an internal error
that you should not see.

14

4 Using State-Vectors

4.1 Client-side

The routines PVSTATE and/or PVPSTATE need to be supplied to give the pV3 system the data
for the state-vector associated with the extract. Also, a minor modification to the definition of
PV INIT allows the specification of a state vector (only one is valid):

4.1.1 pV Init

PV INIT(TITL, CID, CNAME, DNAME, IOPT, NPGCUT, TPGCUT, NKEYS,

IKEYS, TKEYS, FKEYS, FLIMS, MIRROR, REPMAT, MAXBLK, ISTAT)

This subroutine initializes pV3. The complete description can be found in the pV3 Server User’s
Reference Manual.

IKEYS:i: I(NKEYS) X-keypress return code for each key. For state-vectors, this
indicates the rank (the size of the vector). For example, Euler
equations would be 5.

FKEYS:i: I(NKEYS) Type of function controlled by each key:

FKEYS()=0 State-Vector

FKEYS()=1 Scalar

FKEYS()=2 Vector

FKEYS()=3 Surface scalar

FKEYS()=4 Surface vector

FKEYS()=5 Threshold

4.1.2 pVState

PVSTATE(RANK,KN,SV)

This subroutine supplies pV3 with state-vector function values when requested.

RANK:i: I the size of the state-vector as specified via IKEYS at initializa-
tion

KN:i: I index for the requested node

SV:o: R(RANK) returned state-vector values for the node

15

4.1.3 pVPState

PVPSTATE(RANK,INDEX,LN,SV)

This subroutine supplies pV3 with state-vector function values for the local nodes in the specified
complex polyhedron.

RANK:i: I the size of the state-vector as specified via IKEYS at initializa-
tion

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

LN:i: I index for the local requested node

SV:o: R(RANK) returned state-vector values for the node

16

4.2 Viewer-side

The pV3 Viewer needs to be modified so that the state-vector data can be translated back to scalar
and vector information on the extracted objects. The viewer can be re-built by including the object
module of the following routine in the link specification of pV3Viewer. This can be found in the file
‘Makefile’ of the ‘servers’ and ‘modules’ sub-directories in the distribution.

4.2.1 pVConvert

PVCONVERT(DISCIPLINE,RANK,LEN,XYZ,SV,ISCL,S,IVCT,V,ITHR,T)

This subroutine converts state-vectors to pV3 functional values. The indices used for the field
variables (scalars and vectors) are the values specified at batch server run time (when the data was
collected). Therefore, all the field variables of interest must be specified at the client-side – even if
state-vectors are always written.

DISCIPLINE:i: C*20 the name for the discipline

RANK:i: I the size of the state-vector

LEN:i: I the number of nodes in the object

XYZ:i: R(3,LEN) the (x, y, z)-coordinates for the nodes

SV:i: R(RANK,LEN) the state-vector values for all the nodes

JSCL:i: I scalar index (JKEY) - if zero do not fill S

S:o: R(LEN) returned scalar function values

JVCT:i: I vector index (JKEY) - if zero do not fill V

V:o: R(3,LEN) returned vector function values (V x, V y, V z). If right-handed
coordinates are desired reverse sign of the V z values

JTHR:i: I threshold index (JKEY) - if zero do not fill T

T:o: R(LEN) returned threshold function values

17

