
pV3 Programmer’s Guide

Rev. 2.05

Client Side & Concentrator Programming

Bob Haimes

Massachusetts Institute of Technology

December 12, 2001

Sections marked with this change-bar have had a major change from the last major release
(Rev 1.35) and will require programming modifications.

Sections marked with this change-bar have changed from the last release (Rev 2.00) and may also
require programming modifications.

1

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of Technology
(M.I.T.) under the following license. By obtaining, using and/or copying this software, you agree
that you have read, understood, and will comply with these terms and conditions:

Permission to use, copy, modify and distribute, this software and its documentation for any
purpose and without fee or royalty is hereby granted, provided that you agree to comply with the
following copyright notice and statements, including the disclaimer, and that the same appear on
ALL copies of the software and documentation:

Copyright 1993-2001 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED “AS IS”, AND M.I.T. MAKES NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED
SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used in advertising
or publicity pertaining to distribution of the software. Title to copyright in this software and any
associated documentation shall at all times remain with M.I.T., and USER agrees to preserve same.

2

Contents

1 Introduction 6

2 pV3 in the Message Passing Environment 7

2.1 Using PVM Message Passing with the Simulation . 7

2.2 pV3 Startup . 8

2.2.1 Server Startup . 8

2.2.2 Environment Variables . 8

2.2.3 Special Files . 9

2.2.4 Notes on the Common Desktop Environment – CDE 11

3 Programming pV3 12

3.1 Programming Overview . 12

3.1.1 Node Numbering . 12

3.1.2 Cell Numbering . 13

3.1.3 Connectivity . 14

3.1.4 Blanking . 14

3.1.5 Surfaces . 15

3.1.6 Calling Sequences . 15

3.1.7 Non-Time Accurate multi-client operation . 17

3.1.8 Programming Notation . 18

3.2 Programmer-called subroutines . 19

3.2.1 pV Init . 19

3.2.2 pV Stat . 21

3.2.3 pV Termin . 21

3.2.4 pV Update . 22

3.2.5 pV Console . 22

3.3 Programmer-supplied subroutines . 23

3.3.1 pVStruc . 23

3.3.2 pVCell . 24

3.3.3 pVSurface . 26

3.3.4 pVGrid . 27

3.3.5 pVScal . 27

3.3.6 pVThres . 27

3

3.3.7 pVVect . 28

3.3.8 pVEquiv . 28

3.3.9 pVBlank . 28

3.3.10 pVLocate . 29

3.3.11 pVConnect . 29

3.3.12 pVPolyhedra . 30

3.3.13 pVPGrid . 31

3.3.14 pVPScal . 32

3.3.15 pVPThres . 32

3.3.16 pVPVect . 32

3.3.17 pVZPrime . 33

3.3.18 pVXYPrime . 33

3.3.19 pVPZPrime . 34

3.3.20 pVPXYPrime . 34

3.3.21 pVSurf . 35

3.3.22 pVXYSurf . 35

3.3.23 pVPXYSurf . 35

3.3.24 pVSSurf . 36

3.3.25 pVVSurf . 36

3.3.26 pVPSSurf . 37

3.3.27 pVPVSurf . 37

3.3.28 pVString . 38

3.3.29 pVCatch . 38

3.4 C Programming . 39

4 Concentrator 40

4.1 PV MPISTART – FORTRAN . 41

4.2 pV MPIStart – C . 42

4.3 pV MPIStop . 42

4.4 Building Processes that can be Concentrators . 45

5 Portability 46

5.1 FORTRAN Programming . 46

5.2 C Programming . 46

A Error Codes 47

4

B Multi-client Connectivity Options 49

B.1 pVConnect . 49

B.2 pVSurface . 50

5

1 Introduction

pV3 is the newest in a series of graphics and visualization tools to come out of the Department of
Aeronautics and Astronautics at MIT. Like it’s predecessors Visual3, Visual2 and Grafic, pV3

is a software package aimed at aiding in the analysis of a particular suite of problems. In this case
it is the real time visualization of 3D large scale solutions of transient (unsteady) systems.

pV3 (which stands for parallel Visual3), is a completely new and different system, but builds
heavily on the technology developed for Visual3. It has been designed specifically for co-processing
visualization of data generated in a distributed compute arena. It is also designed to allow the
solver to run as independently as possible. If the solution procedure takes hours to days, pV3 can
‘plug-into’ the calculation, allow viewing of the data as it changes, then can ‘unplug’ with the worst
side-effect being the temporary allocation of memory and a possible load imbalance.

pV3 provides the same kind of functionality as Visual3 with the same suite of tools and probes.
The data represented to the investigator (the 3D, 2D and 1D windows with cursor mapping) is the
same. Also the same Graphical User Interface (GUI) is used.

pV3 programming is very Visual3-like. For the desired flexibility and the merging of the
visualization with the solver, some programming is required. The coding is simple; like Visual3,
all that is required of the programmer is the knowledge of the data. Learning the details of the
underlying graphics, data extraction, and movement (for the visualization) is not needed. If the
data is distributed in a cluster of machines, pV3 deals with this, resulting in few complications to
the user.

In most cases, the calls or routines provided are identical to the Visual3 programming interface.
For someone familiar with Visual3, programming of pV3 requires little new knowledge.

Changes in the programming interface were required to support added functionality, and the dis-
tributed nature of the compute. Some changes were due to the separation of the display workstation
(the server) from the volume of data (residing in the client or clients). Visual3 programmers must
pay particular attention to the routines pV Init, pV Update, pVStruc, pVSurface and pVBlank.

Because the pV3 server does not contain the entire volume of data (but only the extracts),
compatibility with Visual3’s advanced programming could not be perserved. See the pV3 Advanced
Programmers Guide for details.

6

2 pV3 in the Message Passing Environment

The software used for the movement of data across the network is PVM from Oak Ridge National
Laboratory. PVM (parallel virtual machine) is public domain software that provides the mecha-
nisms required to transform a (heterogeneous) network of machines to one parallel computer. PVM

provides all the required ‘hooks’ including efficient data transfers, message passing, synchronization
and the ability to target certain machines to specific tasks.

pV3 can also been used with MPI. In this model, MPI is the interface used for the solver
(or simulation) and PVM is used to move the data for the visualization. pV3 uses many of the
job control features of PVM that are not in MPI, including the ability to start up the server and
‘plug-into’ a running calculation.

MPI can also be used for moving pV3 data on Massively Parallel Processors (MPP) or clusters
with 2 (or more) networks. In this case the pV3 Concentrator collects visualization messages via
MPI on the machine and can communicate to the pV3 server/batch task via PVM. The Concen-
trator also concatinates messages to the server/batch to get better PVM network performance –
less latency. See the section on the Concentrator for the programming details.

2.1 Using PVM Message Passing with the Simulation

pV3 requires PVM version 3.3.0 or higher. For co-processing in a cluster of workstations (multiple
clients), where the simulation is also using PVM, certain rules must be followed. These rules insure
that messages for the visualization and those for the compute task(s) do not interfere with each
other.

• Open Send Buffer

It is assumed by pV3 that the default send buffer is free and available for use. This should not
be a restriction because either pV Init or pV Update should be called at times when interclient
communication is at a completed stage.

• Broadcasts

Broadcasts should be avoided. You will end up sending messages to the pV3 server(s). The
server will report then ignore messages without the proper signature. In general, any client
need not send the pV3 server any messages (all the data communication necessary is handled
internally by pV3).

If a broadcast facility is required, use the multiple-cast send, and send only to known tasks.

• Receives

Do not use a wild-card for the task id in the receive calls to PVM. You will get pV3 requests.
The message collection in the routine pV Update only takes messages from any pV3 servers,
leaving other client message traffic alone.

Note: The last 2 rules can now be ignored. If PVM Rev 3.4.0 (or higher) is used, then a PVM
context is opened for all pV3 communication. This avoids the possibility of message confusion
between the solvers and the pV3 components.

7

2.2 pV3 Startup

The PVM daemon(s) and with co-processing, the solver, must be executing. Without a pV3 server
running, every time the solution is updated, a check is made for the number of members in the
PVM group pV3Server (Note: this name can be changed for multiple jobs running under the same
user ID – see the Section 2.2.2 for the environment variable ‘pV3 Group’). If no servers are found,
no action is taken. When a pV3 server starts (usually from an interactive xterm session on the
graphics workstation), it enrolls in the specified group. The next time the solution is updated, an
initialization message is processed and the visualization session begins. Each subsequent time in
the solver completes a time step, visualization state messages and extract requests are gathered, the
appropriate data calculated, collected and sent to the active server(s).

When the user is finished with the visualization, the server sends a termination message and
exits. The clients receive the message, and if no other servers are running, cleans up any memory
allocations used for the visualization. Then the scheme reverts to looking for server initialization, if
termination was not specified at pV3 client initialization.

2.2.1 Server Startup

The interactive server, pV3Server, takes three arguments at the command line (all optional). The
first is the setup file with the default of ‘pV3.setup’. The second argument is the color file to be
used at startup (the default is ‘spec.col’). The third argument is the extract start-up file. There is
no default. An argument of ‘−’ is a place holder, allowing the default to be used.

examples: % pV3Server case.setup
% pV3Server pV3.setup bw.col
% pV3Server
% pV3Server case.setup − case.startup

2.2.2 Environment Variables

The pV3 server uses six Unix environment variables. Some are the same as the ones used for
Visual3. The variable ‘Visual3 CP’ defines the file path to be searched for color files, if they are
not in the user’s current directory. This allows all of the color files to be kept in one system directory.

The second variable, ‘Visual KB’ is optional. This variable, if defined, must point to a file that
contains alternate keyboard bindings for the special keys used by pV3. The file is ACSII. The first
column is the key name (10 characters) and the second is the X-keysym value in decimal (use ‘xev’
to determine the appropriate values for the key strokes).

The third is ‘pV3 TO’ and should be used to change the internal Time-Out constant. If the
variable is set, it must be an integer string which is the number of seconds to use for the Time-Out
constant (the server’s default is 60). This may be required if the time between solution updates is
long. See the section in the pV3 Server User’s Reference Manual on Time-Outs and Error Recovery.

The fourth is ‘pV3 Threading’. This is used to specify how the interactive Server and the post-
processing Viewer handles the handshaking between their active threads. There are two methods;
(1) ‘Hard’ where the thread sits in a hard loop (with a thread yeild) looking for a change of state,

8

or (2) ‘Flag’ where the threads use Semaphores for waiting until the state changes. The advantage
of ‘Hard’ is interactivity, the advantage for ‘Flag’ is less processor time consumed. By default, this
variable is set to ‘Hard’ for most situations with single processor workstations and ‘Flag’ for multi-
processors.
Exception: The ALPHA and SUN default is ‘Hard’ reguardless of number of processors.

The fifth is ‘pV3 Group’. This is usefull for differentiating multiple PVM jobs running under
the same user ID. If this variable is set for the solver (client-side) before execution, it overrides the
default client side group name pV3Client. The name used is the string assigned to this variable
with Client appended. By setting this variable before server execution, it will set the server group
to the variable’s string with Server appended instead of using pV3Server. Only clients with the
appropraite matching group name will be connected to this session.

The last is ‘pV3 Warning’. If this variable is set (to anything except a NULL string) warning
messages about ACK and maximum streamline segments are not reported.

2.2.3 Special Files

• Window Manager Resource File

By default, all modern Xwindows Managers allow the closing or deleting of windows by either
double-clicking on the menu pull-down or selecting ‘Close’ or ‘Quit’ from the pull-down. This
will abort the execution of the Server or Viewer. To avoid this, an additional window manager
menu description can be added to the default information for the Window Manager. This
is accomplished by specifying a user-level resource. In the distribution the following files
can be found in the “servers” subdirectory; ‘user.4Dwmrc’, ‘user.mwmrc’, and ‘user.dtwmrc’.
These files are for SGI’s default window manager, the Motif window manager and CDE’s
window manager, respectively. The entire resoure file (for the appropriate window manager)
must be copied from the system (usually something like ‘/usr/lib/X11/system.XXwmrc’ or
‘/etc/dt/config/sys.dtwmrc’) – if not already done. This file gets named ‘.XXwmrc’ (where
XX is 4D or m) and then the appropriate user resource file appended to the end. Note: for
CDE, this file gets put in the ‘.dt’ directory at the users top level and must be given the name
‘dtwmrc’.

• .Xdefaults

If the SGI window manager is used, ‘4DWm’ must be told what to do with pV3s windows.
These commands must be placed in the file ‘.Xdefaults’. See the file ‘user.Xdefaults’. For
DEC, IBM and SUN systems this information is found in the window manager’s Setup File
(Mwm or the appropriate file for the WM used).

pV3 requires three X fonts. The file ‘.Xdefaults’ in the users home directory is examined for
the font names and are designated “Visual*large”, “Visual*medium” and “Visual*small”. The
sample file ‘user.Xdefaults’ comes with the distribution and may be concatinated to the user’s
‘.Xdefaults’ file.

The X fonts loaded on any system may be examined by the command ‘xlsfonts’.

9

• ‘Mwm’ Setup File

When a user begins a session using the Motif window manager, it reads the initialization file
‘Mwm’ in the user’s home directory. This file contains information on how to treat various
classes of windows and the window focus (as well as other things). A sample file ‘user.Mwm’
is in the distribution and may be used as ‘Mwm’ or its contents concatenated to the user’s
‘Mwm’ file.

• ‘twm’ Setup File

If the ‘twm’ window manager is used, when a user begins a session, twm reads an initialization
file ‘.twmrc’ in the user’s home directory. This file defines certain key bindings and window
attributes. It is necessary for correct pV3 operation for the user to modify the standard
‘.twmrc’ file as shown in the ‘user.twmrc’ file on the pV3 distibution, or just use this file as
‘.twmrc’.

• Color Files

A number of different color files are supplied on the distribution. For those who wish to define
their own color files, the format of these ASCII files is as follows:

nc nb

r g b

.

.

.

.

nc

r g b

.

.

.

nb

where nc is the number of colors, nb is the number of background colors (0–4), and r, g, b are
red,green,blue intensity values (0.0–1.0). The four background colors are for window back-
ground; grid color; tuft/streamline/ribbon color; contour line color. The default values which
are used if nb= 0 are black; white; white; white. If nb 6= 0 then the specified colors over-ride
the defaults for the first nb colors.

When pV3 searches for named color files, it first looks in the current directory, and then
follows the color file path specified by the environment variable ‘Visual3 CP’.

• Setup File

When the pV3 server starts, it looks in the user’s current directory for the setup file specified
as the first argument on the command line. This is an ASCII file which contains a number of
useful defaults that the user may want to set to different values than pV3’s initial defaults.
It also contains a set of viewing positions and cutting plane positions. Normally this file
is generated by pV3 when the user wants to store certain favorite parameters and viewing
positions so that they can be used again on another data set, which is particularly useful when
the user wishes to directly compare two different data sets with the same computational grid

10

or geometry. However, an experienced user can also generate this file from scratch. NOTE:
This file is NOT compatible with Visual3’s setup file.

• Start-up file

The startup file is an ASCII list of static extracts that are desired at server initialization. This
file can be generated by the pV3 server at any time during the visualization session by hitting
‘W’ in the Key window. The result is a startup file that contains all of the saved extracts as
listed in the Surface database and the Streamline database of the Dialbox window. This allows
for easy restart.

NOTE: The format for this type of file has changed for Rev 1.20 in order to support multi-
disciplinary visualization. Older files are still valid at startup for single discipline cases.

• Lock File

If the server is running on a multi-processor SGI workstation a file is used for the coordination
of the 2 threads generated during execution. This file has the name ‘pV3.lock’ and is open in
the current directory. It should be noted that running two invokations of the pV3 server from
the same directory will NOT work. Both will use the same file for the lock and semaphore
arena!

2.2.4 Notes on the Common Desktop Environment – CDE

For the pV3 suite to work properly with CDE, the Style Manager must be used to change the default
methods CDE uses for cursor/window functioning. Under the Window section “Point in Window to
Make Active” must be selected. Also, “Raise Window when Active”, and “Allow Primary Windows
on Top” must NOT be selected.

11

3 Programming pV3

3.1 Programming Overview

Before presenting the subroutine argument lists in detail it is helpful to discuss in general terms
the data structures which the programmer supplies to pV3. The programmer gives pV3 a list of
unconnected simple cells, poly-tetrahedral strips, structured blocks and disjoint complex polyhedra.
The simple disjoint cells are of four types; tetrahedra, pyramids, prisms and hexahedra. This element
generality covers almost all data structures being used in current computational algorithms. Any
special cell type which is different must be split up into some combination of these primitives by the
programmer (or use the complex polyhedral option). Linear interpolation is used throughout pV3,
so high order elements must be also be subdivided so that the linear interpolation assumption is
valid.

Poly-tetrahedral strips are ‘structured’ collections of tetrahedra. The strip is started by a tri-
angular face, one node is added to produce the first tetrahedron, another is added to produce the
second cell (with the previous 3 nodes) and so forth. See Figure 1. Currently, no one is using this
concept for calculating results but there is more than a factor of two savings in the storage required
to represent a complete tetrahedral mesh.

�
�
�
�
�
�
�

A
A
A
A
A
A
A

�
�
��
HH

HH
H

HHA
A
A
A
A
A
A�
�
�
�
�
�
�A
A
A
A
A
A
A�
�
�
�
�
�
�

tetra #1

nodes: 1 2 3 4

face nodes

1 1 2 3

2 -

3 3 4 1

4 4 1 2

tetra #2

nodes: 2 3 4 5

face nodes

1 -

2 -

3 4 5 2

4 5 2 3

tetra #3

nodes: 3 4 5 6

face nodes

1 -

2 -

3 5 6 3

4 6 3 4

tetra #n (last)

nodes: n n+1 n+2 n+3

face nodes

1 -

2 n+1 n+2 n+3

3 n+2 n+3 n

4 n+3 n n+1

Figure 1: Poly-Tetrahedral Strip

Polyhedral cells are elements that are more complex than the simple disjoint primitives. This
type of cell can be the result of agglomoration or the cut-cells found in Cartesian meshes. These
cells are treated in an unusual manner. They are always (re)generated on-the-fly. The polyhedra
can be comprised of of two types of nodes; (1) local to, and only seen by the element and (2) from
the node space.

3.1.1 Node Numbering

The node numbering used within pV3 is local. For multiple processor cases, this numbering need
not have any reference outside the data on the client.

12

The node numbering used differentiates between the nodes in the non-block regions (formed by
the disjoint cells and poly-tetrahedral strips) and the structured blocks. Figure 2 shows a schematic
of the node space. knode is the number of nodes for the non-block grid. Each structured block (m)
adds NIm∗NJm∗NKm nodes to the node space (where NI, NJ and NK are the number of nodes in
each direction). The node numbering within the block follows the memory storage, that is, (i,j,k) in
FORTRAN and [k][j][i] in C. The pV3 node number = base+i+(j−1)∗NIm+(k−1)∗NIm∗NJm.
Note: all indices start at 1.

Blocks

1 knode nnode

Figure 2: Node Space

3.1.2 Cell Numbering

The non-block cell types may contain nodes from the non-block and the structured block volumes.
The cell numbering used within pV3 orders the cells by type. Figure 3 shows a schematic of the
cell space. The programmer explicitly defines all non-block cells by the call pVCell. Again the cells
within the blocks are defined by the block size. Each structured block (m) adds (NIm−1)∗ (NJm−
1) ∗ (NKm − 1) cells to cell space. The cell numbering within the block follows the memory storage
so that a pV3 cell number = base+ i+ (j − 1) ∗ (NIm − 1) + (k − 1) ∗ (NIm − 1) ∗ (NJm − 1).
Note: i goes from 1 to NIm − 1, j goes from 1 to NJm − 1, and k goes from 1 to NKm − 1.

Because the polyhedral cells are not stored within pV3’s structures, they are not explicity defined
but do populate the cell space at the end.

Again, the numbering is local to the client for multiple processor applications.

Tetras

Pyramids

Prisms

Hexas

Poly-

Tetras

Blocks Polyhedra

1 ncells

Figure 3: Cell Space

13

3.1.3 Connectivity

In order to calculate streamlines and particle paths from vector fields pV3 requires information
about which are cells are neighbors, i.e. share a common face. There are two options; (1) either the
programmer gives pV3 these connections by setting IOPT (of pV Init) negative and supplying the
routine pVConnect, or (2) pV3 calculates this information by processing all cells with exposed faces.
This process compiles a list of all of these faces and checks whether the face appears on another cell.
If it does appear twice, then it is an interior face, and a streamline or particle can pass through from
one cell to its neighbor. If it does not appear twice, then it is a surface face on the boundary of the
computational domain, and a streamline will terminate when it hits the face.

Face matching between structured blocks is not possible using this automatic scheme. The node
numbers that make up a face are different in both blocks even if they match in 3 space. The concept
of ‘node equivalency’ allows the face matching to patch between regions. Node equivalency is simply
a list of matching node numbers that get used only during this face matching procedure. This
concept is generalized in pV3 to allow equivalency to nodes anywhere in the local node space.

Anytime a streamline crosses a structured block, blanked or domain boundary and the integrator
is able to continue (based on ‘node equivalency’ or other specified options), the accuracy is reduced
for that segment.

Connectivity is supplied explicitly by the call-back pVPGrid for the complex polyhedral cells.
Connections between non-polyhedral regions of the mesh and the polyhedra are accomplished via
pVSurface.

3.1.4 Blanking

Blanking is an option (see the description of pVStruc) and only used with structured blocks to
indicate that some region of the block is ‘turned off’. This information is also used to give pV3 an
indication of how multi-block grids are connected in these areas. A part of a block is deactivated
by flagging the appropriate nodes as invalid. This is done by an IBLANK array. An invalid node is
never used. A cell with an invalid node is considered not to exist and therefore cuts and iso-surfaces
through that cell will not be plotted. Also streamlines will not pass through cells with invalid nodes.

When blanking is used, all the nodes (nnode − knode) in the structured block space are given
a value; zero corresponds to an invalid mesh point, any non-zero value indicates an existing node
point. The value of one is the indication of an interior point, the value of two marks the node as
a wall. A negative value means that the physical space ‘continues’ in the block number that is the
absolute value of this IBLANK entry.

For most meshing topologies pV3 does not require knowing which nodes are wall (i.e., IBLANK
= 2) because these tend to match the domain boundaries. There are special situations where a
surface is in the midst of the block. In this case, streamlines and particle paths will terminate when
hitting cell faces where all nodes that make up the face have IBLANKing that indicates a wall.

pV3 uses an algorithm for integrating streamlines and particle paths accross blanked boundaries
by finding the closest node to the required position in the target block that has an IBLANK entry
equal to the original block. If the negative blanked region is at the boundary of the block and all
IBLANK entries of the exitting face are the same (and the case is not grid unsteady) the connectivity

14

information is updated with the connected cell if found. Future integrations in the current session
that pass through this face will not require the IBLANK node searching.

In the case of C-meshes and other topologies where the blocks abut, it is advisable to use ‘node
equivalency’, if appropriate. Streamlines and particle paths are always faster going through a volume
that has had face matching.

When the visualization is grid or structure unsteady, a new IBLANK array is requested for each
snap-shot in time (after the coordinate triads are retrieved). If the blanking has not changed, the
data need not be updated, and pVBlank should just return.

3.1.5 Surfaces

In principle, all exposed surface facets could be grouped together to form one bounding surface for
plotting purposes. However, in many applications it is more useful to split the bounding surface
into a number of pieces, referred to here as domain surfaces. For example, the outer bounding
surface of a calculation of airflow past a half-aircraft (using symmetry to reduce the computation)
would typically be split into four pieces, the far-field boundary, the symmetry plane, the fuselage
and the wing. If the programmer specifies each of these as separate domain surfaces by grouping the
appropriate faces, then pV3 can offer the capability of plotting on just one or two of the surfaces
(e.g. the fuselage and wing) and not on the others (far-field and symmetry plane).

Internal surfaces are those that get created when the computational domain is sub-divided and
and placed in multiple computational clients or to connect non-polyhedral regions to polyhedra.
These surfaces need only be defined to allow the passage of data (during integrations) from one
region to another.

pV3 also suports the concept of a bucket-of-faces in much the same way as the exposed facets
are handled. The difference is that the bucket-of-faces is not used for patching volumes together. In
fact this option should be used when there is some feature of the mesh that should be displayed that
is internal to the grid. This surface definition is completely general, in that there is no assumption
that the triangles or quadrilaterals (that define the surface) are faces of the elements in the mesh.

3.1.6 Calling Sequences

pV3 supports steady-state visualization as well as three types of unsteady visualization. In a multi-
client simulation, each client can have a different mode of unsteadyness. Each mode causes a different
internal calling sequence. In general, the application must first call pV Init to initialize the pV3

client subsystem and then call pV Update after every time the solution space has been updated.

15

• Steady-State

Call Calls in Sequence

pV Init pVStruc
pVCell (optional)
pVSurface
pVEquiv (optional)
pVGrid
pVBlank (optional)
all others as needed

pV Update NOT required

pV Init does not return until the visualization session is over.

• Data Unsteady

Call Calls in Sequence

pV Init pVStruc
pVCell (optional)
pVSurface
pVEquiv (optional)
pVGrid
pVBlank (optional)

pV Update pVScal
pVVect (optional)
all others as needed

• Grid Unsteady
Call Calls in Sequence

pV Init pVStruc
pVCell (optional)
pVSurface
pVEquiv (optional)

pV Update pVGrid
pVBlank (optional)
pVScal
pVVect (optional)
all others as needed

16

• Structure Unsteady
Call Calls in Sequence

pV Init pVStruc – used to size for memory allocation

pV Update pVStruc
pVCell (optional)
pVSurface
pVEquiv (optional)
pVGrid
pVBlank (optional)
pVScal
pVVect (optional)
all others as needed

The following routines are only required for cases with complex polyhedral elements:
Call-Back Comment

pVPolyherda
pVPGrid
pVPScal required for local node scalars
pVPThres required for local node threshold values
pVPVect required for local node vectors
pVPZPrime required for local programmed-cut nodes
pVPXYPrime for mapping local programmed-cut nodes to the 2D window
pVPXYSurf for mapping local surface nodes to the 2D window
pVPSSurf for local node surface scalar values
pVPVSurf for local node surface vector values

3.1.7 Non-Time Accurate multi-client operation

The default mode of operation for pV3 is a lock-step synchronous mode where all clients call the
routine pV Update after the solution is sync’ed and the field varaibles have been updated. All clients
should be at the same simulation time (the argument passed to pV Update). This default method
is considered Time Accurate.

There is another mode of operation where the processes may not be at the same simulation time.
This may be used when a solution is using time-marching to get to a steady state. Under these
circumstances, where ‘local time-stepping’ is used, it is not as important to update the internal
boundary every iteration. If this method is being used in the solver, pV3 can be set in a Non-Time
Accurate mode. Therefore when pV Update is called and there are no pending requests from the
server, no action is taken and control is immediately returned to the calling routine. When pV3 is
in a Non-Time Accurate method of operation both particle tracking and streamlines are disabled.

The call to pV Init informs pV3 which method to use. If the case is either steady-state or there
is only one client, the Time Accurate method is used reguardless of the information at initialization.

NOTE: do not use Non-Time Accurate functioning while debugging a solver. You will miss
frames. In this case, set the simulation time (passed to pV Update) to the iteration number and
run in a Time Accurate mode.

17

3.1.8 Programming Notation

pV3 was designed to be accessible from both FORTRAN and C. FORTRAN is more restrictive in
argument passing and naming, therefore it has shaped the programming interface. Also the following
routine descriptions are from the FORTRAN programmer’s point of view. All subroutines internal
to pV3 have names which begin with ‘pV ’ or ‘XFtn’ and the common blocks have names which
begin with ‘PVC’: such names should be avoided in an application program.

In describing the arguments of the routines in the next sections, the following notation has been
used. The variable name is first followed by ‘i’ or ‘o’, indicating input and output, respectively,
showing whether or not the subroutine is to set the variable. The variable is then followed by an
expression indicating the variable type (I=integer, R=real, C=character) and its dimensionality
(e.g. R(2,MNODE) indicates a two-dimensional real array with the first dimension being 2 and the
second MNODE, where MNODE is an integer variable).

For all routines described in this Programmer’s Guide, the same bindings are used for both
FORTRAN and C (except for pV MPIStart – see the Concentrator section).

18

3.2 Programmer-called subroutines

3.2.1 pV Init

PV INIT(TITL, CID, CNAME, DNAME, IOPT, NPGCUT, TPGCUT, NKEYS,

IKEYS, TKEYS, FKEYS, FLIMS, MIRROR, REPMAT, MAXBLK, ISTAT)

This subroutine initializes pV3. This process involves enrolling the task in the group ‘pV3Client’
which is required for connection to the graphics workstation. Calling this routine also defines the
type of case, the sizes of various parameters and the types of functions defined. Returns immediately
for all cases except steady-state (IOPT = 0).

TITL:i: C Title (up to 80 characters used)

CID:i: I This informs pV3 of the unique client-id for this client within
a multi-client application. The index must be in the range 1 to
the total number of clients in this discipline.

CNAME:i: C*(*) This string identifies the partition (client) with a name (up to
20 characters are used).

DNAME:i: C(*) The name for the discipline. Required to be non-blank for multi-
discipline cases (up to 20 characters used).

IOPT:i: I Unsteady control parameter

IOPT=-3 structure unsteady with connectivity supplied

IOPT=-2 unsteady grid/data with connectivity supplied

IOPT=-1 steady grid and unsteady data with connectivity
supplied

IOPT=0 steady grid and data

IOPT=1 steady grid and unsteady data

IOPT=2 unsteady grid and data

*NPGCUT:i: I Number of programmer-defined cuts

*TPGCUT:i: C(NPGCUT) Title for each cut (up to 32 characters used)

*NKEYS:i: I Number of active keyboard keys

*IKEYS:i: I(NKEYS) X-keypress return code for each key

*TKEYS:i: C(NKEYS) Title for each key (up to 32 characters used)

*FKEYS:i: I(NKEYS) Type of function controlled by each key:

FKEYS()=1 Scalar

FKEYS()=2 Vector

FKEYS()=3 Surface scalar

FKEYS()=4 Surface vector

FKEYS()=5 Threshold

19

FLIMS:i: R(2,NKEYS) Function limits/scales

FKEYS()=1,3,5 Min and max values of function

FKEYS()=2,4 Arrow/tuft scaling (only the first element is
used)

MIRROR:i: I Mirror/Replication flag:

MIRROR=-nrep Replicate the data nrep times using REP-
MAT

MIRROR=0 No mirroring or replication

MIRROR=1 Mirror about the plane X=0.0

MIRROR=2 Mirror about the plane Y=0.0

MIRROR=3 Mirror about the plane Z=0.0

REPMAT:i: R(16) The Replication matrix (required for negative MATRIX values
only).

MAXBLK:i: I The maximum number of structured blocks used during the
session.

ISTAT:i/o: I On input this sets the startup/terminate state (the following
are additive):

0 do not wait, do not terminate and Time Accurate

1 wait for the server to startup (the first time)

2 terminate with the server

*4 Non-Time Accurate mode

ISTAT = 3 is the only valid condition for steady-state cases
(IOPT = 0).

On output any non-zero value is the indication of a startup error
and the task is not included in the pV3 client pool. See the
Appendix for a list of the error codes.

Notes:
∗) Multi-client cases: these parameters must match for all clients in a single discipline.
1) The X-keypress return codes for alphanumeric keys is identical to their usual ASCII integer codes.
2) If NKEYS is negative, the absolute value of NKEYS is used for the number of keys and stream-
line/ribbon/tube/bubble calculations are disabled. This frees up a large amount of memory for
IOPT = 0, 1, 2 cases (the cell connection information is discarded).
3) It is not legal to mix steady-state (IOPT = 0) with unsteady clients.
4) The 4x4 matrix REPMAT is multiplied by the coordinates for the mesh repeatedly (up to
−MATRIX times) to fully represent the data in this client.
5) If a PVM error occured (istat = −101 upon return), the application can re-call pV Init at some
later time to again attempt to initialize pV3. A call to pV Update has no effect if the pV Init call
returns this error.

20

3.2.2 pV Stat

PV STAT(ISTATE)

This subroutine allows the programmer to query the status of the pV3 system.

ISTATE:o: I the status:

ISTATE < 0 : error code from pV3 - positive errors are des-
ignated by −(1000 + code)

ISTATE=0 client not initialized

ISTATE=1 no server

ISTATE=2 server active

3.2.3 pV Termin

PV TERMIN

This subroutine gracefully removes the client from the pV3 system by leaving the group ‘pV3Client’
and deallocating associated memory.

No Arguments pV Init must be called again to use pV3

21

3.2.4 pV Update

PV UPDATE(TIME)

This subroutine must be called after the solver has updated the solution space. This is when the
data is extracted and communication between the client(s) and the graphics workstation is done.
The call to this routine is not needed if IOPT = 0.

TIME:i: R The current simulation time. This sets the time in pV3 for
particle integration. Not used if the application is Non-Time
Accurate.

This routine is where all interaction with the graphics workstation is performed. Therefore the
overall response and the interactive latency depends on how often this routine is called. About one
call per second is optimal. If the soultion is updated significantly faster then most of the compute
cycles will be used for the visualization, moving the solution slowly forward in time. In this case it
is advisable to call pV Update only every N times the solver updates the solution.

The more difficult case is when the solution update rate is much slower than optimal. In this
situation, there are two choices; (1) live with large lags between user requests and screen response
or (2) setup another task between the solver and the pV3 server. This software’s responsibility is
to communicate with the solver. It should be the task to make all pV3 calls.

This secondary task can communicate with the solver using PVM or MPI (and therefore must be
on the same machine to avoid large network transfers). Or, if the machine supports multi-threading,
the task can be a second thread and perform double-buffering of the solution space, so no data
need be transferred. These methods are a trade-off of memory usage for interactivity. Multi-thread
examples can be seen in the distribution in the directory ‘examples/mthread’.

3.2.5 pV Console

PV CONSOLE(STRING)

This subroutine allows the programmer to have a string printed in the text window of all currently
running pV3 server applications. The string will be prefaced by the client-id for multi-client cases.

STRING:i: C*80 character string to be output to the server

If a server is not running, this call does nothing.

22

3.3 Programmer-supplied subroutines

3.3.1 pVStruc

PVSTRUC(KNODE, KEQUIV, KCEL1, KCEL2, KCEL3, KCEL4, KNPTET

KPTET, KNBLOCK, BLOCKS, KPHEDRA, KSURF, KNSURF, HINT)

This subroutine is required for all cases, but is only called multiple times for structure unsteady
cases (IOPT = −3). This routine supplies the information for the structure of the discretization.

KNODE:o: I Number of non-block nodes / static flag

KEQUIV:o: I Number or node equivalency pairs

KCEL1:o: I Number of tetrahedra

KCEL2:o: I Number of pyramids

KCEL3:o: I Number of prisms

KCEL4:o: I Number of hexahedra

KNPTET:o: I Number of poly-tetrahedral strips

KPTET:o: I Number of cells in all poly-tetrahedra

KNBLOCK:o: I Number of structured blocks
NOTE: A negative value indicates that blanking will be supplied
for the blocks.

BLOCKS:o: I(3,KNBLOCK) Structured block definitions:

BLOCKS(1,m) = NI

BLOCKS(2,m) = NJ

BLOCKS(3,m) = NK

KPHEDRA:o: I Number of complex polyhedral cells

KSURF:o: I Number of domain surface faces
NOTE: A negative value indicates that faces not connected to
cells should be allowed (not required for bucket-of-faces).

KNSURF:o: I Number of domain surface groups

HINT:o: I What to do with particle locations (used for IOPT = −3):

0 - nothing - if the old cell number is still valid, use it to start

1 - nearest node - use the nearest node to find a valid cell

2 - nearest surface node - use the nearest surface node to
find a valid cell

3 - use supplied info - call pVLocate to get the new cell

Notes:
1) A domain surface group is a collection of faces, which do not have to form a single connected
surface, but form instead a logical grouping referred to earlier as being a domain surface. pV3’s
initialization phase (IOPT = 0, 1, 2) examines each exposed face of each primitive, and determines

23

whether or not it is shared with a neighboring cell. If not, it must be a surface face, but the user
may choose to not declare it as such (see pVSurface). In this case, pV3 takes all undeclared surface
faces, splits them up into disjoint collections and calls the collection the ‘Others’ surface group.
Therefore, the final number of domain surface groups can exceed KNSURF by one.
2) KNODE may be zero for purely structured block cases where the acutal number of nodes can be
determined from the block sizes. It can also be zero for homogenous polyhedral cases were all nodes
are local to the elements (see pVPolyhedra).

Notes for IOPT = −3 cases:
1) If KNODE is −1 that is a special flag to indicate that the structure has NOT changed for this
iteration. With this flag set, no other paramaters should be modified, in that pV3 reverts to the
grid unsteady calling sequence.
2) Gets called every time in pV Update even if no visualization is active.
3) Performance is enhanced by using HINT = 3. The other options exist in the case that a translation
from the old structure does not exist. In these cases, pick the option that, in general, gives a cell
number closest to the target. HINT = 2 is initially less compute intensive, but may require many
cell walks to get to the actual location. Calls to pVConnect will be used to locate the the actual cell
once the integration begins.

3.3.2 pVCell

PVCELL(CEL1, CEL2, CEL3, CEL4, NPTET, PTET)

This subroutine supplies pV3 with the grid data structure. It is not required for a grid that contains
only structured blocks and/or complex polyhedral elements.

CEL1:o: I(4,KCEL1) Node indices for tetrahedral cells

CEL2:o: I(5,KCEL2) Node indices for pyramid cells

CEL3:o: I(6,KCEL3) Node indices for prism cells

CEL4:o: I(8,KCEL4) Node indices for hexahedral cells

NPTET:o: I(8,KNPTET) Poly-Tetrahedra strip header:

NPTET(1,n) = the pointer to the end of the strip n, i.e. it
points to the last entry in PTET for the poly-tetrahedral
strip

NPTET(2,n) = the first node in the poly-tetrahedra

NPTET(3,n) = the second node in the poly-tetrahedra

NPTET(4,n) = the third node in the poly-tetrahedra

NPTET(5-8,n) are used by pV3

PTET:o: I(KPTET) The rest of each poly-tetrahedra, 1 node per cell

Notes:
1) If KCELn is zero, the corresponding CELn must NOT be filled. And the same holds true for
NPTET and PTET.
2) The correct order for numbering nodes for the four disjoint cell types is shown in Fig. 4. The
Poly-Tetrahedra numbering is shown in Fig. 1.

24

�
�
�
�
�
�
�
�
��

��
��

��
��

��

A
A
A
A
A
A
A
A
AA

�
�
�
�
�
H
HH

H
HH

HH
HH1

2 3

4

Tetrahedron

�
�
�
�
�
�
�
�
��

��

��

A
A
A
A
A
A
A
A
AA

�
�
�
�
�
HH

HH
H
HH

H
HH

1 2

34

5

Pyramid

��

��

�
�
�
�
�

@@

@@
@
@

@
@
@

1 2

34

56

Prism

��

��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

1 2

34

5 6

78

Hexahedron

face nodes

1 1 2 3

2 2 3 4

3 3 4 1

4 4 1 2

face nodes

1 1 2 3 4

2 2 3 5

3 3 4 5

4 4 5 1

5 5 1 2

face nodes

1 1 2 3 4

2 2 5 6 1

3 3 4 6 5

4 4 6 1

5 5 2 3

face nodes

1 1 2 3 4

2 2 3 7 6

3 3 4 8 7

4 4 8 5 1

5 5 6 7 8

6 6 5 1 2

Figure 4: Disjoint cell types and node/face numbering

25

3.3.3 pVSurface

PVSURFACE(NSURF, SCON, SCEL, TSURF)

This subroutine supplies pV3 with the surface data structure.

NSURF:o: I(3,KNSURF) NSURF(1,n) is the pointer to the end of domain surface group
n, i.e. it points to the last entry in both SCON and SCEL for
that group.
NSURF(2,n) is the startup drawing/mapping state (the follow-
ing are additive):

0 off

1 render

2 grid

4 grey flag

8 thresholded

16 contours

32 translucent

256 2D mapping is provided (see note 1)

NSURF(3,n) is the global surface number (needed for multi-
client cases only). A non-positve number is the indication that
the surface is an internal boundary caused by domain decom-
position. The number must be the client-id (negated) or zero.
Zero is a special flag (along with SCON = −1) to allow an in-
tegration to try all other clients. Any positive value (including
zero) with a positive SCON is an indication that this surface
connects internally to this client at the cell indicated (usefull for
periodic replication). The global surface number must be <=
3599 (except when indicating a periodic surface or a bucket-of-
faces)! See Appendix B and note 5.

SCON:o: I(KSURF) The cell number to connect. This is the cell number in the local
cell space of the client-id (specified above) for the connecting
cell. If the value is −1, then an attempt is made to pass the
particle into that domain or if NSURF(3,n) is zero all domains
(except the current). A −1 if NSURF(3,n) is greater than zero,
or for single client cases indicates that a re-enter attempt should
be tried in this volume of data. A value of zero signals that there
is no connection.

SCEL:o: I(4,KSURF) node numbers for surface faces. For quadrilateral faces SCEL
must be ordered clockwise or counter-clockwise; for triangular
faces, SCEL(4,n) must be set to zero.

TSURF:o: C*20(KNSURF) titles for domain surfaces (optional)

26

Notes:
1) If the 2D mapping bit is set in NSURF(2,n), that is a flag to indicate that this surface has a
2D mapping. pVSurf, pVXYSurf, and optionally pVSSurf and pVVSurf will be provided and will
respond to this surface.
2) The correct order for numbering faces for the four disjoint cell types is shown in Fig. 4. The face
definitions for Poly-Tetrahedral cells is displayed in Fig. 1. For structured blocks; face #1 is for
exposed cells with cell index k = 1, face #2 is for i = NIm−1, face #3 is for cells with j = NJm−1,
face #4 is for i = 1, face #5 is associated with k = NKm − 1, and face #6 is for j = 1.
3) See Appendix B for a table of NSURF(3,n) and SCON options.
4) Groups may have no entries (in that they may be filled by facets constructed with local polyhedral

nodes).
5) A bucket-of-faces is any collection of triangles or quadrilaterals that do NOT bound the domain.
This can be used to display some feature that may be in the interior of the domain. No connectivity
options are used. In fact the facets described need not be faces of cells.

3.3.4 pVGrid

PVGRID(XYZ)

This subroutine supplies pV3 with the grid coordinates.

XYZ:o: R(3,NNODE) (x, y, z)-coordinates of grid nodes, using left-handed coordinate
system. If right-handed coordinates are desired reverse sign of
the z values.

3.3.5 pVScal

PVSCAL(JKEY,S)

This subroutine supplies pV3 with scalar function values (FKEY=1).

JKEY:i: I Key index, relative to ordering specified in pV Init.
(i.e. first key is 1, second is 2, third is 3, etc.)

S:o: R(NNODE) Scalar function values.

3.3.6 pVThres

PVTHRES(JKEY,XYZ,T)

This subroutine supplies pV3 with threshold function values (FKEY=5).

JKEY:i: I Key index

XYZ:i: R(3,NNODE) (x, y, z)-coordinates of grid nodes

T:o: R(NNODE) Threshold function values

Notes:
1) XYZ is passed by pV3 to the user subroutine, in case it is needed to calculate T but, for storage
reasons, the user’s program has not kept a copy of XYZ. XYZ must not be changed by pVThres.

27

3.3.7 pVVect

PVVECT(JKEY,V)

This subroutine supplies pV3 with vector function values (FKEY=2).

JKEY:i: I Key index

V:o: R(3,NNODE) Vector function values (V x, V y, V z). If right-handed coordi-
nates are desired reverse sign of the V z values.

3.3.8 pVEquiv

PVEQUIV(LISTEQ)

This subroutine supplies pV3 with node equivalency data. Required for KEQUIV 6= 0 cases.

LISTEQ:o: I(2,KEQUIV) Node equivalency pairs.

Notes:
1) For multiple (more than 2) node matching, always have the lowest node number in each entry.
e.g, for a node at an edge between 4 blocks that line up, 3 node equivalency pairs are required, each
matching the lowest node number with the others.

3.3.9 pVBlank

PVBLANK(IBLANK, TBCON)

This subroutine supplies pV3 with blanking data. Required for KNBLOCK < 0 cases.

IBLANK:o: I(NNODE-KNODE) Blanking data:

< 0 node is valid and connected to this local block number
(negated) - fill TBCON for multi-client cases.

= 0 off, invalid node

> 0 on

TBCON:o: I(NNODE-KNODE) Client-id for block number. Zero indicates this client (multi-
client cases only).

28

3.3.10 pVLocate

PVLOCATE(PXYZ,KCOLD,KCNEW)

This subroutine supplies pV3 with the cell locations for particles in an IOPT = −3 and HINT = 3
case. This will be called for each active particle and many of the StreamLine seed positions.

PXYZ:i: R(3) The current (pre-integrated) position of the particle.

KCOLD:i: I Cell number in the old structure that contained the point PXYZ.

KCNEW:o: I The new cell number that contains PXYZ, used to continue (or
start) the integration (this does not have to be the actual cell
that contains the point, but should be close). A zero indicates
that there is no new cell (the domain no longer exists at the
location). If the location is now in another client, return a valid
cell number (in this client) that will cause the integration to
continue to the target client when pVConnect is called.

3.3.11 pVConnect

PVCONNECT(KCOUT,KFOUT,KCIN,IDTIN)

This subroutine supplies pV3 with cell connectivity for cases where IOPT < 0. This is not called for
the interior of structured blocks or poly-tetrahedral strips and is not required for complex polyhedral
cells.

KCOUT:i: I Exitting cell number for the integration

KFOUT:i: I The face number of the cell

KCIN:o: I The entering cell number inorder to continue the integration. A
zero indicates that there is no entering cell (the entire domain
has been exitted). A negative number is an indication that the
integration should attempt to re-enter the domain. The number
must be the index to SCEL of the exitting face for single client
cases or when IDTIN is −1. This insures that a re-entry will
not occur to that face.

IDTIN:o: I Multi-client only. A −1 is the flag that the cell number is in
this client. Zero flags an attempt to reenter any other client’s
domain (all values of KCIN except zero are ignored). Any other
value specifies the client-id for the client that has the cell. Re-
entries (negative KCINs) will be attempted in this client.

Notes:
1) See Appendix B for a table of IDTIN and KCIN options.

29

The following routines are required for cases with complex polyhedral elements.

3.3.12 pVPolyhedra

PVPOLYHEDRA(INDEX,NLNODE,NTETS,NFACET)

This subroutine returns the details of the complex polyhedron specified by INDEX. It is the respon-
sibility of this routine and pVPGrid to provide pV3 enough information about this cell so that the
visualization tools can be applied.

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

NLNODE:o: I The total number of local vertices (i.e. the points not explicilty
defined in pV3’s node space).

NTETS:o: I The total number of tetrahedra that are required to fill the
volume occupied by the polyhedron.

NFACET:o: I Number of exposed triangular facets for the tetrahedral subdi-
vision.

30

3.3.13 pVPGrid

PVPGRID(INDEX,XYZ,TETS,DSG,SCN)

This subroutine supplies pV3 with scalar function values (FKEY=1) for the local nodes in the
specified polyhedron.

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

XYZ:o: R(3,NLNODE) The coordinates for the local nodes.

TETS:o: I(8,NTETS) Tetrahedra and connectivity definitions:

1-4 Nodes that support the tetrahedron. Any positive number
refers to a node pV3’s node space. Any negative value
indicates the index (bias 1) to a local node (absolute value).

5-8 The neighboring cell element for the face (see Fig. 4 for the
tetrahedron face definitions). Any positive number refers
to the index for another tetrahedon from within TETS.
Any negative value indicates an index (absolute value) into
DSG & SCN for the outside connection.

DSG:o: I(NFACET) The domain surface group index for the exposed facet. This
must be a value from zero to KNSURF. If zero, it flags this
facet as internal to the volume and the neighboring cell can be
found in SCN.

SCN:o: I(NFACET) The connecting neighbor in pV3’s cell space. All the connec-
tivity rules apply as described for SCON in pVSurface and Ap-
pendix B.

31

3.3.14 pVPScal

PVPSCAL(JKEY,INDEX,S)

This subroutine supplies pV3 with scalar function values (FKEY=1) for the local nodes in the
specified polyhedron.

JKEY:i: I Key index, relative to ordering specified in pV Init.
(i.e. first key is 1, second is 2, third is 3, etc.)

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

S:o: R(NLNODE) Scalar function values for the local nodes.

3.3.15 pVPThres

PVPTHRES(JKEY,INDEX,XYZ,T)

This subroutine supplies pV3 with threshold function values (FKEY=5) for the local nodes in the
specified polyhedron.

JKEY:i: I Key index

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

XYZ:i: R(3,NLNODE) (x, y, z)-coordinates of local grid nodes

T:o: R(NPNODE) Threshold function values for the local nodes.

3.3.16 pVPVect

PVPVECT(JKEY,INDEX,V)

This subroutine supplies pV3 with vector function values (FKEY=2) for the local nodes in the
specified polyhedron.

JKEY:i: I Key index

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

V:o: R(3,NLNODE) Vector function values (V x, V y, V z) for the local node. If right-
handed coordinates are desired reverse sign of the V z values.

32

The next three routines are needed for the programmer-defined cutting planes.

3.3.17 pVZPrime

PVZPRIME(IDCUT,XYZ,NNODE,ZP,ZPRIME,XPC,YPC,HALFW)

This subroutine is called when the programmer-defined cutting plane is initialized, to set up the 2D
data.

IDCUT:i: L Selected cut number (1 to NPGCUT). It will be positive to
request ZPRIME, XPC, YPC and HALFW.

XYZ:i: R(3,NNODE) (x, y, z)-coordinates of grid nodes (as set in pVGrid)

NNODE:i: I total number of nodes

ZP:o: R(NNODE) z′ values

ZPRIME:o: R starting z′ value

XPC:o: R desired x′ value at center of 2D window

YPC:o: R desired y′ value at center of 2D window

HALFW:o: R desired half-width for square 2D window

Notes:
1) The last four variables should be set only if IDCUT > 0.
2) For IOPT=+/-1, it is assumed that ZP does not change with time.
3) ZP must be returned with the same values for all clients in multi-client applications.

3.3.18 pVXYPrime

PVXYPRIME(ZPRIME,KN,XYZ,N,XYP)

This subroutine supplies pV3 with the (x′, y′) values at selected dynamic surface nodes.

ZPRIME:i: R current z′ value

KN:i: I(N) set of 3D node indices used to construct the surface

XYZ:i: R(3,NNODE) (x, y, z)-coordinates of grid nodes (as set in pVGrid)

N:i: I number of selected 3D nodes

XYP:o: R(2,N) (x′, y′) values at 3D nodes

Notes:
1) There is no ordering of the nodes in KN, and in fact it may contain the same node more than
once.
2) pVZPrime will be called before this routine to set the cut number.

33

3.3.19 pVPZPrime

PVPZPRIME(ZPRIME,INDEX,XYZ,ZP)

This subroutine supplies pV3 with the z′ values at selected dynamic surface local nodes for polyhe-
dra.

ZPRIME:i: R current z′ value

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

XYZ:i: R(3,NLNODE) (x, y, z)-coordinates of the local grid nodes (as set in pVPGrid)

ZP:o: R(NLNODE) z′ values at the local nodes

Notes:
1) pVZPrime will be called prior to the invokation of this routine to specify the cut number.

3.3.20 pVPXYPrime

PVPXYPRIME(ZPRIME,INDEX,XYZ,XYP)

This subroutine supplies pV3 with the (x′, y′) values at selected dynamic surface local nodes for
polyhedra.

ZPRIME:i: R current z′ value

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

XYZ:i: R(3,NLNODE) (x, y, z)-coordinates of the local grid nodes (as set in pVPGrid)

XYP:o: R(2,NLNODE) (x′, y′) values at local nodes

Notes:
1) pVZPrime will be called before this routine to set the cut number.

34

The next three routines are needed only for the mapping of domain surfaces.

3.3.21 pVSurf

PVSURF(ISURF,XPC,YPC,HALFW)

This subroutine is called once when a mapped 2D surface is required. This will only be called for
those surfaces that have been described as mapped (see pVSurface, Note 1).

ISURF:i: I the global surface number

XPC:o: R desired x′ value at center of 2D window

YPC:o: R desired y′ value at center of 2D window

HALFW:o: R desired half-width for square 2D window

3.3.22 pVXYSurf

PVXYSURF(KN,XYZ,N,XYP)

This subroutine supplies pV3 with the (x′, y′) values at selected mapped domain surface nodes.

KN:i: I(N) set of surface nodes indices

XYZ:i: R(3,NNODE) (x, y, z)-coordinates of grid nodes (as set in pVGrid)

N:i: I number of selected surface nodes

XYP:o: R(2,N) (x′, y′) values at surface nodes

Notes:
1) There is no ordering of the nodes in KN, and in fact it may contain the same node more than
once.
2) pVSurf will be called before this routine to set the global surface number.

3.3.23 pVPXYSurf

PVPXYSURF(INDEX,KN,XYZ,N,XYP)

This subroutine supplies pV3 with the (x′, y′) values at selected local mapped domain surface nodes
for complex polyhedra.

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

KN:i: I(N) set of local surface nodes indices

XYZ:i: R(3,NLNODE) (x, y, z)-coordinates of grid nodes (as set in pVPGrid)

N:i: I number of selected local surface nodes

XYP:o: R(2,N) (x′, y′) values at local surface nodes

Notes:
1) There is no ordering of the nodes in KN, and in fact it may contain the same node more than
once.
2) pVSurf will be called before this routine to set the global surface number.

35

The next four routines are needed for mapped domain surfaces and for surface

integrations using the special surface functions.

3.3.24 pVSSurf

PVSSURF(JKEY,KN,XYZ,N,S)

This subroutine supplies pV3 with surface scalar values (FKEY=3) at selected mapped domain
surface nodes.

JKEY:i: I Key index

KN:i: I(N) set of surface nodes indices

XYZ:i: R(3,NNODE) (x, y, z)-coordinates of grid nodes (as set in pVGrid)

N:i: I number of selected surface nodes

S:o: R(N) Scalar function values at surface nodes

Notes:
1) There is no ordering of the nodes in KN, and in fact it may contain the same node more than
once.
2) pVSurf will be called before this routine to set the global surface number.

3.3.25 pVVSurf

PVVSURF(JKEY,KN,XYZ,N,V)

This subroutine supplies pV3 with surface vector values (FKEY=4) at selected mapped domain
surface nodes.

JKEY:i: I Key index

KN:i: I(N) set of surface nodes indices

XYZ:i: R(3,NNODE) (x, y, z)-coordinates of grid nodes (as set in pVGrid)

N:i: I number of selected surface nodes

V:o: R(3,N) Vector function values at surface nodes

Notes:
1) There is no ordering of the nodes in KN, and in fact it may contain the same node more than
once.
2) pVSurf will be called before this routine to set the global surface number.

36

3.3.26 pVPSSurf

PVPSSURF(JKEY,INDEX,KN,XYZ,N,S)

This subroutine supplies pV3 with surface scalar values (FKEY=3) for the local polyhedral nodes
at selected mapped domain surface.

JKEY:i: I Key index

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

KN:i: I(N) set of local surface nodes indices

XYZ:i: R(3,NLNODE) (x, y, z)-coordinates of grid nodes (as set in pVPGrid)

N:i: I number of selected local surface nodes

S:o: R(N) Scalar function values at the local surface nodes

Notes:
1) There is no ordering of the nodes in KN, and in fact it may contain the same node more than
once.
2) pVSurf will be called before this routine to set the global surface number.

3.3.27 pVPVSurf

PVPVSURF(JKEY,INDEX,KN,XYZ,N,V)

This subroutine supplies pV3 with surface vector values (FKEY=4) for the local polyhedral nodes
at selected mapped domain surface.

JKEY:i: I Key index

INDEX:i: I The index to the polyhedral element (in the range one to KPHE-
DRA).

KN:i: I(N) set of local surface nodes indices

XYZ:i: R(3,NLNODE) (x, y, z)-coordinates of grid nodes (as set in pVPGrid)

N:i: I number of selected local surface nodes

V:o: R(3,N) Vector function values at the local surface nodes

Notes:
1) There is no ordering of the nodes in KN, and in fact it may contain the same node more than
once.
2) pVSurf will be called before this routine to set the global surface number.

37

The following routines are used to communicate within the pV3 system.

3.3.28 pVString

PVSTRING(STRING)

This subroutine allows the programmer to provide a label for all plots, in addition to the title supplied
to pV Init. This is particularly useful for labelling plots with the time in unsteady applications.

STRING:o: C*80 character string label

3.3.29 pVCatch

PVCATCH(STRING)

This routine allows the the client to get a text string from the the running pV3 server application.
This is usefull for steering.

STRING:i: C*80 character string sent from the server

38

3.4 C Programming

Using pV3 with C requires that the programmer do some things that may not be intuitive. This is
because FORTRAN is supported with the same bindings.

The following rules must be followed:

• argument passing

FORTRAN expects all arguments to be passed by reference, not value. Character variables
also have their length appended to the stack (end of the call) in the order that character
arguments appear in the call. These lengths are passed by value. See the CRAY & WIN32
note below.

• character strings

FORTRAN character strings have a specified length (hence passing the length). If the string
is not fully used, it is padded with blanks. The null byte that terminates a C string gets
interpretted by FORTRAN as a zero character. To avoid passing the null either overpad
the string with blanks, specify the length as the position before the null, or remove the null.
For programmer supplied routines with character arguments the strings must be padded with
blanks to the specified length.

CRAY & WIN32 note: CRAY vector machines pack the character string length into the higher
order bits of the address and do NOT place the length as an extra item in the argument list.
CRAY T3Ds and WIN32 architectures put the length of the string right after the pointer to
the characters. See ‘pV3.h’, ‘osdepend.h’ and ‘cprism.c’ in the examples directory.

• arrays

FORTRAN array indexing, by default, starts at 1. Also in FORTRAN, the left-most index
produces addresses that are consecutive in memory. Therefore, when filling multiple dimension
arrays, reverse the order of the indices as documented and start at index zero.

Note: key, node and cell numbering MUST start at 1. This gives an offset of 1 between the
index and the number.

• defalut types

The translation between FORTRAN INTEGERs and REALs and their C counter-parts de-
pends on the FORTRAN default size. In most all cases float may be used for REALs (the T3E
is the exception where double must be used). And, currently all supported ports use int for
INTEGER.

39

4 Concentrator

The message-passing model of pV3 with PVM, requires that the graphics workstation be accessible
off the MPP with PVM’s ‘group’ functionality intact (this is a problem for both the CRAY T3D
and the Intel Paragon). Also, for most installations of IBM SP2s the Ethernet interface may be the
only avenue to the graphics workstation. This may require that the solver run off the high-speed
interconnect (if PVM is also used for message-passing). Running off the switch poses significant
performance problems for the solver.

In order to provide an efficient software environment for MPP platforms (which also includes
SGI Arrays and DEC TurboLaser clusters) that enables continued improvement in all applications
to high-end scaleability, a new module has been added to the pV3 suite of software. This ‘Concen-
trator’ executes on the front-end of the MPP (or a node that has the proper off-machine high-speed
network interface). All pV3 messages on the machine use the high-speed interconnect via the MPI

protocol. Communication off the MPP is performed by the Concentrator using PVM to the graphics
workstation in a point to point manner. Off-MPP communication is improved by the concatenation
of smaller messages at the Concentrator to avoid the accumulated latency encountered by many
packets.

The pV3 client-side API does not change in order to support the addition of this new software
component. A different network module is required at solver link in order to use MPI (as well
as PVM for the Concentrator). At execution time the Concentrator starts as one of the solver
processes (this is because MPI currently provides no job control mechanisms). When the server
starts at the graphics workstation, the Concentrator acts like a normal pV3 client, but passes
through the requests to the actual clients and transmits back the requested data. When pV3

reports any client data (such as from the point-probe) the actual client-ID is displayed (not the ID
from the Concentrator) for proper feedback to the investigator.

The use of a Concentrator also simplifies the pV3 startup procedure. The PVM daemon need
only be started on the processor that will run the Concentrator. If the PVM daemon is not running
at startup, the Concentrator waits until the daemon exists.

The design allows for multiple Concentrators with a possible mixture of normal (PVM) clients.
Great flexibility is obtained for large and complex solver systems.

NOTE: There is a different binding used for the Concentrator start, pV MPIStart, between
FORTRAN and C. This is because MPI does not specify a method for translating the FORTRAN
(integer) handles and the C pointers and structures used. In this case the MPI communicator is
the only object that is passed.

40

4.1 PV MPISTART – FORTRAN

PV MPISTART(COMMIN, RANK, NCL, BSIZE, COMMOUT, IERROR)

This function starts up the Concentrator and returns a new MPI communicator to be used by
the normal clients – the Concentrator is not a part of this communicator. This should be called
sometime after MPI INIT and before and solver/client communication.

COMMIN:i: I MPI input communicator handle. The communicator used to
cleave off the Concentrator. Most tasks will specify MPI COMM WORLD.

RANK:i: I The rank in COMMIN for the Concentrator. The process with
this RANK does not return from the call and becomes the Con-
centrator.

NCL:i: I The total number of pV3 clients to be used. If this is zero, the
number used is the size of COMMIN − 1. This is required for
applications that are master/slave or are using some processes
for other tasks.

BSIZE:i: I The buffer size for attached buffers. The Concentrator and
MPI clients use buffered sends. If a buffer has already be at-
tached, specify the buffer size. If not specify zero and this call
will attach a buffer big enough to hold at least one message.
Look at ‘NetMPI.c’ to see the minimum buffer size.

COMMOUT:o: I The resultant MPI communicator handle. This should be used
for all solver/client communication.

IERROR:o: I Function status:

0 - OK

-1 - BSIZE too small

-2 - RANK not in COMMINs range

-3 - Allocation Error

Implementors note. Because the MPI Standard does not specify anything about mixed language
coding, and the Concentrator code is written in C, there needs to be a translation for the commu-
nicator. The mpich method was used in ‘NetMPI.c’. If this is not appropriate for the version of
MPI being used, then the FORTRAN binding for PV MPISTART must be changed to reflect the
translation.

41

4.2 pV MPIStart – C

ier=pV MPIStart(MPI Comm in, int rank, int ncl, int bsize, MPI Comm *out)

This function starts up the Concentrator and returns a new MPI communicator to be used by
the normal clients – the Concentrator is not a part of this communicator. This should be called
sometime after MPI Init and before and solver/client communication.

in MPI input communicator. The communicator used to cleave
off the Concentrator. Most tasks will specify
MPI COMM WORLD.

rank The rank in ‘in’ for the Concentrator. The process with this
‘rank’ does not return from the call and becomes the Concen-
trator.

ncl The total number of pV3 clients to be used. If this is zero,
the number used is the size of ‘in’ − 1. This is required for
applications that are master/slave or are using some processes
for other tasks.

bsize The buffer size for attached buffers. The Concentrator and
MPI clients use buffered sends. If a buffer has already be at-
tached, specify the buffer size. If not, specify zero and this call
will attach a buffer big enough to hold at least one message.
‘NetMPI.c’ defines the minimum buffer size.

out The resultant MPI communicator. This should be used for all
solver/client communication.

ier Function status:

0 - OK

-1 - bsize too small

-2 - rank not in ‘in’s range

-3 - Allocation Error

4.3 pV MPIStop

PV MPISTOP()

This routine should be called before MPI Finalize(). Its purpose is to inform the Concentrator that
the solver/client processes are shutting down.

No Arguments

42

A Simple Programming Example – C

#include <stdio.h>

#include "mpi.h"

/* NOTE: osdepend.h must be after mpi.h */

#include "osdepend.h"

main(argc, argv)

int argc;

char *argv[];

{

int total, rank;

MPI_Comm mycomm;

MPI_Init(&argc, &argv);

pV_MPIStart(MPI_COMM_WORLD, 0, 0, 0, &mycomm);

MPI_Comm_size(mycomm, &total);

MPI_Comm_rank(mycomm, &rank);

:

:

pV_MPISTOP();

MPI_Finalize();

}

A Simple Programming Example – FORTRAN

include ’mpif.h’

integer mycomm, total, rank, ierror

call MPI_Init(ierror);

call pV_MPIStart(MPI_COMM_WORLD, 0, 0, 0, mycomm, ierror);

call MPI_Comm_size(mycomm, total, ierror);

call MPI_Comm_rank(mycomm, rank, ierror);

:

:

call pV_MPIStop();

call MPI_Finalize();

stop

end

43

A More Complex Programming Example – FORTRAN

This example is from a master/slave initialization that does buffered sends. The Concentrator
is rank 0 of MPI COMM WORLD.

parameter (LENBUF = 500000)

include ’mpif.h’

integer mycomm, total, rank, ierr, nclients

common /mpicomm/ mycomm

dimension send_buffer(LENBUF)

c

call MPI_Init(ierr)

call MPI_Buffer_attach(send_buffer, 4*LENBUF, ierr)

call MPI_Comm_size(MPI_COMM_WORLD, nclients, ierr)

c

c remove the master and the concentrator

c

nclients = nclients - 2

call pV_MPIStart(MPI_COMM_WORLD, 0, nclients, 4*LENBUF,

& mycomm, ierr)

c

call MPI_Comm_size(mycomm, total, ierr)

call MPI_Comm_rank(mycomm, rank, ierr)

:

:

44

4.4 Building Processes that can be Concentrators

MPI does not specify how processes are started, and some implementations of MPI only allow a
single executable to be run on the processors. These facts forced the design so that any process can
run as the Concentrator. It is best to first get your application running using MPI for message
passing coupled with pV3 in the standard manner. Once this is accomplished, if you are using
MPI COMM WORLD as the communicator, your code must be changed. After calling MPI Init,
duplicate the communicator via a call to MPI Comm dup. Use only this communicator in your code
as you were using MPI COMM WORLD.

Now follow these instructions:

• Modify your source

The call to MPI Comm dup should be replaced with pV MPIStart as documented above. You
need to figure out which process (rank) you want as the Concentrator. This requires some
knowledge of how your version of MPI starts tasks and which processor is the best candidate
(has the fastest off-machine network interface).

Insert a call to pV MPIStop before the call to MPI Finalize.

• Compile the pV3 network interface for MPI

The routine ‘NetMPI.c’ must be compiled for the architecture you intend to use. This file
needs to be compiled with the same options as used in the compilation of ‘Network.c’ (both
of these sources can be found in the ‘clients’ directory of the distribution). Look at ‘Makefile’
in the appropriate ‘clients’ subdirectory. Another “-Ipath” argument should be added so that
the include for ‘mpi.h’ can be found.

Do not rebuild the library.

• Build your application

Use the same invokation of the loader as you did for the standard pV3 build. The change you
make is to include ‘NetMPI.o’ on the build line before the libraries are searched. This will use
‘NetMPI.o’ instead of ‘Network.o’ to resolve all pV3 message passing routines.

• Running the application

Specify one more processor via the MPI run command when starting. After the call to
pV MPIStart, the size of the returned communicator will be the correct number for the appli-
cation.

If you have a FORTRAN application and get a communicator error message from MPI please
refer to the implementors note in the description of PV MPISTART.

45

5 Portability

5.1 FORTRAN Programming

For the most part FORTRAN source that runs on one implementation of pV3 will work on others.

5.2 C Programming

Unfortunately pV3 is not source code compatible for C across all machines. This has to do with
supporting FORTRAN.

The C programmer that wishes to have their pV3 application running on many platforms should
be aware that:

• main program

On IBM and HP workstations as well as CRAYs, the normal C conventions apply. For DEC,
SGI and WIN32 ports the name of the main program must be ‘MAIN ’, and on all others the
name is ‘MAIN ’.

• routine names

For IBM and HP ports, all pV3 entry points are the FORTRAN names in lower-case. On all
other platforms except CRAY and WIN32, external entries are lower-case with an underscore
(‘ ’) appended to the end. CRAY and WIN32 entry points are upper-case with no appended
underscores. WIN32 routine names must also be prefixed with “ stdcall” so that the correct
Microsoft name handling is done.

Note: this is NOT true for pV MPIStart. This routine is only accessible from C and has the
actual name ‘pV MPIStart’.

• integers

pV3 uses the default FORTRAN INTEGER for all integer arguments. This always corre-
sponds to an int.

• floats

pV3 uses the default FORTRAN REAL for all floating point arguments. This almost always
corresponds to a float. The exception is the CRAY T3E where the REAL corresponds to a
double.

See the file ‘pV3.h’ or ‘osdepend.h’ in the examples subdirectory of the distribution for a method
to avoid these problems.

46

A Error Codes

Any error generated at the call to pV Init invalidates the client for inclusion in the visualization.

If any of these errors are generated during a Structure Unsteady visualization, that volume is
invalid for the current time step. The user will see no data coming from this client. The structure
is checked again at the next call to pV Update.

The following codes report a more detailed message to standard output:

-1 Maximum Number of Surface Faces Execeded! The size for
the temporary face structure was too small and could not be
increased by re-allocation.

-2 Degenerate face! A degenerate face was found. If the cell is re-
ally degenerate (has the same node numbers in multiple entries)
use the appropriate cell type!

-3 Face Hit by 3 (or more) Cells/Surfaces! The is part of more
than 2 objects. Any face must be touched by either 2 cells (an
internal face) or a cell and a surface face. If you are trying to
put a domain surface where pV3 thinks the face is internal,
change the node numbering on one of the cells to indicate a
new face. This will probably require that additional nodes be
added to the node space.

-4 Surface Face with no Connecting Cell! A face has been specified
that is not part of a cell in this volume.

-5 Maximum Number of Surface Faces Execeded while construct-
ing the surface ‘Others’ ! This can occur if the number of cells is
small compared to the number of surface faces. To increase the
storage, give KSURF a larger value so that the face matching
procedure can complete.

-6 Memory Allocation Error!

-7 Structure Check error. A more detailed list is given on standard
output.

-8 Edge Table Overflow! The size for the temporary edge structure
was too small and could not be increased by re-allocation.

-9 Maximum Number of Edge Lines Exceeded!

47

The following codes generate no additional information:

-102 The client library was not built properly! You should not see
this error.

-101 Some PVM error was encountered during initialization! This
happens when either the PVM daemon is not running, or the
PVM group subsystem cannot be initialized.

-100 The pV3 client system is already initialized!

1 Control Parameter Out of Range! IOPT is greater than 2 or
less than -3.

2 NKEYS is zero!

3 NKEYS is greater that the maximum (Obsolete)!

4 FKEYS(i) out of range! An entry in FKEYS is less than zero
or greater than five. Also, 2 state-vectors (zeros) or a large
state-vector rank will cause this error.

5 FLIMS(1,i) equals FLIMS(2,i) − > FKEYS(i) = 3 or
FLIMS(1,i) = 0.0 − > FKEYS(i) = 4!

6 Memory Allocation Error! pV3 has requested a block of mem-
ory and has been refused. This is usually do to the problem’s
size.

7 Degenerate Block! One of the block sizes is less than two.

8 KPTET is less than zero!

9 NPTET(1,MAX) <> KPTET! The last entry in NPTET does
not match the value KPTET.

10 KNODE <> 0 but no non-structured block cells!

11 NSURF(1,KNSURF) > KSURF! The last entry in NSURF is
larger than the size given at initialization (or from the call to
pVStruc).

12 Structure Unsteady - no change flag set without any prior def-
inition!

13 Structure Unsteady - a reallocation error has occured.

14 Structure Unsteady - current number of blocks (KNBLOCK) is
greater than specified at pV Init.

15 NSURF(3,n) > 3599 or periodicity specified with MIRROR >=
0.

48

B Multi-client Connectivity Options

There are a limitted number of segments allowed for streamlines. When that limit is reached
(currently 4 times the number of clients) a warning is displayed and that streamline will terminate.

If the interface between clients is ragged (such as found with tetrahedral meshes), a command
to enter the domain (cell number = −1) may fail.

An attempt to (re)enter (cell number = −1) a client is MUCH more compute intensive than
specifying the cell number (or even a cell that is close to the target)!

B.1 pVConnect

When the programmer is responsible for the connectivity (any negative IOPT in pV Init) the routine
pVConnect must be supplied. It is called during particle integrations to move data from one cell to
the next. There are many options based on where the the target cell resides.

• IDTIN = -1

The integration continues in the current client.

KCIN Comment

negative try to re-enter in this client
value must be index to SCEL of exitting face (negated)

zero stop - hit boundary
positive continue to this cell number

• IDTIN = 0

Try to enter into all other clients. KCIN is ignored unless zero.

• IDTIN = positive number

Continue the integration into client with this client-id.

KCIN Comment

-1 try to enter in the client specified by IDTIN
zero stop
positive continue to this cell in IDTIN

49

B.2 pVSurface

The programmer can also specified the multi-client topology by the data returned from the routine
pVSurface. In this case internal surfaces must be constructed to patch regions together. The surfaces
define the connectivity with the following options:

• NSURF(3,n) = negative number

The absolute value of the number is the client-id to continue the integration.

SCON(i) Comment

-1 try to enter in the client specified by -NSURF(3,n)
zero stop - hit boundary
positive continue to this cell in -NSURF(3,n)

• NSURF(3,n) = 0

Special internal interface.

SCON(i) Comment

-2 try to enter all clients (including locally)
-1 try to enter all other clients
zero stop
positive continue in this cell locally (usefull in closing C and O grids

as well as connecting non-polyhedral regions with polyhedra)

• NSURF(3,n) = positive number

The integration continues in the current client.

SCON(i) Comment

-1 try to re-enter in this client
zero stop
positive connect to this cell locally

• NSURF(3,n) = positive number > 10000
global surface number = NSURF(3,n) − 10000

The integration continues in the current client through a periodic boundary by applying the
replication matrix once.

SCON(i) Comment

-1 try to re-enter in this client
zero stop
positive connect to this cell locally

50

• NSURF(3,n) = positive number > 20000
global surface number = NSURF(3,n) − 20000

The integration continues in the current client through a periodic boundary by applying the
replication matrix nrep (or −1) times.

SCON(i) Comment

-1 try to re-enter in this client
zero stop
positive connect to this cell locally

• NSURF(3,n) = positive number > 30000
global surface number = NSURF(3,n) − 30000

This grouping defines a bucket-of-faces. No connectivity is assumed – SCON is not used. The
fecets need not match the faces of a cell, they can be defined via any node in the node space.

51

