
pV3 Server User’s Reference Manual

Rev. 2.05

for use with the following OpenGL workstations:

Compaq ALPHAs

HP workstations (HPUX 10.20 ACE)

RedHat LINUX (Rev 6.1 or higher)

IBM RS/6000 workstations (AIX 4.3 or higher)

Silicon Graphics

SUNs (Solaris 2.6 or higher)

WindowsNT/2000

Bob Haimes

Massachusetts Institute of Technology

December 12, 2001

1

License

This software is being provided to you, the LICENSEE, by the Massachusetts Institute of Technology
(M.I.T.) under the following license. By obtaining, using and/or copying this software, you agree
that you have read, understood, and will comply with these terms and conditions:

Permission to use, copy, modify and distribute, this software and its documentation for any
purpose and without fee or royalty is hereby granted, provided that you agree to comply with the
following copyright notice and statements, including the disclaimer, and that the same appear on
ALL copies of the software and documentation:

Copyright 1993-2001 by the Massachusetts Institute of Technology. All rights reserved.

THIS SOFTWARE IS PROVIDED “AS IS”, AND M.I.T. MAKES NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED
SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

The name of the Massachusetts Institute of Technology or M.I.T. may NOT be used in advertising
or publicity pertaining to distribution of the software. Title to copyright in this software and any
associated documentation shall at all times remain with M.I.T., and USER agrees to preserve same.

2

Contents

1 Introduction 5

1.1 pV3 Startup . 5

1.1.1 Server Startup . 6

1.1.2 Environment Variables . 6

1.1.3 Special Files . 7

1.1.4 Notes on the Common Desktop Environment – CDE 9

1.2 pV3 Time-Outs and Error Recovery . 9

2 The pV3 Server Users Interface 11

2.1 Surfaces . 11

2.2 Windows . 11

2.2.1 Text Window . 11

2.2.2 3D Window . 12

2.2.3 2D Window . 12

2.2.4 1D Window . 12

2.2.5 Key Window . 12

2.2.6 Dialbox Window . 13

2.3 Scalar Visualization Tools . 15

2.3.1 Surface rendering . 15

2.3.2 Planar Cutting plane . 15

2.3.3 Program-defined cutting plane . 16

2.3.4 Iso-surfaces . 16

2.4 Vector Visualization Tools . 17

2.4.1 Bubbles . 17

2.4.2 Instantaneous Streamlines . 18

2.4.3 Tufts . 19

2.4.4 Arrows . 19

2.4.5 Vector Clouds . 20

2.5 Grid . 20

2.6 Thresholding . 20

2.7 Probes . 21

2.8 Help Menus . 22

2.8.1 3D Window . 22

3

2.8.2 2D Window . 23

2.8.3 1D Window . 24

2.8.4 Key Window . 25

2.8.5 Dials Window . 26

2.9 Dialbox Functions . 28

3 Multi-Disciplinary Visualization 29

4 Collaboration 30

4.1 Help Menus . 31

4.1.1 Servers Window . 31

4.1.2 Servers Extract Window . 31

5 Post-Processing 33

5.1 tab2ps . 33

5.2 img2tiff . 33

5.3 img2ps . 34

5.4 img2X . 35

6 User Interface Differences with Visual3 36

7 Warning and Error Messages 38

4

1 Introduction

pV3 is the newest in a series of graphics and visualization tools to come out of the Department of
Aeronautics and Astronautics at MIT. Like it’s predecessors Visual3, Visual2 and Grafic, pV3

is a software package aimed at aiding in the analysis of a particular suite of problems. In this case
it is the real time visualization of 3D large scale solutions of transient (unsteady) systems.

pV3 (which stands for parallel Visual3), is a completely new and different system, but builds
heavily on the technology developed for Visual3. It has been designed specifically for co-processing
visualization of data generated in a distributed compute arena. It is also designed to allow the
solver to run as independently as possible. If the solution procedure takes hours to days, pV3 can
‘plug-into’ the calculation, allow viewing of the data as it changes, then can ‘unplug’ with the worst
side-effect being the temporary allocation of memory and a possible load imbalance.

pV3 provides the same kind of functionality as Visual3 with the same suite of tools and probes.
The data represented to the investigator (the 3D, 2D and 1D windows with cursor mapping) is the
same. Also the same Graphical User Interface (GUI) is used.

pV3 programming is very Visual3-like. For the desired flexibility and the merging of the
visualization with the solver, some programming is required. The coding is simple; like Visual3,
all that is required of the programmer is the knowledge of the data. Learning the details of the
underlying graphics, data extraction, and movement (for the visualization) is not needed. If the
data is distributed in a cluster of machines, pV3 deals with this, resulting in few complications to
the user.

1.1 pV3 Startup

The PVM daemon(s) and with co-processing, the solver, must be executing. Without a pV3 server
running, every time the solution is updated, a check is made for the number of members in the
PVM group pV3Server (Note: this name can be changed for multiple jobs running under the same
user ID – see the Section 1.1.2 for the environment variable ‘pV3 Group’). If no servers are found,
no action is taken. When a pV3 server starts (usually from an interactive xterm session on the
graphics workstation), it enrolls in the specified group. The next time the solution is updated, an
initialization message is processed and the visualization session begins. Each subsequent time in
the solver completes a time step, visualization state messages and extract requests are gathered, the
appropriate data calculated, collected and sent to the active server(s).

When the user is finished with the visualization, the server sends a termination message and
exits. The clients receive the message, and if no other servers are running, cleans up any memory
allocations used for the visualization. Then the scheme reverts to looking for server initialization, if
termination was not specified at pV3 client initialization.

5

1.1.1 Server Startup

The interactive server, pV3Server, takes three arguments at the command line (all optional). The
first is the setup file with the default of ‘pV3.setup’. The second argument is the color file to be
used at startup (the default is ‘spec.col’). The third argument is the extract start-up file. There is
no default. An argument of ‘−’ is a place holder, allowing the default to be used.

examples: % pV3Server case.setup
% pV3Server pV3.setup bw.col
% pV3Server
% pV3Server case.setup − case.startup

1.1.2 Environment Variables

The pV3 server uses six Unix environment variables. Some are the same as the ones used for
Visual3. The variable ‘Visual3 CP’ defines the file path to be searched for color files, if they are
not in the user’s current directory. This allows all of the color files to be kept in one system directory.

The second variable, ‘Visual KB’ is optional. This variable, if defined, must point to a file that
contains alternate keyboard bindings for the special keys used by pV3. The file is ASCII. The first
column is the key name (10 characters) and the second is the X-keysym value in decimal (use ‘xev’
to determine the appropriate values for the key strokes).

The third is ‘pV3 TO’ and should be used to change the internal Time-Out constant. If the
variable is set, it must be an integer string which is the number of seconds to use for the Time-Out
constant (the server’s default is 60). This may be required if the time between solution updates is
long. See Time-Outs and Error Recovery, Section 1.2.

The fourth is ‘pV3 Threading’. This is used to specify how the interactive Server and the post-
processing Viewer handles the handshaking between their active threads. There are two methods;
(1) ‘Hard’ where the thread sits in a hard loop (with a thread yeild) looking for a change of state,
or (2) ‘Flag’ where the threads use Semaphores for waiting until the state changes. The advantage
of ‘Hard’ is interactivity, the advantage for ‘Flag’ is less processor time consumed. By default, this
variable is set to ‘Hard’ for most situations with single processor workstations and ‘Flag’ for multi-
processors.
Exceptions: ALPHA’s default is ‘Hard’, SUN’s default is ‘Flag’, reguardless of number of processors.

The fifth is ‘pV3 Group’. This is usefull for differentiating multiple PVM jobs running under
the same user ID. If this variable is set for the solver (client-side) before execution, it overrides the
default client side group name pV3Client. The name used is the string assigned to this variable
with Client appended. By setting this variable before server execution, it will set the server group
to the variable’s string with Server appended instead of using pV3Server. Only clients with the
appropraite matching group name will be connected to this session.

The last is ‘pV3 Warning’. If this variable is set (to anything except a NULL string) warning
messages about ACK and maximum streamline segments are not reported.

6

1.1.3 Special Files

• Window Manager Resource File

By default, all modern Xwindows Managers allow the closing or deleting of windows by either
double-clicking on the menu pull-down or selecting ‘Close’ or ‘Quit’ from the pull-down. This
will abort the execution of the Server or Viewer. To avoid this, an additional window manager
menu description can be added to the default information for the Window Manager. This
is accomplished by specifying a user-level resource. In the distribution the following files
can be found in the “servers” subdirectory; ‘user.4Dwmrc’, ‘user.mwmrc’, and ‘user.dtwmrc’.
These files are for SGI’s default window manager, the Motif window manager and CDE’s
window manager, respectively. The entire resoure file (for the appropriate window manager)
must be copied from the system (usually something like ‘/usr/lib/X11/system.XXwmrc’ or
‘/etc/dt/config/sys.dtwmrc’) – if not already done. This file gets named ‘.XXwmrc’ (where
XX is 4D or m) and then the appropriate user resource file appended to the end. Note: for
CDE, this file gets put in the ‘.dt’ directory at the users top level and must be given the name
‘dtwmrc’.

• .Xdefaults

If the SGI window manager is used, ‘4DWm’ must be told what to do with pV3s windows.
These commands must be placed in the file ‘.Xdefaults’. See the file ‘user.Xdefaults’. For
DEC, IBM and SUN systems this information is found in the window manager’s Setup File
(Mwm or the appropriate file for the WM used).

pV3 requires three X fonts. The file ‘.Xdefaults’ in the users home directory is examined for
the font names and are designated “Visual*large”, “Visual*medium” and “Visual*small”. The
sample file ‘user.Xdefaults’ comes with the distribution and may be concatenated to the user’s
‘.Xdefaults’ file.

The X fonts loaded on any system may be examined by the command ‘xlsfonts’.

• ‘Mwm’ Setup File

When a user begins a session using the Motif window manager, it reads the initialization file
‘Mwm’ in the user’s home directory. This file contains information on how to treat various
classes of windows and the window focus (as well as other things). A sample file ‘user.Mwm’
is in the distribution and may be used as ‘Mwm’ or its contents concatenated to the user’s
‘Mwm’ file.

• ‘twm’ Setup File

If the ‘twm’ window manager is used, when a user begins a session, twm reads an initialization
file ‘.twmrc’ in the user’s home directory. This file defines certain key bindings and window
attributes. It is necessary for correct pV3 operation for the user to modify the standard
‘.twmrc’ file as shown in the ‘user.twmrc’ file on the pV3 distribution, or just use this file as
‘.twmrc’.

7

• Color Files

A number of different color files are supplied on the distribution. For those who wish to define
their own color files, the format of these ASCII files is as follows:

nc nb

r g b

.

.

.

.

nc

r g b

.

.

.

nb

where nc is the number of colors, nb is the number of background colors (0–4), and r, g, b

are red, green, blue intensity values (0.0–1.0). The four background colors are for window
background; grid color; tuft/streamline/ribbon color; contour line color. The default values
which are used if nb = 0 are black; white; white; white. If nb 6= 0 then the specified colors
over-ride the defaults for the first nb colors.

When pV3 searches for named color files, it first looks in the current directory, and then
follows the color file path specified by the environment variable ‘Visual3 CP’.

• Setup File

When the pV3 server or viewer starts, it looks in the user’s current directory for the setup file
specified as the first argument on the command line. This is an ASCII file which contains a
number of useful defaults that the user may want to set to values different than pV3’s initial
defaults. It also contains a set of viewing positions and cutting plane positions. Normally this
file is generated by pV3 when the user wants to store certain favorite parameters and viewing
positions so that they can be used again on another data set. This is particularly useful when
the user wishes to directly compare two different data sets with the same computational grid
or geometry. However, an experienced user can also generate this file from scratch. NOTE:
This file is NOT compatible with Visual3’s setup file.

• Startup file

The startup file is an ASCII list of static extracts that are desired at server initialization. This
file can be generated by the pV3 server at any time during the visualization session by hitting
‘W’ in the Key window. The result is a startup file that contains all of the saved extracts as
listed in the Surface database and the Streamline database of the Dialbox window. This allows
for easy restart.

NOTE: The format for this type of file has changed for Rev 1.20 in order to support multi-
disciplinary visualization. Older files are still valid at startup for single discipline cases.

8

• Lock File

If the server is running on a multi-processor SGI workstation a file is used for the coordination
of the 2 threads generated during execution. This file has the name ‘.pV3.locks’ and is open in
the current directory. It should be noted that running two invocations of the pV3 server from
the same directory will NOT work. Both will use the same file for the lock and semaphore
arena!

1.1.4 Notes on the Common Desktop Environment – CDE

For the pV3 suite to work properly with CDE, the Style Manager must be used to change the default
methods CDE uses for cursor/window functioning. Under the Window section “Point in Window to
Make Active” must be selected. Also, “Raise Window when Active”, and “Allow Primary Windows
on Top” must NOT be selected.

1.2 pV3 Time-Outs and Error Recovery

The pV3 system was designed to be as error-free and as robust as possible. Because the client
software runs closely coupled to the software generating the data, extra care has been taken to avoid
causing any errors or problems related to this visualization system.

If the pV3 server aborts, the client side software will NOT hang waiting for the completion
of some message stream. In general, the server sends a series of request messages framed by an
‘end-of-requests’ message. All messages are received by the client software by either a tight loop or
timed-out receive. In the tight loop, there is first a check to see if the server is still active. If so,
the next message is pulled of the message queue. If there is none, the server’s presence is checked
again, and so on until a message is received. Control is returned to the solver when either the
‘end-of-requests’ message is received or the server terminates (either gracefully or just disappears).

In the timed receive, an amount of time is specified for the receive. If this time is exceeded
before a message is collected, it is assumed that something is wrong and the client shuts down the
visualization (just as if the user terminated the session).

The type of message handling is controlled by the server’s time-out constant. This is set by the
environment variable ‘pV3 TO’. If the constant is set to 0 (zero), then the client and server do not
time out, and are in hard loops. If the value is some positive number, both the client(s) and server
will time out if something gets hung. If the time-out constant is negative, the server will time-out
after the (negated) number of seconds and the client(s) are put in a hard loops. The default is 60
(seconds).

The choice of what to use depends on the network, the type of machine(s), whether the machines
are dedicated, and the cost of putting software in tight loops waiting for some response.

If you are using tight loops and pV3 seems to hang, the only way to free things up is to abort
the server. If the server seems hung, hitting Ctrl-C in the window that started the server should
work.

9

NOTES:
1. Client-side time-outs are controlled by the first server that connects to a session when multiple
servers have started (even if that first server has exitted). The value can only be reset once all
servers have terminated.
2. For SGIs: The server runs as two threads (there are two unique PIDs for the task). If for some
reason the IO thread aborts, it may leave the windows up but give a prompt in the window where
the server was started. This can usually be fixed by hitting ‘Esc’ in the 3D window or by killing the
process left. If the graphics thread aborts (the windows will disappear) interrupt the IO thread by
hitting Ctrl-C.

10

2 The pV3 Server Users Interface

In trying to understand the following description of the user interface, it may be helpful to run one of
the demo programs found in the example directory of the distribution. It is necessary to get PVM

going then startup one of the example clients. After the client is running the server (pV3Server)
can be started.

2.1 Surfaces

pV3 deals with three different types of surfaces. The first category is domain surfaces. These
are surfaces that are defined by the client program(s) during pV3 initialization, and they typically
correspond to the surfaces which bound the computational domain. A subset of this first class,
are mapped domain surfaces, for which there is a mapping from points on the surface to an (x′, y′)
coordinate system. This allows plotting of surface quantities in a 2D setting.

The second category is dynamic surfaces. These are surfaces whose orientation and position,
relative to the computational domain, can be changed interactively by the user. Although there are
several types of dynamic surfaces, only one dynamic surface can exist at one time. Also, a dynamic
surface cannot be activated when a mapped domain surface is being plotted in the 2D window.

The third category is static surfaces. These are surfaces which at one time were dynamic, but
then transferred into the surface database, along with the domain surfaces. These static surfaces
are then treated in almost the same way as the unmapped domain surfaces.

NOTE: In Visual3, any static surface in a grid unsteady application deformed with the grid
movement. The surface was associated with the cells and not physical space. In pV3 the static
surface acts like it did when dynamic – correctly for grid unsteady and structure unsteady cases.

2.2 Windows

The user interface is divided into six different windows. As is typical of X-window applications, the
functions invoked by mouse button, keyboard or dialbox input are dependent upon the position of
the cursor. Thus, different functions are available to the user depending on which window is active,
i.e. contains the cursor. An important feature of the user interface is its help key. Pressing ‘?’ will
cause a list of the available commands for the active window to be displayed in the text window.
The six different windows are:

2.2.1 Text Window

The text window is the window from which the pV3 server (pV3Server) was started. It is a good
idea to keep this window in the lower left corner of the screen where it will not be obscured by the
other pV3 server windows. This window is used to output various messages, including the help
menus, and to input filenames, numerical values, and any other textual information.

11

2.2.2 3D Window

The 3D window displays data on three-dimensional surfaces. It also displays three-dimensional lines
such as tufts and streamlines, and other objects that are discussed later. These objects in the 3D
window can be rotated, translated and enlarged using the dialbox (or pseudo-dials – see the Dialbox
Window, Section 2.2.6). All motion is relative to screen coordinates and not object coordinates.
One set of key strokes allow the user to store particular viewing positions, and later restore then
using the numeric keypad. The setup file retains this data so that it can be used at server restart or
with other data-sets.

2.2.3 2D Window

The 2D window is used to display data on a mapped domain or dynamic surface (for which there
exists a mapping to a (x′, y′) coordinate system). This 2D data may be independently rotated,
translated and enlarged again using the dialbox (or pseudo-dials).

2.2.4 1D Window

The 1D window is used to display one dimensional data which is generated by various functions in
the 2D window or from mapping instantaneous streamlines.

2.2.5 Key Window

This window displays the color scheme used in the 3D and 2D windows. When the cursor is in this
window, there are many options available. These include the ability to interactively change the color
scheme, load in a new color scheme, or change the length of displayed vectors.

There are two traffic lights in the left-hand portion of the Key window. The lower traffic light
(which is red when the pV3 server is computing, yellow when pV3 waiting for some specific user
input, and green when ready to accept new user input) is active in the left-most portion of this
window. Tied to the traffic light color is the color of the cursor. When the cursor is yellow pV3 is
expecting mouse button presses.

The upper traffic light reflects major requests pending to the clients, such as a change to the
current scalar filed variable. Because a new request is sent out as a time-frame is being collected
(and viewing the previous results) this light is also tri-state. A red light indicates that the request is
being made. A yellow light means that one more iteration is required before the request is satisfied.
A green light indicates no pending requests.

12

2.2.6 Dialbox Window

The Dialbox window serves four functions. Pressing ‘s’ switches the window between these functions.

• Pseudo-dials

The mode is to display the functions associated with each of the dials of the dialbox. Pressing
the middle mouse button will switch the dialbox display between the 3D, 2D and Key windows
for which the dials are active, and in each case eight dials are displayed together with labels
describing the dial function (pan, zoom, rotate, etc.) when the cursor is in that window. If
there is no dialbox the dials can be rotated by putting the cursor on the appropriate dial and
holding down the left or right mouse button; in this case the window that is changed is the one
labeled in the base of the Dialbox window. Holding down the mouse button in the center of
the dial will cause faster movement. In this mode the affected window will go into fast-drawing
mode where only the surface edges are drawn. Under many circumstances this produces more
interactive positioning than using the physical dialbox.

• Surface database

The surface database lists all of the domain and static surfaces. Each entry has four small
boxes which give the status of that surface’s attributes. The first box gives the rendering
status (white=ON, grey=translucent, black=OFF), the second is the grid status (white=ON,
black=OFF), the third is the grey surface status (white=ON with colored contours, grey=ON,
black=color) and the fourth is the thresholding status (white=ON, black=OFF). The meaning
of some of these terms will become clearer later when discussing the scalar visualization tools.

The user can change the attributes by pressing any mouse button when the cursor is on one
of the boxes. Doing this, or pressing a mouse button on the surface label, also causes that
surface to become the active surface. The active surface is highlighted in the database, and is
important for certain plotting options discussed later.
NOTE: In Visual3 it was not possible to have contouring on without the underlying surface
also rendered. In pV3, the user can accomplish this by having the rendering box black and
grey surface box white.

• Streamline database

The streamline database lists all of the streamline objects, and next to each there are four
small boxes which give the status of important streamline attributes. The first box gives
the rendering status (white=colored, grey=ON, black=OFF), the second is the direction
(white=backward, grey=both directions, black=foreward), the third is the streamline type
(white/cross=tubes with twist, white=tubes, grey=ribbons, black=streamlines) and the fourth
is the particle seeding status (white=ON, black=OFF). The meaning of some of these terms
will become clearer later with the discussing the vector visualization tools.

The user can change the attributes by pressing any mouse button when the cursor is on one
of the boxes. Doing this, or pressing a mouse button on the streamline label, also causes that
object to become the active streamline object. This object is highlighted in the database, and
is important for certain plotting and control options discussed later.
NOTE: This is completely new for pV3 and does not exist in Visual3!

13

• Discipline/Client database

For multi-client and/or multi-discipline cases, this database allows setting the current discipline
as well as controls the visibility of all disciplines and clients. Each discipline displays 2 boxes
where the clients (optionally) listed under the discipline each have a single box. If the client
box is white, the client is visible. If the box is black, then the extracts (except of streamlines)
associated with that client are not drawn. The user can change the visibility state by pressing
any mouse button when the cursor is on the box.

The first box for a discipline either exposes or hides the clients associated with the discipline.
If the box is black, all clients are hidden. A white box indicates that the clients are listed
below. The user can change this state by pressing any mouse button when the cursor is on
this first box.

The second box is a visibility flag for the entire discipline. A white box means that all clients
for a discipline are visible. A black box indicates that all clients have been turned off. A grey
box flags that some clients for the discipline are on and some are off. The user can turn off all
clients in a discipline by pressing any mouse button when the cursor is on a white box. The
user can turn on visibility for all clients by pressing any mouse button when the cursor is on
a black or grey box.

The current discipline is set by pressing any mouse button when the cursor is on the title of
the desired discipline.
NOTE: This is completely new for pV3 and does not exist in Visual3!

14

2.3 Scalar Visualization Tools

The one of the data types in pV3 is scalar data, which is simply scalar information defined at
each node of the computational grid(s). pV3 does not know anything about the data other than
an associated function number and label. For example, in fluid dynamic applications, a function
may have label pressure and a second scalar function may have label Mach number. An important
concept in pV3 is the notion of active functions, and the active scalar function is the function and
associated label which corresponds to the scalar data currently used by pV3. The user can switch
to a different scalar function by hitting a particular key on the keyboard which is bound by the pV3

client initialization procedure. For example, key ‘p’ may be bound to the function, labeled pressure.

The following is a list of plotting functions available for use with scalar data:

2.3.1 Surface rendering

Gouraud-shaded (smooth color shading) surface contours of the scalar function can be rendered on
any, or all, of the domain and static surfaces. Column 1 of the surface database is used to select
which surfaces are to be displayed. With the cursor in the Key window, there is a variety of options
to interactively change the color scheme used for the rendering. Key ‘l’ loads a new color file, while
key ‘r’ restores the original color file. Two dials on the dialbox (or pseudo-dials) change the upper
and lower bounds of the scalar function range spanned by the color scheme.

If the active surface (as defined earlier) is a mapped domain surface (with an associated mapping
to a (x′, y′) coordinate system), then Gouraud-shaded contours can also be plotted in the 2D window,
by pressing F5 in the 3D window. The active surface is highlighted in the surface database, but
if one is unsure of which it is in the 3D window then pressing F1 will cause the rendering on that
surface to blink off and on.

Another option with mapped domain surfaces is F6 in the 3D window, which performs a surface
rendering in both the 2D and 3D windows of the active surface scalar function, a function that is
only defined on mapped domain surfaces as specified by the programmer. The color map used to
render this surface function can be viewed by toggling key ‘s’ in the Key window.

2.3.2 Planar Cutting plane

The cutting plane is a dynamic surface, a true planar surface cutting through the 3D field. The
cutting plane is initialized by pressing F3 in the 3D window. This puts the 3D window into a special
mode in which the 3D object is held fixed and the user can use the dialbox to rotate the cutting
plane into the desired orientation. When ready, pressing F3 again switches off the planar movement
mode and turns on the regular cutting plane mode.

Once the cutting plane is activated, it is controlled from the 2D window, meaning that it responds
to keys and dials that are active when the cursor is in the 2D window. Using dials, the cutting plane
can be moved from side to side, up and down, in a direction normal to the plane (using the scan
dial) and rotated in its own plane. Function key F9 toggles (switches on and off) rendering in the
2D window, while F6 toggles rendering in the 3D widow. F10 toggles the display in the 2D window
of the grid defined by the intersection of the cutting plane and the 3D computational grid faces.

15

The cutting plane can be turned off and on using F2 in the 3D window. The cutting plane
position can also be stored, like the 3D viewing position, by pressing the Ctrl key and one of the
ten numbers in the numeric keypad on the right-hand-side of the keyboard. It can be restored later
by pressing just the number.

2.3.3 Program-defined cutting plane

This is similar to the last option, but instead of being a truly planar surface, it is a surface cor-
responding to z′ = const, where z′ is a programmer-defined function (in the clients); the scan
capability varies the value of const interactively. This allows the programmer to define conical,
cylindrical or other surfaces not otherwise defined by the pV3 server. The client programmer also
must have defined a mapping to (x′, y′) coordinates so that plotting is possible in the 2D window.
The program-defined cutting plane is activated by F4 in the 3D window. The other options in the
2D window are the same as for the regular cutting plane.

2.3.4 Iso-surfaces

An iso-surface is a dynamic surface with a uniform value of the currently active scalar variable, and
is activated by F7 in the 3D window. The iso-surface value is displayed in the Key window and can
be varied interactively (in the Key window) using the dialbox to scan the value of z′, or key ‘z’ to
set its value, or the right mouse button to pick a value from the color key.

16

2.4 Vector Visualization Tools

The second pV3 data type is vector data. This is a set of 3D vector values for each grid node. As
with the scalar function, this vector data is associated with an active vector function, which can be
changed by pressing a key that is bound to another vector function. The following is a list of plotting
functions for vector data:

2.4.1 Bubbles

Bubbles are unsteady particle paths. This tool provides the same effect as hydrogen bubbles in
experimental techniques. Bubbles are active with all pV3 unsteady modes (unless the simulation
is paused). A single bubble path may be spawned by simply pressing a mouse button in the 2D
window (assuming seeding is off) which provides an initial point to start the integration in 3D
space. If bubble coloring is on (F12 in the 3D window), the particle location will be rendered by
the current scalar; if not, the current location is rendered with the default streamline color. The
spheroid may also be colored by the time that the bubble was spawned. This is accomplished by
hitting ‘s’ in the Key window. The time limits will probably have to be adjusted (hitting ‘f’ in the
Key window).

Several bubble paths may be started from a line or circle by using key F11 in the 2D window.
Similarly, a grid of bubbles may be spawned using F12 in the 2D window.

If the particle streamer is on (Tab key in the 2D window), bubbles will be continuously spawned
from the current cursor location at every time step. This mimics the experimental technique of
streaklines where dye is continuously injected at a spot in the flow field. With the streamer on and
the boundary layer or line probe is on, particles are emitted along the line every snapshot in time
(the number of particles is the last set by spawning a line of bubbles – F11 in the 2D window). And,
finally if the streamer is on and the tufts are active, a grid of bubbles is seeded each time step at
the tuft locations.

NOTE: Particles whose spawn position in on a surface (by starting on a mapped domain surface
or via the Edge Plot) function differently from normal 3D bubbles. These particles remain on the
surface. This is done numerically by using the projection of the local vector field onto the surface
during the integration. The vector field option (and scalar field option used for coloring) is set via
the ‘Volume/Surface’ toggle, see the 1D window help menu, Section 2.8.3. This allows using the
current vector field or the current special vector function for the integration. Special functions are
only defined at surfaces (not the entire volume).

17

2.4.2 Instantaneous Streamlines

Streamlines are curved 3D lines which are everywhere parallel to the local vector field. They are
obtained by numerical integration of the vector field along a line starting at some chosen location.
Instantaneous streamlines may only be activated for steady-state cases or when the seeding toggle
in on (the key ‘|’ in the 2D window). The starting point is initially determined by use of a surface
plotted in the 2D window. A point in the 2D window maps back to a corresponding point on the
dynamic surface in the 3D window and so can be used to seed instantaneous streamlines; pressing one
of the mouse buttons does this and (depending on which button is pressed) produces a streamline
going upstream and/or downstream. Alternatively, key F11 (and subsequent mouse actions which
are requested) defines a line or circle in the 2D window, which is then used to specify a set of
streamlines in the 3D window. Key F12 initiates an object of streamlines from a regular grid of
points in the 2D window, like it would spawn a grid of bubbles with the seeding toggle off.

Using the streamline database (in the Dial window), groups of streamlines can be plotted either
as lines of constant color (usually white), or colored according to the value of the local active scalar
function. In the latter case, it is helpful to enable the grey status for background surfaces (using
column 3 in the surface database) so that instead of being rendered in color they are instead rendered
in solid grey, making the colored streamlines clearer.

Each object in the streamline database can also be reset as to the direction (downstream, up-
stream or both) and if bubbles are to be seeded from the same locations. It should be noted that in
most cases seeding particles in this manner (and with the instantaneous streamlines not rendered)
is faster than doing it interactively with an active cut in the 2D window.

The streamline object database also allows each group to be drawn as a line or the following (by
using column 3 in the streamline database):

• Ribbons

Stream ribbons are streamlines that have been given some width. One edge is the true in-
stantaneous particle path, the other edge is constructed by rotating a constant length normal
vector about the path tangent according to the local streamwise angular rotation rate. The
result is a ribbon whose twist illustrates the streamwise vorticity of the flow.

If the streamlines are colored, the ribbon is rendered in the default streamline color (usually
white), otherwise the ribbon is colored with the current scalar.

The width of the ribbon may be adjusted by using the dials when the cursor is in the Key
window. A specific width may be entered by hitting ‘w’. Also, the ribbons may be rotated by
using the dials with the cursor in the Key Window.

• Tubes

A tube is a streamline with a circular crossflow area. The radius of the cross-section is derived
from the local crossflow divergence. The crossflow divergence measures the local crossflow
expansion rate. Thus, the resulting tube displays the local expansion/compression of the
current vector field.

If the streamline coloring is on, the tubes will be colored with the current scalar. Otherwise,
the default streamline color is used.

18

The width of the tube may be adjusted by using the dials when the cursor is in the Key
window. A specific width (and maximum radius) may be entered by hitting ‘w’ in the Key
window. The maximum radius is useful to limit the size of the tube in stagnation regions of a
flow field where the radius can become exponentially large.

• Tubes with Twist

The rotation and divergence effects can be rendered simultaneously by placing lines on the
surface of tube which twist with the local rotation rate. This effectively combines the func-
tionality of the ribbons and tubes. The final image displays the streamline, the rotation rate,
the crossflow divergence, and scalar variations.

Again, if the streamline coloring is on, the tubes will be colored with the current scalar and
the lines will be in the default streamline color. Otherwise, the tube is the default color and
the lines are the current scalar.

As with ribbons and tubes, the rotation angle, the tube size, and the tube maximum may all
be controlled from the Key window using the dial box or by the appropriate key strokes.

NOTES:
(1) The streamline accuracy is reduced for a segment that crosses interface regions.
(2) Invoking streamlines in a multi-client application can have a negative effect on performance.
This technique is serial in nature and stalls all clients until the integrations requested are finished.
(3) Streamlines started on a surface (by using a mapped domain surface or via the Edge Plot)
function differently from normal 3D streamlines. These paths remain on the surface. This is done
numerically by using the projection of the local vector field onto the surface during the integration.
The vector field option (and scalar field option used for coloring) is set via the ‘Volume/Surface’
toggle, see the 1D window help menu, Section 2.8.3. This allows using the current vector field or
the current special vector function for the integration. Special functions are only defined at surfaces
(not the entire volume).

2.4.3 Tufts

Tufts are similar in concept to streamlines. A regular grid of points in the 2D window map to a
corresponding grid of points on the surface in the 3D window. At the points in the 3D window,
tufts are drawn which are short lines with magnitude and direction corresponding to the local vector
field. At the points in the 2D window the tufts correspond to the projection of the 3D vector field
onto the 2D plane. Key ‘Tab’ in the 3D window toggles tufts on and off. One of the dials in the
Key window allows interactive change in the scaling parameter which relates the vector magnitude
to the tuft size, and key ‘a’ allows this scaling parameter to be input from the keyboard.

2.4.4 Arrows

Arrows are the same as tufts except that they are defined only at 2D nodes (the intersection of a
cut and cell edges). To emphasize that they are different, they are drawn as lines with heads in the
2D window, whereas tufts are drawn as lines with a cross base. Arrows are shown on cutting planes
as well as iso-surfaces and are displayed in the 3D window as line segments. Arrows are toggled on
and off by key F7 in the 2D window.

19

2.4.5 Vector Clouds

Vector clouds display the local vector field at nodes which meet the current threshold limits. The
vector cloud technique is useful for locating interesting flow features and displaying the vector fields
in these regions. Vector clouds are invoked by hitting F8 in the 3D window and are always rendered
with the current scalar.

NOTE: Selecting this option (and not carefully pre-setting the thresholding limits) can produce
an enormous amount of network traffic! 7 words are transmitted for each node within the system
that meets the threshold criteria.

2.5 Grid

The computational grid can be displayed on any, or all, of the static and dynamic surfaces. For the
static surfaces this is controlled through column 2 of the surface database. For dynamic surfaces and
data plotted in the 2D window, grid display is controlled by function key F10 (in the 2D window).
The grid lines that are displayed correspond to the intersection of the plotting surfaces and the faces
of the computational grid(s).

2.6 Thresholding

A threshold function is another scalar function which is set, or changed, by pressing the appropriate
keys. The purpose of this function, when enabled, is to restrict all domain and static surface plotting
to only those parts of the surface on which the thresholding function lies within a certain range. The
user can interactively vary the upper and lower threshold bounds. The user can also select, through
column 4 of the surface database, the surfaces that are to be thresholded.

If the threshold function is chosen to be the same as the scalar function, then this provides
a means to plot the part of a surface on which the scalar function is within certain limits. If the
threshold function is chosen to be geometric (e.g. x) then this produces a dynamic cutaway, in which
the surface is only plotted within a certain geometric volume.

The threshold function can be set in two ways. Pressing a key on the keyboard that has been
defined by the programmer to be associated with a threshold function loads that functions data into
the threshold array. Alternatively, pressing F9 in the 3D window loads the current scalar function
data into the threshold storage.

The thresholding limits, within which plotting will be performed, can be varied interactively
using dials in the Key window, or input manually using key ‘t’.

20

2.7 Probes

There are a variety of probes which are available when plotting in the 2D window or from streamline
objects:

• Point (2D - F1)

The point probe is located at the cursor position, and returns, in the text window, the point’s
coordinates and the value of the active scalar and vector functions.

• Strip chart (2D - F2)

The strip chart is similar to the point probe, except that instead it produces a plot in the 1D
window of the current scalar function against time.

• Line (2D - F3)

When the line probe is invoked the user is asked to input two points using the mouse. These
define a line in the 2D window, and the output is a plot in the 1D window showing the variation
of the current scalar function along that line.

• Edge Plot (2D - F4)

The edge plot is similar to the line plot, except that in this case the line in the 2D window is
the edge line closest to the cursor when this option is invoked.

• Surface Layer (2D - F5)

This option produces a line plot in the 1D window of the current scalar function along a line
placed normal to an edge in the 2D window, at the edge position which is closest to the cursor.
As the user moves the cursor, the normal line moves accordingly.

• Streamline Probe (Dial - ‘|’)

The streamline probe may be started any time there are streamline objects. The current object
is mapped to the 1D window. When the cursor is in the 1D window a cross-hair or disc appears
in the 3D window marking the closest position on the active streamline. The size of the disc
mimics the stream tube thickness. For surface streamlines the mapped cursor is a cross-hair
displayed in both the 2D and 3D windows. This allows the user to both know which streamline
is mapped and probe the streamline.

NOTES:
1) Tabular output files (visualXYZ.tab) created when this probe is active also contain the
coordinate triads for the streamline.
2) When tubes are on, the disc size is 150% of the tube thickness.

21

2.8 Help Menus

2.8.1 3D Window

The help menu that is printed when one types ‘?’ in the 3D window is as follows:

3D Window

Mouse Buttons:

m - Center View @ Cursor

Key Strokes:

~ - write visual.img File + - Box blow-up

F1 - Show Active Surface F2 - Toggle Cutting Plane

F3 - Cutting Plane positioning F4 - Toggle Program Cut Plane

F5 - Toggle Surface Display F6 - Toggle Disp. w/Surface Fn

F7 - Toggle Iso-Surface F8 - Toggle Vector Clouds

F9 - Set Scalar as Threshold F10 - Animate StreamLines

F11 - Bubble Render Toggle F12 - Bubble Color Toggle

Delete - Delete Bubbles \ - Time Line Toggle

Insert - Save Dynamic Surface ^ - Shading Toggle

Tab - Tufts Toggle Home - Reset View

PageUp - Reset Clipping PageDown - Depth Cueing Toggle

NumPad - Set view from position # Ctrl-NumP - Store view in position #

/ - Edge Outline Toggle End - Terminate 2D modes

| - Ribbon/Tube Toggle Pause - Freeze the action

! - 3D Window Status Esc - Terminate pV3 Server

Comments:
1) At the top of the help menu in real applications there would be a list of the scalar, vector and
threshold function variables and their associated keys, as defined by the application program.
2) A toggle is a switch that is either on or off, and so pressing the key changes it to the other status.
3) Clipping is similar to a geometric thresholding. It displays the part of the 3D object that is
behind a plane held parallel to the screen.
4) In the ‘NumPad’ and ‘Ctrl-NumP’ descriptions, ‘NumPad’ and ‘NumP’ refer to one of the ten
numbers on the numerical keypad on the right of the keyboard. This number is then referred to as
#. This option allows the storing and recall of ten different viewing positions and any cutting planes
that are active. On SGI workstations the ‘NUM LOCK’ light must be on for these key-strokes to
be acknowledged. On some SUN keyboards, use the left-hand keypad.
5) Displaying the active surface, F1, will only work if the surface has some render attribute on (Box
1 in the surface database). The surface will flash on and off.
6) Pause is only active when there is 1 server. If ‘Pause’ is in effect when a second server starts, it
automatically releases the clients.

22

2.8.2 2D Window

The help menu that is printed when one types ‘?’ in the 2D window is as follows:

2D Window

Mouse Buttons:

l - Bubble/StreamLine going upstream

m - Bubble/StreamLine going up/downstream

r - Bubble/StreamLine going downstream

Key Strokes:

~ - write visual.img File + - Box blow-up

F1 - Point Probe F2 - Strip Chart

F3 - Line Probe F4 - Edge Plot

F5 - Surface Layer Scan F6 - 3D Window Render Toggle

F7 - Arrow Toggle F8 - Contour Toggle

F9 - Render Toggle F10 - Grid Toggle

F11 - Line/Circle of StreamLines F12 - Grid of StreamLines

Delete - Flip X in Window Tab - Bubble Streamer Toggle

End - Terminate Line Plot | - StreamLine Seed Toggle

t - Dynamic Surf Thresh Toggle ! - 2D Window Status

Comments:
1) the ‘Delete’ option reverses the sign of the x′-coordinate in the 2D window, effectively turning
over the 2D window. This is helpful when the cutting plane surface you are seeing in the 3D window
is the reverse side of the 2D window.
2) ‘End’ ends all plotting in the 1D window.
3) The StreamLine Seed Toggle allows what would spawn off Bubble(s), to add objects to the
StreamLine database.

23

2.8.3 1D Window

The help menu that is printed when one types ‘?’ in the 1D window is as follows:

1D Window

Mouse Buttons:

m - Set Cut Plane w/ StreamLine Probe (positioning on)

any - Seed SL/Bubble w/ Edge Plot on

Key Strokes:

r - add Reference line s - Volume/Surface Fn Toggle

x - Change X scaling y - Change Y scaling

End - Terminate Line Plot PrintScrn - Tabular Output

Comments:
1) To set a planar cut perpendicular to the streamline at a given position, first turn the streamline
probe on and select the appropriate streamline, then turn planar cut positioning on (F3 in the 3D
window). Move the cursor in the 1D window to the correct position, and to finish, press the middle
mouse button.
2) The Reference line is an additional line placed in the 1D window along with the results of a probe.
This line is read from a file in the pV3 tabular file output format and displayed in grey.
3) The Volume/Surface function toggle allows the specifying of what surface functions are used
for integrations and rendering of surface particles and streamlines when there are special surface
functions. This allows the choice between the special functions and the normal volume scalar/vector
fields.

24

2.8.4 Key Window

The help menu that is printed when one types ‘?’ in the Dials window is as follows:

KEY Window

Mouse Buttons:

m - Set new color at cursor position

r - Set Iso-Surface/Time value

Key Strokes:

A - Toggle 3D arrow-head type a - (Re)Set arrow/tuft size

c - Set # of Contours d - Discipline in Dial Window

f - (Re)Set function limits l - Load new color file

m - Set S.L. Animations q - Query function limits

R - Set 3D arrow-head ratios r - Reset color scheme

s - Toggle color schemes S - Single step (unsteady only)

t - (Re)Set thresh limits W - Write Startup file

w - Set Tube/Ribbon width z - Set ZPrime

! - Key Window Status

Comments:
1) Option ‘s’ allows one to toggle the display of the color schemes, between the color scheme that
is used for all standard scalar rendering, the scheme that is used to display scalar surface functions,
and the color map used for time rendering of particles.
2) The iso-surface and cutting planes correspond to a surface on which z′=const. Option ‘z’ allows
one to explicitly specify the value of this constant.
3) Single-stepping is like pause, but after each new data frame, the paused paused state is reactivated.
The ‘Pause’ key (in the 3D window) must be used to release each time-frame.

25

2.8.5 Dials Window

The help menu that is printed when one types ‘?’ in the Dials window is as follows:

Dials Window (Dials)

Mouse Buttons:

l - Move Dial Clockwise

m - Change Window Mapping

r - Move Dial CounterClockwise

Key Strokes:

~ - write ImageFile of Screen c - comparison window

d - Dial Sensitivity s - Surface List Toggle

M - Mirror Toggle S - Send Clients a String

Dials Window (Surface List)

Mouse Buttons: any - Select

Key Strokes:

~ - write ImageFile of Screen c - comparison window

d - Dial Sensitivity s - Surface List Toggle

PageUp - Move Surface List Up PageDown - Move Surface List Down

Delete - Remove Current Surface M - Mirror Toggle

S - Send Clients a String V - Vec Toggle-Current Surf

Box: 1 2 3 4

black not rendered no grid scalar rendered no thresholding

grey translucent grey surface

white opaque grid on grey w/ contour thresholding on

Dials Window (SL-Particle List)

Mouse Buttons: any - Select

Key Strokes:

~ - write ImageFile of Screen c - comparison window

d - Dial Sensitivity s - Surface List Toggle

PageDown - Move SL-Part List Up PageUp - Move SL-Part List Down

Delete - Remove Current SL-Part | - StreamLine Probe

26

M - Mirror Toggle S - Send Clients a String

T - Set the SL time limitter

Box: 1 2 3 4

black off foreword streamline no particles

grey on both ribbon

white colored backward tube particles

cross tube w/ twist

Dials Window (Discipline-Client List)

Mouse Buttons: any - Select

Key Strokes:

~ - write ImageFile of Screen c - comparison window

d - Dial Sensitivity s - Surface List Toggle

PageDown - Move Disc-Cl List Up PageUp - Move Disc-CL List Down

M - Mirror Toggle S - Send Clients a String

Comments:
1) This window has two modes; dials and database lists. In dials mode it displays or emulates
the functions of the dialbox dials (if a dialbox) exists. In surface list mode it displays the surface
database, a list of all of the domain and static surfaces and their attributes. In streamline database
mode it displays a list of all of the streamline objects and their attributes. In discipline mode it
displays the clients and their visibility.
2) In dials mode, pressing the middle button displays in succession the meaning of the dials for each
of the principal windows. If dialbox emulation is being used pressing the right or left mouse buttons
has the effect of turning the appropriate pseudo-dial. The middle circle moves the dial faster than
the outer portion of the dial. Holding the button down will cause pV3 to go into outline mode for
faster motion. This can be defeated by holding down the ‘Shift’ key while pressing on the button.
3) In surface list mode, boxes 1,2,3,4 refer to the four columns of the surface list which are labeled
on the screen as Render/Grid/Grey/Thres.
4) In streamline list mode, boxes 1,2,3,4 refer to the four columns of the list which are labelled on
the screen as Render/Dir/Type/Seed.
5) In discipline/client list mode, clicking on the discipline label sets that discipline to the current
and displayed discipline.
6) The comparsion window is an additional window placed on the screen. This window displays of
the contents of an existing pV3 image file. It is open in the upper-left corner of the screen and
may be moved by using the appropriate window manager functions. The keystroke ‘End’ hit in this
window, closes it and deallocates any memory.

27

2.9 Dialbox Functions

k
k
k
k

��
��

��
��

��
��

��
��

k
k
k
k

��
��

��
��

��
��

��
��

3D window

X rotation Z rotation

Y rotation Scan

Pan Scroll

Zoom Clip

X rotation: rotate about X-axis

Z rotation: rotate about Z-axis

Y rotation: rotate about Y-axis

Scan: move cutting plane or iso-surface

Pan: move right/left

Scroll: move up/down

Zoom: enlarge/reduce

Clip: move clipping boundary

k
k
k
k

��
��

��
��

��
��

��
��

k
k
k
k

��
��

��
��

��
��

��
��

2D window

Rotation

Scan

Pan Scroll

Zoom

Rotation: rotate

Scan: move cutting plane

Pan: move right/left

Scroll: move up/down

Zoom: enlarge/reduce

k
k
k
k

��
��

��
��

��
��

��
��

k
k
k
k

��
��

��
��

��
��

��
��

Key window

Tube max Rib rot

Tube/Rsize Vsize

Fmin Fmax

Tmin Tmax

Tube max: maximum tube size

Rib rot: ribbon rotation

Tube/Rsize: change tube/ribbon size

Vsize: change scaling of tufts/arrows

Fmin: change minimum scalar function value

Fmax: change maximum scalar function value

Tmin: change minimum thresholding value

Tmax: change maximum thresholding value

28

3 Multi-Disciplinary Visualization

Multi-disciplinary cases are defined by the client pool when a pV3 server starts. A client defines it’s
discipline by setting a character string when the call-back PVCLIENT is invoked at pV3 client-side
initialization. All clients belonging to the same discipline have the same field variables (i.e., scalar,
vector, and etc.) and the same programmer-defined cuts. See the pV3 Programmer’s Guide.

The design of the servers (and post-processing viewer) for multi-disciplinary cases is that there be
a current discipline and that while the discipline is active, all user interaction effects that discipline.
This can be thought of as multiple visualization sessions (one for each discipline) with one set of
output windows. This means that each discipline has it’s current field variables, with associated
color maps and visualization state. Because data displayed in the 2D and 1D windows reflect some
further examination of the 3D data, these windows only show the filtering from the current discipline
(though each discipline’s state can indicate output to these windows). Switching between disciplines
will update the data drawn to reflect the state of the current discipline.

Control of the current discipline, as well as the discipline/client visibility is performed via the
Dialbox Window, see Section 2.2.6.

The following information is ‘global’ and therefore not part of any discipline’s state:

• Display State
There is one set of windows and they are used regardless of the discipline. This is also true
for the lighting used in the 3D Window.

• View State
The viewing transformation matrix is global and not part of current discipline. This maintains
a constant view as the disciplines are changed.

• Planar Cuts
The dynamic planar cut is currently the only tool that allows cross-discipline examination. The
2D window will display all the disciplines cut by the plane using their current scalar colored
with their own map. If any (non-current) discipline has a mapped domain surface, iso-surface
or a programmed cut on when the planar cut is activated these tools are turned off.

A line probe will only display the scalar along the line for the current discipline.

• Time Color Map
There is only one color map used for displaying time (on particles).

29

4 Collaboration

The pV3 suite supports full collaboration for Interactive Servers as well as the ability to query what
extracts a Bacth Server is collecting. The collaboration is designed to be as general as possible.
Each Server runs independently, collecting it’s own data. This insures that all Servers are currently
looking at the same snap-shot of the data. The communication between Servers is only for state
information.

pV3’s collaboration comes in many forms:

• Servers Window
When more than one Server (either Interactive or Batch) is running an additional window is
opened listing the current pool and which hosts these pV3 Servers are executing upon. The
Server executing on this workstation is listed first in white. Each other Server is color coded.
When all other servers have exitted, this window is closed.

• Soft Cursors
When the cursor of an Interactive Server is in either the 3D, 2D or 1D windows, it is displayed
in its place using the color coded for that host.

• View Locking
The 3D view can be locked to the view matrix used on any other Interactive Server in the
pool.

• Steering Control
Only one Server can have steering control (the ability to send strings to the clients). Control
is usually obtained by being the first Server in the pool. If there are any Batch Servers, then
no Interactive Server can get control. This is to insure that the integrity of the batch run is
maintained.

The Server in control must relinquish the steering ability before any other Server in the pool
can obtain the control. The exception to this is if a Batch Server starts after an Interactive
Server.

Server-to-Server messages can be sent to request that steering control be given up.

• Extract Viewing & Selection
A detailed list of the extracts active within a Server can be obtained by clicking in the appro-
priate box in the Servers Window. This allows selecting extracts not assigned to the current
session but active in the other Server. Also, the plotting attributes can be linked to the
atrributes assigned to the other Server.

• Dynamic Tool Locking
By linking the plotting attributes of the ‘Dynamic Surface’ to another Server, this allows the
complete functioning of the dynamic tools to be linked to that Server.

• Pause
The pause function of transient cases is made inoperative when there are multiple Servers.
This is to insure that the entire system does not wedge.

30

4.1 Help Menus

4.1.1 Servers Window

The help menu that is printed when one types ‘?’ in the servers window is as follows:

Servers Window

Mouse Buttons: any - Select

Key Strokes:

S - Send Active Server a String

Box: 1 2 3

View Control Extract Window Steering Control

Comments:
1) The Active Server can be selected by clicking on the title of the host in the window. It is marked
by an ‘*’ after the type of server.
2) The view is locked to the Active Server by clicking in the top server’s first box. This will only
work for Active Interactive Servers.
3) The extracts currently collected in a server can be viewed by clicking on the second box. This
opens up a Servers Extract Window associated with the host. To close the window, again click on
the (now colored) second box.
4) Only one server can be in steering control at a time. Control is identified by a filled third box.
Control can only be obtained when the server in control releases (clicks on) the filled box. If a Batch
server is running it has control, therefore no interactive server can gain control.

4.1.2 Servers Extract Window

The help menu that is printed when one types ‘?’ in the servers extract window is as follows:

Server Extract Window

Mouse Buttons: any - Select

Key Strokes:

PageDown - Move Extract List Up PageUp - Move Extract List Down

Box: 1 2

Link Attributes Include Extract

Comments:
1) Extracts are common to both the server associated with this window and this Interactive Server
if the second box is filled. The name of the extract in the window’s server is listed on the left of this
list, where this server’s names are listed on the right. If an extract is desired that is not currently

31

available, click on the second (unfilled) box. Please wait a couple of updates for the request to be
satisfied.
2) The extract’s plotting atrributes can be controlled by the attributes set in other server by clicking
on the first box. This will only work is the second box is filled.

32

5 Post-Processing

There are two types of output files generated by pV3 activated by the appropriate keys in different
windows. These files are compatible with the post-processors supplied with Visual3. The first
type is tabular output which is generated from the 1D window. This is an ASCII file suitable for
inclusion into most line plotting or spread-sheet software. The default file name is ‘visualXYZ.tab’.
A post-processing program ‘tab2ps’ produces Postscript output.

The second file type is an image dump of the entire screen or an individual window. This file is
written in a FORTRAN unformatted manner with the default name of ‘visualXYZ.img’. This can
be converted into Postscript (using ‘img2ps’) or Macintosh TIFF files (using ‘img2tiff’) and viewed
on the screen (using ‘img2X’).

The following section describes the usage of the post-processors supplied with pV3 and Visual3.
It should be noted that the source and make-files for the post-processors have been included with the
distribution. By making small modifications to the sources, other output devices can be supported
with no changes to pV3.

5.1 tab2ps

tab2ps takes as an argument a tabular output file name and produces PostScript on standard output.
The output may be redirected to a file or piped directly to the printer spooler.

examples: % tab2ps visual002.tab | lp
% tab2ps visual002.tab > tab.ps

5.2 img2tiff

img2tiff takes as its first argument the image file name, and the second argument is the output TIFF
file name. The TIFF file can then be transferred to a Macintosh and be used by any application
that can take TIFF as input, i.e. Adobe Photoshop.

example: % img2tiff visual001.img output.tiff

33

5.3 img2ps

img2ps takes as the first argument the image file name. Additional arguments are options controlling
the translation from TrueColor to 8-bit grey scale. The output of img2ps is PostScript and is written
to standard output. The output may be redirected to a file or piped directly to the printer spooler.
The options are as follows:

-cps produce color PostScript output - this is the only option that will produce color, the default
and the other options produce grey scale output

-r produce a red color separation

-g produce a green color separation

-b produce a blue color separation

-cxxxxxxxx color mapping where “x” is either r, g, or b.

-i inverse intensity

-4 4-bit grey scale

examples: % img2ps visual001.img | lp
% img2ps visual001.img -r -i > img.ps
% img2ps visual001.img -cps | lpr
% img2ps visual001.img -crgbrgbrg | lp

NOTES:
1) Options -r, -g, -b, -c and -cps are mutually exclusive.
2) If options -r, -g, -b, -c or -cps are not selected, the color translation defaults to 3 bits red, 3 bits
green and 2 bits blue (-crrrgggbb).
3) PostScript printers with only 2 MBytes may only be able to produce hard copy from the 2D
window. Use the -4 option for the 3D window. Do not attempt full screen dumps unless your
printer has alot of memory!

34

5.4 img2X

img2X may be used to view pV3 image file(s) on the screen. It can display as many a 10 images
and also write a pV3 image file of the entire screen. img2X may have as many as 10 arguments,
each should be the name of an image file. Optionally, each image can be compressed before drawn.
This is done by appending ‘/n’ to the end of the file-name (where n is the compression factor).

examples: % img2X visual001.img visual002.img/3
% img2X visual001.img/2

NOTES:
1) The compession scheme used is very simple. If n=2, every other pixel is displayed, n=3 picks
every third pixel.
2) An image window may be closed by hitting the key ‘x’ in that window.
3) An image file of the entire screen may be generated by hitting ‘˜ ’ in any image window.
4) img2X is properly terminated by clicking any mouse button while the cursor is in an image
window.

35

6 User Interface Differences with Visual3

The following is a list of differences that an experienced Visual3 user should note:

• Planar Cut

During reorientation of the plane (F3 in the 3D window) cut data is plotted in the 2D window
in pV3. This cut data may lag behind the current position as accurately shown in the 3D
window. Note: this may cause some confusion, remember to turn off the re-positioning (F3 in
the 3D window) when the desired orientation is reached.

• Cell Visualization Tools

pV3 does not support the plotting options for Cell Based Scalars. Visual3 should be used to
view output of these functions.

• Histogramming

pV3 does not support histogramming or many functions that requires the server to look at
the entire 3D data-set.

• Line output files

pV3 does not produce line files from the 3D and 2D windows for post-processing.

• Streamlines

The methods used for dealing with streamlines in pV3 are much more general than in Visual3.
This includes:

– A streamline object database

– Streamline probe is initiated from the database and may contains as many lines as stream-
lines in the object

– Each object has independent attributes (like the surface database)

– Streamlines are active during unsteady (nonpaused) states

– No streamer

See Instantaneous Streamlines in the Vector Visualization Tools, Section 2.4.2.

36

• Bubbles

The seeding methods used for particle paths are more numerous in pV3. These include:

– Seeding from streamline start locations (not requiring an active cut). Allows time lines
if the object is built from a line.

– Streamer (cursor) location

– Line/boundary layer probe locations

– Tuft locations

NOTES:
(1) Ghost bubbles are not plotted.
(2) Bubbles can be colored by the seed time in pV3. See Bubbles in the Vector Visualization
Tools, Section 2.4.1.

• Surface Streamlines and Bubbles

In Visual3, surface integrations were initiated when a domain surface was mapped and seeding
was accomplished in the 2D window. Once the surface was unmapped, all streamlines/bubbles
were deleted. In pV3, seeding surface streamlines and surface bubbles follow the above rules
for a domain surface when it is mapped. The seed points/particles are not deleted when the
surface is unmapped. Also, seeding can be accomplished without mapping by using any mouse
click in the 1D window with an Edge Plot active. This is VERY usefull when the surface is too
complex to map to the 2D window. The control of what vector/scalar fields (special surface
or volume) are used for the integration/rendering of the surface streamlines and particles is
performed by the surface function toggle (‘s’ in the 1D window).

37

7 Warning and Error Messages

• Warning: No Time-Out Set!

The time-out constant was set to no time-out, hard loops are used for both the server and
client(s).

• Warning: Visual*xxx not defined in .Xdefaults!

The font specified is not known to the X windows system. See Special Files, Section 1.1.3.

• Warning: xxxClient group size = yyy, only zzz task(s) active!

The specified PVM client group has members that are no longer active. This is usually do to
some clients exitting ungracefully.

• Warning: xxx clients in group but only using: yyy

An ‘init’ message was only received from yyy clients but the total number of active tasks
in the PVM group is xxx. It is possible that a task is not calling pV Update (see the
pV3 Programmer’s Guide). Also, it is possible that you may have to increase the Time-Out
constant. See Evironment Variables, Section 1.1.2.

• Warning: Illegal Message # xxx from cid

A non-pV3 message was received from client cid.

• Warning - MIRROR multi-client mismatch!

MIRROR specified in pV Init does not match between the various clients. Mirroring is turned
off.

• Warning - FLIMS multi-client mismatch!

FLIMS specified in pV Init does not match between the various clients.

• Warning: pV3 MAX clients exceeded - set to: xxx

The internal maximum number of clients was exceeded. The case will run with only xxx clients.

• Warning: Bad Status from client: cid status

The client specified has had some type of problem. The data from this iteration will not be
plotted. status is the client error code.

• Warning - New Client trying to connect! cid

A client is attempting to connect to a running visualization session. The request is ignored
and the session continues if cid is greater than the maximum cid at startup.

• Warning: Max Segs for SL # xxx

The maximum number of streamline segments has been reached for the specified streamline.
The integration is aborted and the streamline is displayed unfinished. This reporting can be
turned off by setting the environment variable pV Warning, see Section 1.1.2.

38

• Warning: ACK from client: cid tool err num

The client cid has experienced a problem with the request for the extract tool. err is either
−97 for an allocation error or −98 indicates that the instance num was not found. The result
is that for this client the extract will not appear. This may not even be a problem if, for
example, a cut (or iso-surface) does not pass through this client. This reporting can be turned
off by setting the environment variable pV Warning, see Section 1.1.2.

• Warning: Double Fill from client: cid

The specified client has sent two data streams for this iteration.

• Warning: Clients reporting different times!

Not all clients in a time-accurate application are reporting the same simulation time.

• Warning - Pending particle/SL inserts!

A Streamline group delete was requested while the server is processing inserts. The delete
request is ignored.

• Warning - StreamLine deletes pending!

• Warning - Particle delete pending!

Inserting a group of Streamlines is invalid while the server waits for the pending deletes to
complete. The request is ignored.

• Warning - Another surface delete pending!

Only one surface delete can be specified during an iteration. Additional requests are ignored.

• Warning - No Expose Event!

The server waited for a window to give an X Expose event and it did not happen!

• Warning (routine): xxx can not be transfered from cid to cid

During an integration, a request has been made to continue to a task that does not exist or
for some reason can not be reached.

• Warning (routine): Bad client id: cid

A non-existant task was targetted for an integration transfer.

• Warning (routine): DisciplineID did out of range.

The discipline index did is not valid.

• Warning (routine): partID xxx out of range.

An illegal particle number was encountered during a inter-client transfer.

• Warning (routine): partID xxx NO History!

A particle that has had no prior history is requesting a transfer.

• Warning (routine): SLXferID xxx out of range.

An illegal streamline number was encountered during a inter-client transfer.

39

• Warning (routine): SLXferID xxx NO History!

A streamline that has had no prior history is requesting a transfer.

• Warning (routine): SLXferID xxx, client yyy, unmark <= 0

An error occured removing a streamline from the active list.

• Warning: different ZPrimes from clients!

A programmed cut has been activated and the startup value for ZPrime is different for one
or more clients in a multi-client case. The resultant cut will not be continuous through the
patched volume.

• Warning: Illegal Surface Type: xxx

The startup extract (from the startup file) has the type xxx. Only the values 2 (Planar), 4
(programmed) or 7 (iso-surface) are valid. The entry is ignored.

• Warning: No Startup for Surface SLs!

Surface streamlines are not supported for restart (via the startup file). The entry is ignored.

• Warning: No Startup - Extract Type: xxx

The startup extract (from the startup file) has the type xxx. This type is not supported.

• Warning: Startup File does NOT exist!

The startup file is not found, therefore pV3 runs from the default startup state.

• Warning: Startup File too Old!

The startup file specified was written by a pre-Rev 1.20 version of the pV3 server and this is
a multi-discipline case. The server can not determine which discipline to apply the extracts.
No extracts are used.

• Warning: Startup File – Discipline not Found: discipline

The discipline discipline specified in the startup is not one of the disciplines in the running
simulation. No extracts are used for this part of the startup file.

• Warning - in pVSetExtract: index, exnum = xxx yyy

Programmed extracts have been registered, but the routine pVSetExtract has not been
supplied. REQMASK and PLOTMASK are set to zero.

40

• Error - Cannot attach to lock arena!

The pV3 server cannot set-up the lock areana to the file ‘.pV3.locks’. Is there write access in
the current directory?

• Error - getting new lock!

There is some problem initiating a new lock. Try removing the file ‘.pV3.locks’.

• pV3 Error - No response from any clients!

The pV3 clients currently running have not responded within the time-out constant.

• Error: pV3 client at different Rev than server! - id = cid

A client/server mismatch. You must rebuild the clients with the library that matches the
server!

• Error: Invalid Startup - Check Client Revs!

The initialization messages from the client(s) have pV3 signatures, but are invalid.

• Error: In parsing the Startup File!

This is not a fatal error but statement that there was some error in reading the startup file.
The contents, from the error on, are ingored. The server continues to run.

• Error: Discipline ID Out of Range! did

A client has reported did for the discipline index which is invalid.

• Error: Client ID Out of Range! (xxx, 1-max)

A client is reporting an id of xxx which is not in the valid range.

• Error: Client ID Already Taken! cid

Client id cid has already been assigned. There is something wrong with the client pool.

• Error: Client OPT Out of Range! (client = cid) - OPT

Client id cid has specified an invalid form of unsteadyness.

• Error: Mix of pV3 Steady-state and Unsteady Clients!

You can not mix steady-state pV3 clients with any non-zero IOPT clients.

• Error: Too Many Disciplines!

A client has started up a new discipline that requires an index greater than the number
currently supported (now 8).

• Error in Allocating Client Table!

Memory allocation failed for the Client Table.

• Error in Allocating Common Region!

Memory allocation failed for the FORTRAN common region for a discipline.

41

• Error: No Saved Discipline COMMON Region to Load!

FORTRAN common region for a discipline was not found.

• Error: Number of Fields Mis-Match! (xx != yy)

The number of field variables returned from a client is of the wrong length. This is not fatal.

• Error Starting Thread for multi-processing!

The new thread for the visualization could not be initialized.

• Error - Client(s) have exited!

One or more clients have exitted from a running visualization.

• Error in Memory Allocation!

The server has requested a block of memory and has been refused. This is usually do to the
problem’s size. Either wait until the workstation was fewer tasks running or find a bigger
(more swap space) machine.

• Error - Time-Accurate multi-client mismatch!

• Error - NPGCUT multi-client mismatch!

• Error - TPGCUT multi-client mismatch!

• Error - NKEYS multi-client mismatch!

• Error - IKEYS multi-client mismatch!

• Error - FKEYS multi-client mismatch!

The specified pV Init data does not match between the various clients for a case that has more
than one client.

• Error during Particle Initialization!

The server has requested memory for the particle tracking and has been refused. Either wait
until the workstation was fewer tasks running or find a bigger (more swap space) machine.

• Error during SL Transfer Initialization!

The server has requested memory for the streamline tracking history and has been refused.
Either wait until the workstation was fewer tasks running or find a bigger (more swap space)
machine.

• Singular matrix.

This occurs while processing the view transformation matrix. It is considered illegal to have
a singular transformation matrix. The server should not produce this condition. It usually
happens when the setup file has been corrupted. This can also happen if all the coordinate
data passed to the server is identical (the same XYZ position for all nodes).

• Error - File does not exist!

The requested file does not exist.

42

• Error - Not a TrueColor Image!

The image file requested for the comparison window is not a TrueColor image (it is Pseudo-
Color).

• Error - Image depth mismatch!

The image file requested for the comparison window has the wrong color depth.

• Error in ImageFile!

An error has occured during the image file read.

• Error in Reference File - NOT in Tabular form!

A reference line file was specified that was not in Visual3 .tab format.

• Discipline Error!

The discipline sub-system has not been properly initialized.

• ERROR in (SUB-)EXTRACT allocation

Memory could not be allocated for the (sub)extract subsystem.

• ERROR in REGISTRY allocation

Memory could not be allocated for the registry of programmed extracts.

• Extract NSEG ERROR: sub = xxx, nseg = yyy, max = zzz

A streamline sub-extract has been received with an illegal segment number. This is not fatal
but something is wrong!

• Extract TID ERROR: sub = xxx, nseg = yyy, ic = zzz

A streamline sub-extract has been received with a cid for segment yyy, but a previous message
for that segment had the client number zzz. This is not fatal but something is wrong!

• Extract Client ERROR: sub = xxx, cid = cid

The client tid is not in the active list. This is not fatal but something is wrong!

• Extract ERROR: type = www, sub = xxx, size = yyy, len = zzz

A sub-extract has been allocated for yyy words, but the message has zzz words. This is not
fatal but something is wrong!

• ERROR: Timed out waiting for Init Hand-Shake!

• ERROR: Timed out waiting for Client Hand-Shake!

The time-out constant has been exhausted before response from the client(s). Increase the
constant by the environment variable ‘pV3 TO’.

• ERROR - ColorMap OverFlow!

The requested number of colors specified in the colormap file exceeds the internal colormap
storage.

43

• ERROR - ColorMap File Error!

An error occured parsing the colormap file.

• ERROR - Memory Allocation for Prg Cuts!

• ERROR - Memory Allocation for Key Bindings!

• ERROR: ColorMap Memory Allocation!

• ERROR: Particle Memory Allocation!

• ERROR: Tuft Memory Allocation!

• ERROR: Chart Memory Allocation!

The server has requested a block of memory and has been refused. This is usually do to the
problem’s size. Either wait until the workstation was fewer tasks running or find a bigger
(more swap space) machine.

• KeyBoard File Does NOT Exist!

The environment variable ‘Visual KB’ has been set and the file indicated does not exist.

• ERROR reading KeyBoard File!

• ERROR E-O-F in KeyBoard File!

The environment variable ‘Visual KB’ has been set and there has been an error parsing the
data in the file.

• pV3: ERROR pvmd Not running!

The PVM system has not been initiated.

• pV3: ERROR No pV3 Clients running!

The server finds no clients.

• pV3: ERROR Allocating Memory for Key Bindings (NKEYS)

The data structures required for NKEYS field variables could not be allocated.

• pV3: ERROR Allocating Memory for Particle Tracking!

The data structures required for tracking particle movements could not be allocated.

• pV3: ERROR Allocating Memory for SL Tracking!

The data structures required for tracking streamline movements could not be allocated.

• pV3: bufinfo error: xxx, yyy

This is not a fatal error but a receive message buffer is giving an error indication. The message
is ignored.

44

