Failed

run_tests.TestEquivalentPosynomials_mosek_conif.test_correlated_monomials (from run_tests.TestEquivalentPosynomials_mosek_conif-20220108184653)

Failing for the past 1 build (Since #498 )
Took 16 ms.

Error Message

Items in the first set but not the second: gpkit.Posynomial(x_8^0.28·x_19^0.92·x_6^1.2·x_16^1.4·x_14^1.8·x_9^2.2·x_10^2.3·x_5^3.1·x_15^3.4·u_0^3.8·x_17^3.9·x_4^4.1·u_1^4.2·x_11^4.6/x_18^4.6/x_2^3.5/x_0^3.1/x_3^3/x_7^2.1/x_12^1.2/x_13^1.2/x_1^1 + x_16^0.12·x_9^1.5·x_8^1.8·x_5^3.3·x_18^3.7/u_0^4.8/x_6^4.2/x_1^4.2/x_0^3.8/x_14^3.7/x_4^3.7/x_17^3.5/x_15^3.1/x_10^2.3/x_12^2.2/x_2^2.1/x_11^1.9/x_7^0.9/x_19^0.45/x_13^0.17/x_3^0.14 + x_7^0.2·x_11^0.2·x_1^0.48·x_19^0.61·x_15^1·x_2^1.2·x_5^1.5·x_12^1.8·x_13^3.3·x_3^3.3·x_18^3.3/x_16^4.9/x_4^4.5/x_9^4.3/x_0^4/x_14^2.4/x_8^2.1/x_10^1.4/u_3^1/x_17^0.65/x_6^0.61 + x_6^0.87·x_15^1·x_18^1·x_11^1.5·x_0^1.8·x_13^1.8·x_1^2.3·x_3^2.3·x_14^2.9·x_19^3.5·x_8^4.5/x_5^3.9/x_10^3.7/x_7^2.2/x_17^1.8/x_9^1.8/x_12^0.64/x_16^0.28/x_2^0.25/x_4^0.027 + u_3^0.17·x_6^0.43·x_12^1.7·x_9^2.1·u_2^2.4·x_0^2.6·x_8^3.9·x_1^4.3·x_16^4.4·x_11^4.5·x_18^4.9·x_4^5/x_13^4.9/x_19^4.8/x_14^3.5/x_17^2.4/x_5^2.1/x_10^1.9/x_3^1.5/x_7^0.87/x_2^0.24/x_15^0.16 + x_4^0.32·x_12^0.44·x_3^0.81·x_16^1.6·x_5^1.8·x_19^2.6·x_0^3.1·x_11^3.6·x_8^3.6·x_15^4.1·x_7^5/x_6^3.9/x_2^2.7/x_13^2.2/x_9^1.8/x_18^1.4/x_10^1.3/x_1^1.2/x_14^1.2/u_1^1.2/u_3^0.27/x_17^0.22 + x_9^1.6·x_2^2.6·x_1^2.8·x_4^3·x_10^3.1·x_5^3.1·x_0^3.4·x_13^3.7·x_14^3.7·x_19^4.7/x_11^4/x_3^3.4/x_16^3.3/x_6^3.2/x_12^1.5/x_15^0.92/x_17^0.87/x_8^0.87/x_7^0.26/x_18^0.056) Items in the second set but not the first: gpkit.Posynomial(x_4^0.32·x_12^0.44·x_3^0.81·x_16^1.6·x_5^1.8·x_19^2.6·x_0^3.1·x_11^3.6·x_8^3.6·x_15^4.1·x_7^5/x_6^3.9/x_2^2.7/x_13^2.2/x_9^1.8/x_18^1.4/x_10^1.3/x_1^1.2/x_14^1.2/u_1^1.2/u_3^0.27/x_17^0.22 + x_0^-3.090185947366243·x_1^-1.021449813147405·x_2^-3.4672654395984304·x_3^-3.012992425852521·x_4^4.08360349527314·x_5^3.087392208557736·x_6^1.1793055191228135·x_7^-2.1312817158015274·x_8^0.2784625660285931·x_9^2.221525365569253·x_10^2.25832935633976·x_11^4.550902829307926·x_12^-1.2463592002808466·x_13^-1.226025636112765·x_14^1.7937473810466393·x_15^3.368664988502413·x_16^1.4018705784792438·x_17^3.8783606882236423·x_18^-4.638659138547512·x_19^0.9158543163187138·u_0^3.8481346489866244·u_1^4.200038033593194·u_2^0.0·u_3^0.0 + x_0^2.5740359434497986·x_1^4.291464004375911·x_2^-0.24441753288442136·x_3^-1.458945806487698·x_4^4.962711922057261·x_5^-2.1452069206570625·x_6^0.429321253208351·x_7^-0.8675510140605969·x_8^3.8721776580005614·x_9^2.075362329763564·x_10^-1.8655120151336946·x_11^4.505011245967349·x_12^1.6593528763289997·x_13^-4.868914531518364·x_14^-3.504965224714586·x_15^-0.1613178358244296·x_16^4.353439398497827·x_17^-2.4486473495041015·x_18^4.887630327354117·x_19^-4.818709083475526·u_0^0.0·u_1^0.0·u_2^2.3826671089508755·u_3^0.17360230988611391 + x_0^1.7731312110540998·x_1^-4.671909199874484·x_2^4.1313685902706165·x_3^-2.743268451825236·x_4^4.33833169624436·x_5^-4.461848796907871·x_6^-4.885558511841087·x_7^4.355452157696796·x_8^2.5580252220528177·x_9^-3.923625549739521·x_10^3.9219761184521804·x_11^-3.485290995339283·x_12^1.6440621960449118·x_13^0.32650892073839266·x_14^2.2287114046907908·x_15^-3.46508159149443·x_16^1.3747383960196782·x_17^0.8354161561660582·x_18^-2.785314698499053·x_19^-1.0395362941005084·u_0^0.0·u_1^-3.400694714705441·u_2^2.1663975896351824·u_3^0.0 + x_0^-3.825097956147837·x_1^-4.212630028354145·x_2^-2.1186403598328027·x_3^-0.14288632990687766·x_4^-3.656809091483507·x_5^3.3241302823598478·x_6^-4.243999837552174·x_7^-0.9004407582739962·x_8^1.8219802897653468·x_9^1.5097501428221083·x_10^-2.2748369727254425·x_11^-1.914430540154676·x_12^-2.2412746821443283·x_13^-0.17210288278186248·x_14^-3.6746314514301037·x_15^-3.1323454960015464·x_16^0.12331785204819834·x_17^-3.495169845519431·x_18^3.6975753115671104·x_19^-0.44850502529124814·u_0^-4.787414270991144·u_1^0.0·u_2^0.0·u_3^0.0 + x_0^-4.04910942477836·x_1^0.4774102521334287·x_2^1.1895053830624134·x_3^3.255805082867745·x_4^-4.493343090221421·x_5^1.4598869212069685·x_6^-0.6102724380269855·x_7^0.19701187351083327·x_8^-2.0628654921399914·x_9^-4.337414116098889·x_10^-1.426558027013317·x_11^0.20283082729130086·x_12^1.790328883747689·x_13^3.2535059765705743·x_14^-2.4169084574198507·x_15^1.0232580092603714·x_16^-4.9052188378356965·x_17^-0.6531927467675143·x_18^3.3010225119190455·x_19^0.6130374616702294·u_0^0.0·u_1^0.0·u_2^0.0·u_3^-1.0258897639585656 + x_0^-3.512765050345723·x_1^-4.820395510944576·x_2^2.552073626175347·x_3^-2.4419771958304013·x_4^-2.5433625924899053·x_5^-2.990425193292021·x_6^3.0025590345405497·x_7^-0.8622407169321802·x_8^2.9225864444468286·x_9^1.3943403640803096·x_10^0.7182648651321619·x_11^3.153924474090111·x_12^-0.7173831189616466·x_13^2.1162330519188934·x_14^-3.273662792793559·x_15^-1.5848040061620772·x_16^-0.10445971931424491·x_17^-2.094946675567446·x_18^-1.2084506025781696·x_19^-2.50913931601934·u_0^0.0·u_1^4.5973599608120495·u_2^0.0·u_3^0.0)

Stacktrace

Traceback (most recent call last):
  File "/jenkins/workspace/CE_gpkit_PR_research_models/buildnode/reynolds/optimizer/mosek/robust/robust/testing/t_equivalent_posynomials.py", line 99, in test_correlated_monomials
    self.assertSetEqual(set(actual_posynomials), set(theoretical_posynomials))
AssertionError: Items in the first set but not the second:
gpkit.Posynomial(x_8^0.28·x_19^0.92·x_6^1.2·x_16^1.4·x_14^1.8·x_9^2.2·x_10^2.3·x_5^3.1·x_15^3.4·u_0^3.8·x_17^3.9·x_4^4.1·u_1^4.2·x_11^4.6/x_18^4.6/x_2^3.5/x_0^3.1/x_3^3/x_7^2.1/x_12^1.2/x_13^1.2/x_1^1 + x_16^0.12·x_9^1.5·x_8^1.8·x_5^3.3·x_18^3.7/u_0^4.8/x_6^4.2/x_1^4.2/x_0^3.8/x_14^3.7/x_4^3.7/x_17^3.5/x_15^3.1/x_10^2.3/x_12^2.2/x_2^2.1/x_11^1.9/x_7^0.9/x_19^0.45/x_13^0.17/x_3^0.14 + x_7^0.2·x_11^0.2·x_1^0.48·x_19^0.61·x_15^1·x_2^1.2·x_5^1.5·x_12^1.8·x_13^3.3·x_3^3.3·x_18^3.3/x_16^4.9/x_4^4.5/x_9^4.3/x_0^4/x_14^2.4/x_8^2.1/x_10^1.4/u_3^1/x_17^0.65/x_6^0.61 + x_6^0.87·x_15^1·x_18^1·x_11^1.5·x_0^1.8·x_13^1.8·x_1^2.3·x_3^2.3·x_14^2.9·x_19^3.5·x_8^4.5/x_5^3.9/x_10^3.7/x_7^2.2/x_17^1.8/x_9^1.8/x_12^0.64/x_16^0.28/x_2^0.25/x_4^0.027 + u_3^0.17·x_6^0.43·x_12^1.7·x_9^2.1·u_2^2.4·x_0^2.6·x_8^3.9·x_1^4.3·x_16^4.4·x_11^4.5·x_18^4.9·x_4^5/x_13^4.9/x_19^4.8/x_14^3.5/x_17^2.4/x_5^2.1/x_10^1.9/x_3^1.5/x_7^0.87/x_2^0.24/x_15^0.16 + x_4^0.32·x_12^0.44·x_3^0.81·x_16^1.6·x_5^1.8·x_19^2.6·x_0^3.1·x_11^3.6·x_8^3.6·x_15^4.1·x_7^5/x_6^3.9/x_2^2.7/x_13^2.2/x_9^1.8/x_18^1.4/x_10^1.3/x_1^1.2/x_14^1.2/u_1^1.2/u_3^0.27/x_17^0.22 + x_9^1.6·x_2^2.6·x_1^2.8·x_4^3·x_10^3.1·x_5^3.1·x_0^3.4·x_13^3.7·x_14^3.7·x_19^4.7/x_11^4/x_3^3.4/x_16^3.3/x_6^3.2/x_12^1.5/x_15^0.92/x_17^0.87/x_8^0.87/x_7^0.26/x_18^0.056)
Items in the second set but not the first:
gpkit.Posynomial(x_4^0.32·x_12^0.44·x_3^0.81·x_16^1.6·x_5^1.8·x_19^2.6·x_0^3.1·x_11^3.6·x_8^3.6·x_15^4.1·x_7^5/x_6^3.9/x_2^2.7/x_13^2.2/x_9^1.8/x_18^1.4/x_10^1.3/x_1^1.2/x_14^1.2/u_1^1.2/u_3^0.27/x_17^0.22 + x_0^-3.090185947366243·x_1^-1.021449813147405·x_2^-3.4672654395984304·x_3^-3.012992425852521·x_4^4.08360349527314·x_5^3.087392208557736·x_6^1.1793055191228135·x_7^-2.1312817158015274·x_8^0.2784625660285931·x_9^2.221525365569253·x_10^2.25832935633976·x_11^4.550902829307926·x_12^-1.2463592002808466·x_13^-1.226025636112765·x_14^1.7937473810466393·x_15^3.368664988502413·x_16^1.4018705784792438·x_17^3.8783606882236423·x_18^-4.638659138547512·x_19^0.9158543163187138·u_0^3.8481346489866244·u_1^4.200038033593194·u_2^0.0·u_3^0.0 + x_0^2.5740359434497986·x_1^4.291464004375911·x_2^-0.24441753288442136·x_3^-1.458945806487698·x_4^4.962711922057261·x_5^-2.1452069206570625·x_6^0.429321253208351·x_7^-0.8675510140605969·x_8^3.8721776580005614·x_9^2.075362329763564·x_10^-1.8655120151336946·x_11^4.505011245967349·x_12^1.6593528763289997·x_13^-4.868914531518364·x_14^-3.504965224714586·x_15^-0.1613178358244296·x_16^4.353439398497827·x_17^-2.4486473495041015·x_18^4.887630327354117·x_19^-4.818709083475526·u_0^0.0·u_1^0.0·u_2^2.3826671089508755·u_3^0.17360230988611391 + x_0^1.7731312110540998·x_1^-4.671909199874484·x_2^4.1313685902706165·x_3^-2.743268451825236·x_4^4.33833169624436·x_5^-4.461848796907871·x_6^-4.885558511841087·x_7^4.355452157696796·x_8^2.5580252220528177·x_9^-3.923625549739521·x_10^3.9219761184521804·x_11^-3.485290995339283·x_12^1.6440621960449118·x_13^0.32650892073839266·x_14^2.2287114046907908·x_15^-3.46508159149443·x_16^1.3747383960196782·x_17^0.8354161561660582·x_18^-2.785314698499053·x_19^-1.0395362941005084·u_0^0.0·u_1^-3.400694714705441·u_2^2.1663975896351824·u_3^0.0 + x_0^-3.825097956147837·x_1^-4.212630028354145·x_2^-2.1186403598328027·x_3^-0.14288632990687766·x_4^-3.656809091483507·x_5^3.3241302823598478·x_6^-4.243999837552174·x_7^-0.9004407582739962·x_8^1.8219802897653468·x_9^1.5097501428221083·x_10^-2.2748369727254425·x_11^-1.914430540154676·x_12^-2.2412746821443283·x_13^-0.17210288278186248·x_14^-3.6746314514301037·x_15^-3.1323454960015464·x_16^0.12331785204819834·x_17^-3.495169845519431·x_18^3.6975753115671104·x_19^-0.44850502529124814·u_0^-4.787414270991144·u_1^0.0·u_2^0.0·u_3^0.0 + x_0^-4.04910942477836·x_1^0.4774102521334287·x_2^1.1895053830624134·x_3^3.255805082867745·x_4^-4.493343090221421·x_5^1.4598869212069685·x_6^-0.6102724380269855·x_7^0.19701187351083327·x_8^-2.0628654921399914·x_9^-4.337414116098889·x_10^-1.426558027013317·x_11^0.20283082729130086·x_12^1.790328883747689·x_13^3.2535059765705743·x_14^-2.4169084574198507·x_15^1.0232580092603714·x_16^-4.9052188378356965·x_17^-0.6531927467675143·x_18^3.3010225119190455·x_19^0.6130374616702294·u_0^0.0·u_1^0.0·u_2^0.0·u_3^-1.0258897639585656 + x_0^-3.512765050345723·x_1^-4.820395510944576·x_2^2.552073626175347·x_3^-2.4419771958304013·x_4^-2.5433625924899053·x_5^-2.990425193292021·x_6^3.0025590345405497·x_7^-0.8622407169321802·x_8^2.9225864444468286·x_9^1.3943403640803096·x_10^0.7182648651321619·x_11^3.153924474090111·x_12^-0.7173831189616466·x_13^2.1162330519188934·x_14^-3.273662792793559·x_15^-1.5848040061620772·x_16^-0.10445971931424491·x_17^-2.094946675567446·x_18^-1.2084506025781696·x_19^-2.50913931601934·u_0^0.0·u_1^4.5973599608120495·u_2^0.0·u_3^0.0)